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Bird's-Eye Scope
Visualize sensor coverages, detections, and tracks

Description
The Bird's-Eye Scope visualizes aspects of a driving scenario found in your Simulink® model.

Using the scope, you can:

• Inspect the coverage areas of radar, vision, and lidar sensors.
• Analyze the sensor detections of actors, road boundaries, and lane boundaries.
• Analyze the tracking results of moving actors within the scenario.

To get started, open the scope and click Find Signals. The scope updates the block diagram, finds
signals representing aspects of the driving scenario, organizes the signals into groups, and displays
the signals. You can then analyze the signals as you simulate, organize the signals into new groups,
and modify the graphical display of the signals.

For more details about using the scope, see “Visualize Sensor Data and Tracks in Bird's-Eye Scope”.

1 Apps
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Open the Bird's-Eye Scope App
Simulink Toolstrip:

• On the Simulation tab, under Review Results, click Bird's-Eye Scope.
• On the Apps tab, under Signal Processing and Wireless Communications, click Bird's-Eye

Scope.

 Bird's-Eye Scope
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Examples
• “Visualize Sensor Data and Tracks in Bird's-Eye Scope”
• “Visualize Sensor Data from Unreal Engine Simulation Environment”
• “Sensor Fusion Using Synthetic Radar and Vision Data in Simulink”
• “Lane Following Control with Sensor Fusion and Lane Detection”
• “Autonomous Emergency Braking with Sensor Fusion”
• “Test Open-Loop ADAS Algorithm Using Driving Scenario”
• “Test Closed-Loop ADAS Algorithm Using Driving Scenario”

Parameters
Settings

To access the settings of the Bird's-Eye Scope, on the scope toolstrip, click Settings.

Vehicle Coordinates View Settings

Longitudinal axis limits — Longitudinal axis limits
[-60,60] (default) | [min, max] vector

Longitudinal axis limits, specified as a [min, max] vector.

Tunable: Yes

Lateral axis limits — Lateral axis limits
[-30,30] (default) | [min, max] vector

Lateral axis limits, specified as a [min, max] vector.

Tunable: Yes

Track position selector — Selection matrix used to extract positions of tracked objects
[1,0,0,0,0,0; 0,0,1,0,0,0] (default) | 2-by-n matrix of zeros and ones

Selection matrix used to extract the positions of tracked objects, specified as a 2-by-n matrix of zeros
and ones. n is the size of the state vector for each tracked object in the scenario. The scope multiplies
the selection matrix by the state vector of a tracked object to return the (x, y) position of the object.

• The first row of the matrix corresponds to the x-coordinate stored within the state vector.
• The second row of the matrix corresponds to the y-coordinate stored within the state vector.

This parameter applies to signals from a Multi-Object Tracker block that were initialized by a linear
Kalman filter. The state vector format depends on the motion model used to initialize the Kalman
filter. For more details on these motion models, see trackingKF and “Linear Kalman Filters”.

The default selection matrix is for a 3-D constant velocity motion model. In this motion model, the
state vectors of tracked objects are of the form [x;vx;y;vy;z;vz], where:

• x is the x-coordinate of a tracked object.
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1-4



• vx is the velocity of a tracked object in the x-direction.
• y is the y-coordinate of a tracked object.
• vy is the velocity of a tracked object in the y-direction.
• z is the z-coordinate of a tracked object.
• vz is the velocity of a tracked object in the z-direction.

Multiplying the state vector by this selection matrix returns only the first element of the state vector,
x, and the third element of the state vector, y.

[1,0,0,0,0,0; 0,0,1,0,0,0] * [x;vx;y;vy;z;vz] = [x;y]

Tunable: No

Track velocity selector — Selection matrix used to extract velocities of tracked objects
[0,1,0,0,0,0; 0,0,0,1,0,0] (default) | 2-by-n matrix of zeros and ones

Selection matrix used to extract the velocities of tracked objects, specified as a 2-by-n matrix of zeros
and ones. n is the size of the state vector for each tracked object in the scenario. The scope multiplies
the selection matrix by the state vector of a tracked object to return the velocity of the object in the
(x, y) direction.

• The first row of the matrix corresponds to the x-direction velocity stored within the state vector.
• The second row of the matrix corresponds to the y-direction velocity stored within the state vector.

This parameter applies to signals from a Multi-Object Tracker block that were initialized by a linear
Kalman filter. The state vector format depends on the motion model used to initialize the Kalman
filter. For more details on these motion models, see trackingKF and “Linear Kalman Filters”.

The default selection matrix is for a 3-D constant velocity motion model. In this motion model, the
state vectors of tracked objects are of the form [x;vx;y;vy;z;vz], where:

• x is the x-coordinate of a tracked object.
• vx is the velocity of a tracked object in the x-direction.
• y is the y-coordinate of a tracked object.
• vy is the velocity of a tracked object in the y-direction.
• z is the z-coordinate of a tracked object.
• vz is the velocity of a tracked object in the z-direction.

Multiplying the state vector by this selection matrix returns only the second element of the state
vector, vx, and the fourth element of the state vector, vy.

[0,1,0,0,0,0; 0,0,0,1,0,0] * [x;vx;y;vy;z;vz] = [vx;vy]

Tunable: No

Global Settings

Display short signal names — Display signal names without path information
on (default) | off

• Select this parameter to display short signal names (signals without path information).

 Bird's-Eye Scope
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• Clear this parameter to display long signal names (signals with path information).

Consider the signal VisionDetection within subsystem Sensor Simulation. When you select
this parameter, the short name, VisionDetection, is displayed. When you clear this parameter, the
long name, Sensor Simulation/VisionDetection, is displayed.

Tunable: Yes

Signal Properties

These properties are a subset of the available signal properties. To view all the properties of a signal,
first select that signal from the left pane. Then, on the scope toolstrip, click Properties.

Alpha — Transparency of coverage area
0.1 (default) | real scalar in the range [0, 1]

Transparency of the coverage area, specified as a real scalar in the range [0, 1]. A value of 0 makes
the coverage area fully transparent. A value of 1 makes the coverage area fully opaque.

This property is available only for signals in the Sensor Coverage group.

Tunable: Yes

Velocity Scaling — Scale factor for magnitude length of velocity vectors
1 (default) | real scalar in the range [0, 20]

Scale factor for the magnitude length of the velocity vectors, specified as a real scalar in the range [0,
20]. The scope renders the magnitude vector value as M × Velocity Scaling, where M is the
magnitude of the velocity.

This property is available only for signals in the Detections or Tracks groups.

Tunable: Yes

Limitations
General Limitations

• Referenced models are not supported. To visualize signals that are within referenced models,
move the output of these signals to the top-level model.

• Rapid accelerator mode is not supported.
• If you initialize your model in fast restart, then after the first time you simulate, the Find Signals

button is disabled. To enable Find Signals again, on the Debug tab of the Simulink toolstrip,
click Fast Restart.

Scenario Reader Block Limitations

• The Bird's-Eye Scope does not support visualization in a model that contains:

• More than one Scenario Reader block.
• A Scenario Reader block within a nonvirtual subsystem, such as an atomic or enabled

subsystem.
• A Scenario Reader block that is configured to output actors and lane boundaries in world

coordinates (Coordinate system of outputs parameter set to World Coordinates).

1 Apps
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• For Scenario Reader blocks in which you specify the ego vehicle using the Ego Vehicle input port,
the ego vehicle signal must be connected directly to the block. Visualization of ego vehicle signals
that are output from a nonvirtual subsystem or referenced model are not supported.

3D Simulation Block Limitations

• The visualization of roads, lanes, and actors from Simulation 3D Scene Configuration blocks is not
supported. If your block contains a Simulation 3D Scene Configuration block, the Bird's-Eye
Scope still displays an ego vehicle, but it has default vehicle dimensions.

More About
Applicable Signals

When the Bird's-Eye Scope finds signals in your model, it automatically groups signals by type.
These groupings are based on the sources of the signals within the model.

Signal Group Description Signal Sources
Ground Truth Road boundaries and lane

markings in the scenario

You cannot modify this group or
any of its signals.

To inspect large road networks,
use the World Coordinates
View window. See “Vehicle and
World Coordinate Views” on
page 1-9.

• Scenario Reader block

Actors Actors in the scenario, including
the ego vehicle

You cannot modify this group or
any of its signals or subgroups.

To view actors that are located
away from the ego vehicle, use
the World Coordinates View
window. See “Vehicle and World
Coordinate Views” on page 1-
9.

• Scenario Reader block
• Vision Detection Generator,

Radar Detection Generator,
and Lidar Point Cloud
Generator blocks (for actor
profile information only, such
as the length, width, and
height of actors)

• If actor profile
information is not set or
is inconsistent between
blocks, the scope sets the
actor profiles to the
default actor profile
values for each block.

• The profile of the ego
vehicle is always set to
the default profile for
each block.

 Bird's-Eye Scope
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Signal Group Description Signal Sources
Sensor Coverage Coverage areas of vision, radar,

and lidar sensors, sorted into
Vision, Radar, and Lidar
subgroups

You can modify signals in this
group.

You can rename or delete
subgroups but not the top-level
Sensor Coverage group. You
can also add subgroups and
move signals between
subgroups. If you delete a
subgroup, its signals move to
the top-level Sensor Coverage
group.

• Vision Detection Generator
block

• Simulation 3D Vision
Detection Generator

• Radar Detection Generator
block

• Simulation 3D Probabilistic
Radar block

• Lidar Point Cloud Generator
block

• Simulation 3D Lidar block

Detections Detections obtained from vision,
radar, and lidar sensors, sorted
into Vision, Radar, and Lidar
subgroups

You can modify signals in this
group.

You can rename or delete
subgroups but not the top-level
Detections group. You can also
add subgroups and move signals
between subgroups. If you
delete a subgroup, its signals
move to the top-level
Detections group.

• Vision Detection Generator
block

• Simulation 3D Vision
Detection Generator

• Radar Detection Generator
block

• Lidar Point Cloud Generator
block

• Simulation 3D Probabilistic
Radar block

• Simulation 3D Lidar block

Tracks Tracks of objects in the scenario

You can modify signals in this
group.

You can rename or delete
subgroups but not the top-level
Tracks group. You can also add
subgroups to this group and
move signals into them. If you
delete a subgroup, its signals
move to the top-level Tracks
group.

• Multi-Object Tracker block

1 Apps
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Signal Group Description Signal Sources
Other Applicable Signals Signals that the scope cannot

automatically group, such as
ones that combine information
from multiple sensors

You can modify signals in this
group but you cannot add
subgroups.

Signals in this group do not
display during simulation.

• Blocks that combine or
cluster signals (such as the
Detection Concatenation
block)

• Nonvirtual Simulink buses
containing position and
velocity information for
detections and tracks

• Vehicle To World and World
To Vehicle blocks

• Any blocks that create buses
containing actor poses

For details on the actor pose
information required when
creating these buses, see the
Actors output port of the
Scenario Reader block.

To view a model that includes samples of all these signals types, see the “Sensor Fusion Using
Synthetic Radar and Vision Data in Simulink” example.

Vehicle and World Coordinate Views

In the Bird's-Eye Scope, the default view displays the driving scenario in vehicle coordinates.
During simulation, this view displays the scenario from the perspective of the ego vehicle. Use this
view to inspect aspects of the scenario in the immediate vicinity of the ego vehicle.

 Bird's-Eye Scope
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You can also display the driving scenario in world coordinates. On the scope toolstrip, click World
Coordinates to open the World Coordinates View window. Use this window to view the scenario as
a whole. You can also use this view to inspect the trajectories of actors that are not in the immediate
vicinity of the ego vehicle.
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To display the roads and lanes within the World Coordinates View, click Find Signals. To display
the ego vehicle and other actors in the scenario, run the simulation. This view does not display
detections, tracks, sensor coverage areas, and other applicable signals. You can view these signals
only in the Vehicle Coordinates View window.

Note In the World Coordinates View window, the circle around the ego vehicle highlights the
location of the vehicle in the scenario. It is not a sensor coverage area.

Tips
• To find the source of a signal within the model, in the left pane of the scope, right-click a signal

and select Highlight in Model.
• You can show or hide signals while simulating. For example, to hide a sensor coverage, first select

it from the left pane. Then, from the Properties tab, clear the Show Sensor Coverage check
box.

 Bird's-Eye Scope
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• When you reopen the scope after saving and closing a model, the scope canvas is initially blank.
Click Find Signals to find the signals again. The signals have the same properties from when you
last saved the model.

• If the simulation runs too quickly, you can slow it down by using simulation pacing. On the
Simulation tab of the Simulink toolstrip, select Run > Simulation Pacing. Then, select the
Enable pacing to slow down simulation check box and decrease the simulation time to less
than the default of one second per wall clock second.

• To better inspect the scenario, you can pan and zoom within the Vehicle Coordinates View and
World Coordinates View windows. To return to the default display of either window, in the

upper-right corner of that window, click the home button .

See Also
Detection Concatenation | Lidar Point Cloud Generator | Multi-Object Tracker | Radar Detection
Generator | Scenario Reader | Simulation 3D Lidar | Simulation 3D Probabilistic Radar | Simulation
3D Vision Detection Generator | Vision Detection Generator

Topics
“Visualize Sensor Data and Tracks in Bird's-Eye Scope”
“Visualize Sensor Data from Unreal Engine Simulation Environment”
“Sensor Fusion Using Synthetic Radar and Vision Data in Simulink”
“Lane Following Control with Sensor Fusion and Lane Detection”
“Autonomous Emergency Braking with Sensor Fusion”
“Test Open-Loop ADAS Algorithm Using Driving Scenario”
“Test Closed-Loop ADAS Algorithm Using Driving Scenario”

Introduced in R2018b
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Driving Scenario Designer
Design driving scenarios, configure sensors, and generate synthetic data

Description
The Driving Scenario Designer app enables you to design synthetic driving scenarios for testing
your autonomous driving systems.

Using the app, you can:

• Create road and actor models using a drag-and-drop interface.
• Configure vision, radar, and lidar sensors mounted on the ego vehicle. You can use these sensors

to simulate detections of actors and lane boundaries in the scenario and to generate point cloud
data from a scenario.

• Load driving scenarios representing European New Car Assessment Programme (Euro NCAP®)
test protocols [1][2][3] and other prebuilt scenarios.

• Import OpenDRIVE® roads and lanes into a driving scenario. The app supports OpenDRIVE format
specification version 1.4H [4].

• Import road data from OpenStreetMap® or HERE HD Live Map1 web services into a driving
scenario.

• Export the road network in a driving scenario to an OpenDRIVE file.
• Export synthetic sensor detections to MATLAB®.
• Generate MATLAB code of the scenario and sensors, and then programmatically modify the

scenario and import it back into the app for further simulation.
• Generate a Simulink model from the scenario and sensors, and use the generated models to test

your sensor fusion or vehicle control algorithms.

To learn more about the app, see Driving Scenario Designer.

1. You need to enter into a separate agreement with HERE in order to gain access to the HDLM services and to get the
required credentials (access_key_id and access_key_secret) for using the HERE Service.

 Driving Scenario Designer
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Open the Driving Scenario Designer App
• MATLAB Toolstrip: On the Apps tab, under Automotive, click the app icon.
• MATLAB command prompt: Enter drivingScenarioDesigner.

Examples

Create a Driving Scenario

Create a driving scenario of a vehicle driving down a curved road, and export the road and vehicle
models to the MATLAB workspace. For a more detailed example of creating a driving scenario, see
“Create Driving Scenario Interactively and Generate Synthetic Sensor Data”.

Open the Driving Scenario Designer app.

1 Apps
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drivingScenarioDesigner

Create a curved road. On the app toolstrip, click Add Road. Click the bottom of the canvas, extend
the road path to the middle of the canvas, and click the canvas again. Extend the road path to the top
of the canvas, and then double-click to create the road. To make the curve more complex, click and
drag the road centers (open circles), or double-click the road to add more road centers.

 Driving Scenario Designer
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Add lanes to the road. In the left pane, on the Roads tab, expand the Lanes section. Set Number of
Lanes to 2. By default, the road is one-way and has solid lane markings on either side to indicate the
shoulder.

Add a vehicle at one end of the road. On the app toolstrip, select Add Actor > Car. Then click the
road to set the initial position of the car.

1 Apps
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Set the driving trajectory of the car. Right-click the car, select Add Forward Waypoints, and add
waypoints for the car to pass through. After you add the last waypoint, press Enter. The car
autorotates in the direction of the first waypoint.

Adjust the speed of the car as it passes between waypoints. In the Waypoints, Speeds, Wait Times,
and Yaw table in the left pane, set the velocity, v (m/s), of the ego vehicle as it enters each waypoint

 Driving Scenario Designer
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segment. Increase the speed of the car for the straight segments and decrease its speed for the
curved segments. For example, the trajectory has six waypoints, set the v (m/s) cells to 30, 20, 15,
15, 20, and 30.

Run the scenario, and adjust settings as needed. Then click Save > Roads & Actors to save the road
and car models to a MAT-file.

Generate Sensor Data from Scenario

Generate lidar point cloud data from a prebuilt Euro NCAP driving scenario.

• For more details on prebuilt scenarios available from the app, see “Prebuilt Driving Scenarios in
Driving Scenario Designer”.

• For more details on available Euro NCAP scenarios, see “Euro NCAP Driving Scenarios in Driving
Scenario Designer”.

Load a Euro NCAP autonomous emergency braking (AEB) scenario of a collision with a pedestrian
child. At collision time, the point of impact occurs 50% of the way across the width of the car.

path = fullfile(matlabroot,'toolbox','shared','drivingscenario', ...
    'PrebuiltScenarios','EuroNCAP');
addpath(genpath(path)) % Add folder to path
drivingScenarioDesigner('AEB_PedestrianChild_Nearside_50width.mat')
rmpath(path) % Remove folder from path
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Add a lidar sensor to the ego vehicle. First click Add Lidar. Then, on the Sensor Canvas, click the
predefined sensor location at the roof center of the car. The lidar sensor appears in black at the
predefined location. The gray color that surrounds the car is the coverage area of the sensor.

 Driving Scenario Designer
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Run the scenario. Inspect different aspects of the scenario by toggling between canvases and views.
You can toggle between the Sensor Canvas and Scenario Canvas and between the Bird's-Eye Plot
and Ego-Centric View.

In the Bird's-Eye Plot and Ego-Centric View, the actors are displayed as meshes instead of as
cuboids. To change the display settings, use the Display options on the app toolstrip.
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1-20



Export the sensor data to the MATLAB workspace. Click Export > Export Sensor Data, enter a
workspace variable name, and click OK.

Import Programmatic Driving Scenario and Sensors

Programmatically create a driving scenario, radar sensor, and camera sensor, and then import the
scenario and sensors into the app. For more details on working with programmatic driving scenarios
and sensors, see “Create Driving Scenario Variations Programmatically”.

Create a simple driving scenario by using a drivingScenario object. In this scenario, the ego
vehicle travels straight on a 50-meter road segment at a constant speed of 30 meters per second. For
the ego vehicle, specify a ClassID of 1. This value corresponds to the app Class ID of 1, which
refers to actors of class Car. For more details on how the app defines classes, see the Class
parameter description in the “Actors” on page 1-0  parameter tab.

scenario = drivingScenario;
roadCenters = [0 0 0; 50 0 0];
road(scenario, roadCenters);

egoVehicle = vehicle(scenario,'ClassID',1,'Position',[5 0 0]);
waypoints = [5 0 0; 45 0 0];
speed = 30;
trajectory(egoVehicle,waypoints,speed);

 Driving Scenario Designer
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Create a radar sensor by using a radarDetectionGenerator object, and create a camera sensor by
using a visionDetectionGenerator object. Place both sensors at the vehicle origin, with the
radar facing forward and the camera facing backward.

radar = radarDetectionGenerator('SensorLocation',[0 0]);
camera = visionDetectionGenerator('SensorLocation',[0 0],'Yaw',-180);

Import the scenario, front-facing radar sensor, and rear-facing camera sensor into the app.

drivingScenarioDesigner(scenario,{radar,camera})

1 Apps
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You can then run the scenario and modify the scenario and sensors. To generate new
drivingScenario, radarDetectionGenerator, and visionDetectionGenerator objects, on
the app toolstrip, select Export > Export MATLAB Function, and then run the generated function.

Generate Simulink Model of Scenario and Sensor

Load a driving scenario containing a sensor and generate a Simulink model from the scenario and
sensor. For a more detailed example on generating Simulink models from the app, see “Generate
Sensor Detection Blocks Using Driving Scenario Designer”.

Load a prebuilt driving scenario into the app. The scenario contains two vehicles crossing through an
intersection. The ego vehicle travels north and contains a camera sensor. This sensor is configured to
detect both objects and lanes.

path = fullfile(matlabroot,'toolbox','shared','drivingscenario','PrebuiltScenarios');
addpath(genpath(path)) % Add folder to path
drivingScenarioDesigner('EgoVehicleGoesStraight_VehicleFromLeftGoesStraight.mat')
rmpath(path) % Remove folder from path

 Driving Scenario Designer
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Generate a Simulink model of the scenario and sensor. On the app toolstrip, select Export > Export
Simulink Model. If you are prompted, save the scenario file.

The Scenario Reader block reads the road and actors from the scenario file. To update the scenario
data in the model, update the scenario in the app and save the file.

The Vision Detection Generator block recreates the camera sensor defined in the app. To update the
sensor in the model, update the sensor in the app, select Export > Export Sensor Simulink Model,
and copy the newly generated sensor block into the model. If you updated any roads or actors while
updating the sensors, then select Export > Export Simulink Model. In this case, the Scenario
Reader block accurately reads the actor profile data and passes it to the sensor.
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Specify Vehicle Trajectories for 3D Simulation

Create a scenario with vehicle trajectories that you can later recreate in Simulink for simulation in a
3D environment.

Open one of the prebuilt scenarios that recreates a default scene available through the 3D
environment. On the app toolstrip, select Open > Prebuilt Scenario > Simulation3D and select a
scenario. For example, select the DoubleLaneChange.mat scenario.

Specify a vehicle and its trajectory.

 Driving Scenario Designer
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Update the dimensions of the vehicle to match the dimensions of the predefined vehicle types in the
3D simulation environment.

1 On the Actors tab, select the 3D Display Type option you want.
2 On the app toolstrip, select 3D Display > Use 3D Simulation Actor Dimensions. In the

Scenario Canvas, the actor dimensions update to match the predefined dimensions of the actors
in the 3D simulation environment.

Preview how the scenario will look when you later recreate it in Simulink. On the app toolstrip, select
3D Display > View Simulation in 3D Display. After the 3D display window opens, click Run.
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Modify the vehicle and trajectory as needed. Avoid changing the road network or the actors that were
predefined in the scenario. Otherwise, the app scenario will not match the scenario that you later
recreate in Simulink. If you change the scenario, the 3D display window closes.

When you are done modifying the scenario, you can recreate it in a Simulink model for use in the 3D
simulation environment. For an example that shows how to set up such a model, see “Visualize
Sensor Data from Unreal Engine Simulation Environment”.

• “Create Driving Scenario Interactively and Generate Synthetic Sensor Data”
• “Create Reverse Motion Driving Scenarios Interactively”
• “Import OpenDRIVE Roads into Driving Scenario”
• “Import HERE HD Live Map Roads into Driving Scenario”
• “Import OpenStreetMap Data into Driving Scenario”
• “Generate Sensor Detection Blocks Using Driving Scenario Designer”
• “Test Open-Loop ADAS Algorithm Using Driving Scenario”
• “Test Closed-Loop ADAS Algorithm Using Driving Scenario”

Parameters
Roads — Road width, bank angle, lane specifications, and road center locations
tab

To enable the Roads parameters, add at least one road to the scenario. Then, select a road from
either the Scenario Canvas or the Road parameter. The parameter values in the Roads tab are
based on the road you select.

Parameter Description
Road Road to modify, specified as a list of the roads in

the scenario.
Name Name of road.
Width (m) Width of the road, in meters, specified as a

decimal scalar in the range (0, 50].

If the curvature of the road is too sharp to
accommodate the specified road width, the app
does not generate the road.

Default: 6

 Driving Scenario Designer
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Parameter Description
Bank Angle (deg) Side-to-side incline of the road, in degrees,

specified as one of these values:

• Decimal scalar — Applies a uniform bank
angle along the entire length of the road

• N-element vector of decimal values — Applies
a different bank angle to each road center,
where N is the number of road centers in the
selected road

When you add an actor to a road, you do not have
to change the actor position to match the bank
angles specified by this parameter. The actor
automatically follows the bank angles of the road.

Default: 0

Lanes — Lane specifications, such as lane types and lane markings
tab section

Use these parameters to specify lane information, such as lane types and lane markings.

Parameter Description
Number of lanes Number of lanes in the road, specified as one of

these values:

• Integer, M, in the range [1, 30] — Creates an
M-lane road whose default lane markings
indicate that the road is one-way.

• Two-element vector, [M N], where M and N
are positive integers whose sum must be in
the range [2, 30] — Creates a road with (M +
N) lanes. The default lane markings of this
road indicate that it is two-way. The first M
lanes travel in one direction. The next N lanes
travel in the opposite direction.

If you increase the number of lanes, the added
lanes are of the width specified in the Lane
Width (m) parameter. If Lane Width (m) is a
vector of differing lane widths, then the added
lanes are of the width specified in the last vector
element.
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Parameter Description
Lane Width (m) Width of each lane in the road, in meters,

specified as one of these values:

• Decimal scalar in the range (0, 50] — The
same width applies to all lanes.

• N-element vector of decimal values in the
range (0, 50] — A different width applies to
each lane, where N is the total number of
lanes specified in the Number of lanes
parameter.

The width of each lane must be greater than the
width of the lane markings it contains. These lane
markings are specified by the Marking > Width
(m) parameter.

Lane Types Lanes in the road, specified as a list of the lane
types in the selected road. To modify one or more
lane parameters that include lane type, color, and
strength, select the desired lane from the drop-
down list.

Lane Types > Type Type of lane, specified as one of these values:

• 'Driving' — Lanes for driving.
• 'Border' — Lanes at the road borders.
• 'Restricted' — Lanes reserved for high

occupancy vehicles.
• 'Shoulder' — Lanes reserved for emergency

stopping.
• 'Parking'— Lanes alongside driving lanes,

intended for parking vehicles.

Default: 'Driving'
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Parameter Description
Lane Types > Color Color of lane, specified as an RGB triplet with

default values as:

Type Color (Default
values)

'Driving' [0.8 0.8 0.8]
'Border' [0.72 0.72 0.72]
'Restricted' [0.59 0.56 0.62]
'Shoulder' [0.59 00.59 0.59]
'Parking' [0.28 0.28 0.28]

Alternatively, you can also specify some common
colors as an RGB triplet, hexadecimal color code,
color name, or short color name. For more
information, see “Color Specifications for Lanes
and Markings” on page 1-69.

Lane Types > Strength Saturation strength of lane color, specified as a
decimal scalar in the range [0, 1].

• A value of 0 specifies that the lane color is
fully unsaturated, resulting in a gray colored
lane.

• A value of 1 specifies that the lane color is
fully saturated, resulting in a true colored
lane.

Default: 1
Lane Markings Lane markings, specified as a list of the lane

markings in the selected road. To modify one or
more lane marking parameters which include
marking type, color, and strength, select the
desired lane marking from the drop-down list.

A road with N lanes has (N + 1) lane markings.
Lane Markings > Specify multiple marker
types along a lane

Select this parameter to define composite lane
markings. A composite lane marking comprises
multiple marker types along a lane. The portion
of the lane marking that contains each marker
type is referred as a marker segment. For more
information on composite lane markings, see
Composite Lane Marking on page 1-72.
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Parameter Description
Lane Markings > Number of Segments Number of marker segments in a composite lane

marking, specified as an integer greater than or
equal to 2. A composite lane marking must have
at least two marker segments.

Default: 2

Dependencies

To enable this parameter, select the Specify
multiple marker types along a lane parameter.

Lane Markings > Segment Range Normalized range for each marker segment in a
composite lane marking, specified as a row vector
of values in the range [0, 1].. The length of the
vector must be equal to the Number of
Segments parameter value.

Default: [0.5 0.5]

Dependencies

To enable this parameter, select the Specify
multiple marker types along a lane parameter.

Lane Markings > Marker Segment Marker segments, specified as a list of marker
types in the selected lane marking. To modify one
or more marker segment parameters that include
marking type, color, and strength, select the
desired marker segment from the drop-down list.

Dependencies

To enable this parameter, select the Specify
multiple marker types along a lane parameter.
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Parameter Description
Lane Markings > Type Type of lane marking, specified as one of these

values:

• Unmarked — No lane marking
• Solid — Solid line
• Dashed — Dashed line
• DoubleSolid — Two solid lines
• DoubleDashed — Two dashed lines
• SolidDashed — Solid line on left, dashed line

on right
• DashedSolid — Dashed line on left, solid line

on right

By default, for a one-way road, the leftmost lane
marking is a solid yellow line, the rightmost lane
marking is a solid white line, and the markings
for the inner lanes are dashed white lines. For
two-way roads, the default outermost lane
markings are both solid white lines and the
dividing lane marking is two solid yellow lines.

If you enable the Specify multiple marker
types along a lane parameter, then this value is
applied to the selected marker segment in a
composite lane marking.

Lane Markings > Color Color of lane marking, specified as an RGB
triplet, hexadecimal color code, color name, or
short color name. For a lane marker specifying a
double line, the same color is used for both lines.

You can also specify some common colors as an
RGB triplet, hexadecimal color code, color name,
or short color name. For more information, see
“Color Specifications for Lanes and Markings” on
page 1-69.

If you enable the Specify multiple marker
types along a lane parameter, then this value is
applied to the selected marker segment in a
composite lane marking.
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Parameter Description
Lane Markings > Strength Saturation strength of lane marking color,

specified as a decimal scalar in the range [0, 1].

• A value of 0 specifies that the lane marking
color is fully unsaturated, resulting in a gray
colored lane marking.

• A value of 1 specifies that the lane marking
color is fully saturated, resulting in a true
colored lane marking.

For a lane marker specifying a double line, the
same strength is used for both lines.

Default: 1

If you enable the Specify multiple marker
types along a lane parameter, then this value is
applied to the selected marker segment in a
composite lane marking.

Lane Markings > Width (m) Width of lane marking, in meters, specified as a
positive decimal scalar.

The width of the lane marking must be less than
the width of its enclosing lane. The enclosing lane
is the lane directly to the left of the lane marking.

For a lane marker specifying a double line, the
same width is used for both lines.

Default: 0.15

If you enable the Specify multiple marker
types along a lane parameter, then this value is
applied to the selected marker segment in a
composite lane marking.

Lane Markings > Length (m) Length of dashes in dashed lane markings, in
meters, specified as a decimal scalar in the range
(0, 50].

For a lane marker specifying a double line, the
same length is used for both lines.

Default: 3

If you enable the Specify multiple marker
types along a lane parameter, then this value is
applied to the selected marker segment in a
composite lane marking.
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Parameter Description
Lane Markings > Space (m) Length of spaces between dashes in dashed lane

markings, in meters, specified as a decimal scalar
in the range (0, 150].

For a lane marker specifying a double line, the
same space is used for both lines.

Default: 9

If you enable the Specify multiple marker
types along a lane parameter, then this value is
applied to the selected marker segment in a
composite lane marking.

Road Centers — Road center locations
tab section

Each row of the Road Centers table contains the x-, y-, and z-positions of a road center within the
selected road. All roads must have at least two unique road center positions. When you update a cell
within the table, the Scenario Canvas updates to reflect the new road center position. The
orientation of the road depends on the values of the road centers. The road centers specifies the
direction in which the road renders in the Scenario Canvas. For more information, see Draw
Direction of Road and Numbering of Lanes on page 1-69.

Parameter Description
x (m) x-axis position of the road center, in meters,

specified as a decimal scalar.
y (m) y-axis position of the road center, in meters,

specified as a decimal scalar.
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Parameter Description
z (m) z-axis position of the road center, in meters,

specified as a decimal scalar.

• The z-axis specifies the elevation of the road.
If the elevation between road centers is too
abrupt, adjust these elevation values.

• When you add an actor to a road, you do not
have to change the actor position to match
changes in elevation. The actor automatically
follows the elevation of the road.

• When two elevated roads form a junction, the
elevation around that junction can vary widely.
The exact amount of elevation depends on
how close the road centers of each road are to
each other. If you try to place an actor at the
junction, the app might be unable to compute
the precise elevation of the actor. In this case,
the app cannot place the actor at that
junction.

To address this issue, in the Scenario
Canvas, modify the intersecting roads by
moving the road centers of each road away
from each other. Alternatively, manually adjust
the elevation of the actor to match the
elevation of the road surface.

Default: 0

Actors — Actor positions, orientations, RCS patterns, and trajectories
tab

To enable the Actors parameters, add at least one actor to the scenario. Then, select an actor from
either the Scenario Canvas or from the list on the Actors tab. The parameter values in the Actors
tab are based on the actor you select.
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Parameter Description
Color To change the color of an actor, next to the actor selection list,

click the color patch for that actor.

Then, use the color picker to select one of the standard colors
commonly used in MATLAB graphics. Alternatively, select a

custom color from the Custom Colors tab by first clicking 
in the upper-right corner of the Color dialog box. You can then
select custom colors from a gradient or specify a color using an
RGB triplet, hexadecimal color code, or HSV triplet.

By default, the app sets each newly created actor to a new color.
This color order is based on the default color order of Axes
objects. For more details, see the ColorOrder property for
Axes objects.

To set a single default color for all newly created actors of a
specific class, on the app toolstrip, select Add Actor > Edit
Actor Classes. Then, select Set Default Color and click the
corresponding color patch to set the color. To select a default
color for a class, the Scenario Canvas must contain no actors of
that class.

Color changes made in the app are carried forward into Bird's-
Eye Scope visualizations.

Set as Ego Vehicle Set the selected actor as the ego vehicle in the scenario.

When you add sensors to your scenario, the app adds them to the
ego vehicle. In addition, the Ego-Centric View and Bird's-Eye
Plot windows display simulations from the perspective of the
ego vehicle.

Only actors who have vehicle classes, such as Car or Truck, can
be set as the ego vehicle. The ego vehicle must also have a 3D
Display Type parameter value other than Cuboid.

For more details on actor classes, see the Class parameter
description.

Name Name of actor.
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Parameter Description
Class Class of actor, specified as the list of classes to which you can

change the selected actor.

You can change the class of vehicle actors only to other vehicle
classes. The default vehicle classes are Car and Truck.
Similarly, you can change the class of nonvehicle actors only to
other nonvehicle classes. The default nonvehicle classes are
Pedestrian, Bicycle, and Barrier.

The list of vehicle and nonvehicle classes appear in the app
toolstrip, in the Add Actor > Vehicles and Add Actor > Other
sections, respectively.

Actors created in the app have default sets of dimensions, radar
cross-section patterns, and other properties based on their Class
ID value. The table shows the default Class ID values and actor
classes.

Class ID Actor Class
1 Car
2 Truck
3 Bicycle
4 Pedestrian
5 Barrier

To modify actor classes or create new actor classes, on the app
toolstrip, select Add Actor > Edit Actor Classes or Add Actor
> New Actor Class, respectively.
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Parameter Description
3D Display Type Display type of actor as it appears in the 3D display window,

specified as the list of display types to which you can change the
selected actor.

To display the scenario in the 3D display window during
simulation, on the app toolstrip, click 3D Display > View
Simulation in 3D Display. The app renders this display by
using the Unreal Engine® from Epic Games®.

For any actor, the available 3D Display Type options depend on
the actor class specified in the Class parameter.

Actor Class 3D Display Type Options
Car • Sedan (default for Car

class)
• Muscle Car
• SUV
• Small Pickup Truck
• Hatchback
• Box Truck (default for

Truck class)
• Cuboid (default for custom

vehicle classes)

Truck
Custom vehicle class

To create a custom vehicle
class:

1 On the app toolstrip, select
Add Actor > New Actor
Class.

2 In the Class Editor
window, select the Vehicle
parameter.

3 Set other class properties
as needed and click OK.

Bicycle • Bicyclist (default for
Bicycle class)

• Male Pedestrian (default
for Pedestrian class)

• Female Pedestrian
• Barrier (default for

Barrier class)
• Cuboid (default for custom

nonvehicle classes)

Pedestrian
Barrier
Custom nonvehicle class

To create a custom nonvehicle
class:

1 On the app toolstrip, select
Add Actor > New Actor
Class.

2 In the Class Editor
window, clear the Vehicle
parameter.

3 Set other class properties
as needed and click OK.

If you change the dimensions of an actor using the Actor
Properties parameters, the app applies these changes in the
Scenario Canvas display but not in the 3D display. This case
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Parameter Description
does not apply to actors whose 3D Display Type is set to
Barrier or Cuboid. The dimensions of these actors change in
both displays.

In the 3D display, actors of all other display types have
predefined dimensions. To use the same dimensions in both
displays, you can apply the predefined 3D display dimensions to
the actors in the Scenario Canvas display. On the app toolstrip,
under 3D Display, select Use 3D Simulation Actor
Dimensions.

Actor Properties — Actor properties, including position and orientation
tab section

Use these parameters to specify properties such as the position and orientation of an actor.

Parameter Description
Length (m) Length of actor, in meters, specified as a decimal

scalar in the range (0, 60].

For vehicles, the length must be greater than
(Front Overhang + Rear Overhang).

Width (m) Width of actor, in meters, specified as a decimal
scalar in the range (0, 20].

Height (m) Height of actor, in meters, specified as a decimal
scalar in the range (0, 20].

Front Overhang Distance between the front axle and front
bumper, in meters, specified as a decimal scalar.

The front overhang must be less than (Length
(m) – Rear Overhang).

This parameter applies to vehicles only.

Default: 0.9
Rear Overhang Distance between the rear axle and rear bumper,

in meters, specified as a decimal scalar.

The rear overhang must be less than (Length
(m) – Front Overhang).

This parameter applies to vehicles only.

Default: 1
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Parameter Description
Roll (°) Orientation angle of the actor about its x-axis, in

degrees, specified as a decimal scalar.

Roll (°) is clockwise-positive when looking in the
forward direction of the x-axis, which points
forward from the actor.

When you export the MATLAB function of the
driving scenario and run that function, the roll
angles of actors in the output scenario are
wrapped to the range [–180, 180].

Default: 0
Pitch (°) Orientation angle of the actor about its y-axis, in

degrees, specified as a decimal scalar.

Pitch (°) is clockwise-positive when looking in
the forward direction of the y-axis, which points
to the left of the actor.

When you export the MATLAB function of the
driving scenario and run that function, the pitch
angles of actors in the output scenario are
wrapped to the range [–180, 180].

Default: 0
Yaw (°) Orientation angle of the actor about its z-axis, in

degrees, specified as a decimal scalar.

Yaw (°) is clockwise-positive when looking in the
forward direction of the z-axis, which points up
from the ground. However, the Scenario Canvas
has a bird's-eye-view perspective that looks in the
reverse direction of the z-axis. Therefore, when
viewing actors on this canvas, Yaw (°) is
counterclockwise-positive.

When you export the MATLAB function of the
driving scenario and run that function, the yaw
angles of actors in the output scenario are
wrapped to the range [–180, 180].

Default: 0

Radar Cross Section — RCS of actor
tab section

Use these parameters to manually specify the radar cross-section (RCS) of an actor. Alternatively, to
import an RCS from a file or from the MATLAB workspace, expand this parameter section and click
Import.
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Parameter Description
Azimuth Angles (deg) Horizontal reflection pattern of actor, in degrees,

specified as a vector of monotonically increasing
decimal values in the range [–180, 180].

Default: [-180 180]
Elevation Angles (deg) Vertical reflection pattern of actor, in degrees,

specified as a vector of monotonically increasing
decimal values in the range [–90, 90].

Default: [-90 90]
Pattern (dBsm) RCS pattern, in decibels per square meter,

specified as a Q-by-P table of decimal values. RCS
is a function of the azimuth and elevation angles,
where:

• Q is the number of elevation angles specified
by the Elevation Angles (deg) parameter.

• P is the number of azimuth angles specified by
the Azimuth Angles (deg) parameter.

Trajectory — Actor trajectories
tab section

Spawn and Despawn an Actor During Simulation

Parameter Description
Actor spawn and despawn Select this parameter to spawn or despawn an

actor in the driving scenario, while the simulation
is running. To enable this parameter, you must
first select an actor in the scenario by clicking on
the actor.

Specify values for the Entry Time(s) and Exit
Time(s) parameters to make the actor enter
(spawn) and exit (despawn) the scenario,
respectively.

Entry Time(s) Specify the time at which an actor spawns into
the scenario during simulation. The entry time
must always be less than the exit time. Units are
in seconds. The default value for entry time is 0.

Exit Time(s) Specify the time at which an actor despawns from
the scenario during simulation. The exit time
must always be greater than the entry time. Units
are in seconds. The default value for exit time is
Inf.

The values for the Entry Time(s) and Exit Time(s) parameters must be less than the entire
simulation time that is set by either the stop condition or the stop time. If you specify values for
Entry Time(s) and Exit Time(s) that are greater than the simulation duration, as determined by
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either the set stop time or stop condition, then the actor will either not spawn or not despawn,
respectively

Use the Waypoints, Speeds, Wait Times, and Yaw table to manually set or modify the positions,
speeds, wait times, and yaw orientation angles of actors at their specified waypoints. When specifying
trajectories, to switch between adding forward and reverse motion waypoints, use the add forward

and reverse motion waypoint buttons .

Parameter Description
Constant Speed (m/s) Default speed of actors as you add waypoints,

specified as a positive decimal scalar in meters
per second.

If you set specific speed values in the v (m/s)
column of the Waypoints, Speeds, Wait Times,
and Yaw table, then the app clears the Constant
Speed (m/s) value. If you then specify a new
Constant Speed (m/s) value, then the app sets
all waypoints to the new constant speed value.

The default speed of an actor varies by actor
class. For example, cars and trucks have a default
constant speed of 30 meters per second, whereas
pedestrians have a default constant speed of 1.5
meters per second.
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Parameter Description
Waypoints, Speeds, Wait Times, and Yaw Actor waypoints, specified as a table.

Each row corresponds to a waypoint and contains
the position, speed, and orientation of the actor
at that waypoint. The table has these columns.

• x (m) — World coordinate x-position of each
waypoint in meters.

• y (m) — World coordinate y-position of each
waypoint in meters.

• z (m) — World coordinate z-position of each
waypoint in meters.

• v (m/s) — Actor speed, in meters per second,
at each waypoint. By default, the app sets the
v (m/s) of newly added waypoints to the
Constant Speed (m/s) parameter value. To
specify a reverse motion between trajectories,
set v (m/s) to a negative value. Positive
speeds (forward motions) and negative speeds
(reverse motions) must be separated by a
waypoint with a speed of 0.

• wait (s) — Wait time for an actor, in seconds,
at each waypoint. When you set the wait time
to a positive value, the corresponding velocity
value v (m/s) resets to 0. You cannot set wait
times at consecutive waypoints along the
trajectory of an actor to positive values.

• yaw (°) — Yaw orientation angle of an actor,
in degrees, at each waypoint. Yaw angles are
counterclockwise-positive when looking at the
scenario from the top down. By default, the
app computes the yaw automatically based on
the specified trajectory. To constrain the
trajectory such that the vehicle has specific
orientations at certain waypoints, set the
desired yaw (°) values at those waypoints. To
restore a yaw back to its default value, right-
click the waypoint and select Restore
Default Yaw.

Sensors (Camera) — Camera sensor placement, intrinsic camera parameters, and
detection parameters
tab

To access these parameters, add at least one camera sensor to the scenario by following these steps:

1 On the app toolstrip, click Add Camera.
2 From the Sensors tab, select the sensor from the list. The parameter values in this tab are based

on the sensor you select.
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Parameter Description
Enabled Enable or disable the selected sensor. Select this

parameter to capture sensor data during
simulation and visualize that data in the Bird's-
Eye Plot pane.

Name Name of sensor.
Update Interval (ms) Frequency at which the sensor updates, in

milliseconds, specified as an integer multiple of
the app sample time defined under Settings, in
the Sample Time (ms) parameter.

The default Update Interval (ms) value of 100
is an integer multiple of the default Sample
Time (ms) parameter value of 10. When the
update interval is a multiple of the sample time, it
ensures that the app samples and displays the
detections found at these intervals during
simulation.

If you update the app sample time such that a
sensor is no longer a multiple of the app sample
time, the app prompts you with the option to
automatically update the Update Interval (ms)
parameter to the closest integer multiple.

Default: 100
Type Type of sensor, specified as Radar for radar

sensors, Vision for camera sensors, or Lidar for
lidar sensors.

Sensor Placement — Camera position and orientation
tab section

Use these parameters to set the position and orientation of the selected camera sensor.

Parameter Description
X (m) X-axis position of the sensor in the vehicle

coordinate system, in meters, specified as a
decimal scalar.

The X-axis points forward from the vehicle. The
origin is located at the center of the vehicle's rear
axle.

Y (m) Y-axis position of the sensor in the vehicle
coordinate system, in meters, specified as a
decimal scalar.

The Y-axis points to the left of the vehicle. The
origin is located at the center of the vehicle's rear
axle.
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Parameter Description
Height (m) Height of the sensor above the ground, in meters,

specified as a positive decimal scalar.

Default: 1.1
Roll (°) Orientation angle of the sensor about its X-axis,

in degrees, specified as a decimal scalar.

Roll (°) is clockwise-positive when looking in the
forward direction of the X-axis, which points
forward from the sensor.

Default: 0
Pitch (°) Orientation angle of the sensor about its Y-axis, in

degrees, specified as a decimal scalar.

Pitch (°) is clockwise-positive when looking in
the forward direction of the Y-axis, which points
to the left of the sensor.

Default: 1
Yaw (°) Orientation angle of the sensor about its Z-axis,

in degrees, specified as a decimal scalar.

Yaw (°) is clockwise-positive when looking in the
forward direction of the Z-axis, which points up
from the ground. The Sensor Canvas has a
bird's-eye-view perspective that looks in the
reverse direction of the Z-axis. Therefore, when
viewing sensor coverage areas on this canvas,
Yaw (°) is counterclockwise-positive.

Camera Settings — Intrinsic camera parameters
tab section

Use these parameters to set the intrinsic parameters of the camera sensor.

Parameter Description
Focal Length X Horizontal point at which the camera is in focus,

in pixels, specified as a positive decimal scalar.

The default focal length changes depending on
where you place the sensor on the ego vehicle.

Focal Length Y Vertical point at which the camera is in focus, in
pixels, specified as a positive decimal scalar.

The default focal length changes depending on
where you place the sensor on the ego vehicle.
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Parameter Description
Image Width Horizontal camera resolution, in pixels, specified

as a positive integer.

Default: 640
Image Height Vertical camera resolution, in pixels, specified as

a positive integer.

Default: 480
Principal Point X Horizontal image center, in pixels, specified as a

positive decimal scalar.

Default: 320
Principal Point Y Vertical image center, in pixels, specified as a

positive decimal scalar.

Default: 240

Detection Parameters — Camera detection parameters
tab section

To view all camera detection parameters in the app, expand the Sensor Limits, Lane Settings, and
Accuracy & Noise Settings sections.

Parameter Description
Detection Type Type of detections reported by camera, specified

as one of these values:

• Objects — Report object detections only.
• Objects & Lanes — Report object and lane

boundary detections.
• Lanes — Report lane boundary detections

only.

Default: Objects
Detection Probability Probability that the camera detects an object,

specified as a decimal scalar in the range (0, 1].

Default: 0.9
False Positives Per Image Number of false positives reported per update

interval, specified as a nonnegative decimal
scalar. This value must be less than or equal to
the maximum number of detections specified in
the Limit # of Detections parameter.

Default: 0.1
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Parameter Description
Limit # of Detections Select this parameter to limit the number of

simultaneous object detections that the sensor
reports. Specify Limit # of Detections as a
positive integer less than 263.

To enable this parameter, set the Detection Type
parameter to Objects or Objects & Lanes.

Default: off
Detection Coordinates Coordinate system of output detection locations,

specified as one of these values:

• Ego Cartesian — The app outputs
detections in the coordinate system of the ego
vehicle.

• Sensor Cartesian — The app outputs
detections in the coordinate system of the
sensor.

Default: Ego Cartesian

Sensor Limits

Parameter Description
Max Speed (m/s) Fastest relative speed at which the camera can

detect objects, in meters per second, specified as
a nonnegative decimal scalar.

Default: 100
Max Range (m) Farthest distance at which the camera can detect

objects, in meters, specified as a positive decimal
scalar.

Default: 150
Max Allowed Occlusion Maximum percentage of object that can be

blocked while still being detected, specified as a
decimal scalar in the range [0, 1).

Default: 0.5
Min Object Image Width Minimum horizontal size of objects that the

camera can detect, in pixels, specified as positive
decimal scalar.

Default: 15
Min Object Image Height Minimum vertical size of objects that the camera

can detect, in pixels, specified as positive decimal
scalar.

Default: 15
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Lane Settings

Parameter Description
Lane Update Interval (ms) Frequency at which the sensor updates lane

detections, in milliseconds, specified as a decimal
scalar.

Default: 100
Min Lane Image Width Minimum horizontal size of objects that the

sensor can detect, in pixels, specified as a
decimal scalar.

To enable this parameter, set the Detection Type
parameter to Lanes or Objects & Lanes.

Default: 3
Min Lane Image Height Minimum vertical size of objects that the sensor

can detect, in pixels, specified as a decimal
scalar.

To enable this parameter, set the Detection Type
parameter to Lanes or Objects & Lanes.

Default: 20
Boundary Accuracy Accuracy with which the sensor places a lane

boundary, in pixels, specified as a decimal scalar.

To enable this parameter, set the Detection Type
parameter to Lanes or Objects & Lanes.

Default: 3
Limit # of Lanes Select this parameter to limit the number of lane

detections that the sensor reports. Specify Limit
# of Lanes as a positive integer.

To enable this parameter, set the Detection Type
parameter to Lanes or Objects & Lanes.

Default: off
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Accuracy & Noise Settings

Parameter Description
Bounding Box Accuracy Positional noise used for fitting bounding boxes to

targets, in pixels, specified as a positive decimal
scalar.

Default: 5
Process Noise Intensity (m/s^2) Noise intensity used for smoothing position and

velocity measurements, in meters per second
squared, specified as a positive decimal scalar.

Default: 5
Has Noise Select this parameter to enable adding noise to

sensor measurements.

Default: off

Sensors (Radar) — Radar sensor placement and detection parameters
tab

To access these parameters, add at least one radar sensor to the scenario.

1 On the app toolstrip, click Add Radar.
2 On the Sensors tab, select the sensor from the list. The parameter values changes based on the

sensor you select.

Parameter Description
Enabled Enable or disable the selected sensor. Select this

parameter to capture sensor data during
simulation and visualize that data in the Bird's-
Eye Plot pane.

Name Name of sensor.
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Parameter Description
Update Interval (ms) Frequency at which the sensor updates, in

milliseconds, specified as an integer multiple of
the app sample time defined under Settings, in
the Sample Time (ms) parameter.

The default Update Interval (ms) value of 100
is an integer multiple of the default Sample
Time (ms) parameter value of 10. When the
update interval is a multiple of the sample time, it
ensures that the app samples and displays the
detections found at these intervals during
simulation.

If you update the app sample time such that a
sensor is no longer a multiple of the app sample
time, the app prompts you with the option to
automatically update the Update Interval (ms)
parameter to the closest integer multiple.

Default: 100
Type Type of sensor, specified as Radar for radar

sensors, Vision for camera sensors, or Lidar for
lidar sensors.

Sensor Placement — Radar position and orientation
tab section

Use these parameters to set the position and orientation of the selected radar sensor.

Parameter Description
X (m) X-axis position of the sensor in the vehicle

coordinate system, in meters, specified as a
decimal scalar.

The X-axis points forward from the vehicle. The
origin is located at the center of the vehicle's rear
axle.

Y (m) Y-axis position of the sensor in the vehicle
coordinate system, in meters, specified as a
decimal scalar.

The Y-axis points to the left of the vehicle. The
origin is located at the center of the vehicle's rear
axle.

Height (m) Height of the sensor above the ground, in meters,
specified as a positive decimal scalar.

Default: 1.1
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Parameter Description
Roll (°) Orientation angle of the sensor about its X-axis,

in degrees, specified as a decimal scalar.

Roll (°) is clockwise-positive when looking in the
forward direction of the X-axis, which points
forward from the sensor.

Default: 0
Pitch (°) Orientation angle of the sensor about its Y-axis, in

degrees, specified as a decimal scalar.

Pitch (°) is clockwise-positive when looking in
the forward direction of the Y-axis, which points
to the left of the sensor.

Default: 1
Yaw (°) Orientation angle of the sensor about its Z-axis,

in degrees, specified as a decimal scalar.

Yaw (°) is clockwise-positive when looking in the
forward direction of the Z-axis, which points up
from the ground. The Sensor Canvas has a
bird's-eye-view perspective that looks in the
reverse direction of the Z-axis. Therefore, when
viewing sensor coverage areas on this canvas,
Yaw (°) is counterclockwise-positive.

Detection Parameters — Radar detection parameters
tab section

To view all radar detection parameters in the app, expand the Advanced Parameters and Accuracy
& Noise Settings sections.

Parameter Description
Detection Probability Probability that the radar detects an object,

specified as a decimal scalar in the range (0, 1].

Default: 0.9
False Alarm Rate Probability of a false detection per resolution

rate, specified as a decimal scalar in the range
[1e-07, 1e-03].

Default: 1e-06
Field of View Azimuth Horizontal field of view of radar, in degrees,

specified as a positive decimal scalar.

Default: 20
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Parameter Description
Field of View Elevation Vertical field of view of radar, in degrees,

specified as a positive decimal scalar.

Default: 5
Max Range (m) Farthest distance at which the radar can detect

objects, in meters, specified as a positive decimal
scalar.

Default: 150
Range Rate Min, Range Rate Max Select this parameter to set minimum and

maximum range rate limits for the radar. Specify
Range Rate Min and Range Rate Max as
decimal scalars, in meters per second, where
Range Rate Min is less than Range Rate Max.

Default (Min): -100

Default (Max): 100
Has Elevation Select this parameter to enable the radar to

measure the elevation of objects. This parameter
enables the elevation parameters in the
Accuracy & Noise Settings section.

Default: off
Has Occlusion Select this parameter to enable the radar to

model occlusion.

Default: on
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Advanced Parameters

Parameter Description
Reference Range Reference range for a given probability of

detection, in meters, specified as a positive
decimal scalar.

The reference range is the range at which the
radar detects a target of the size specified by
Reference RCS, given the probability of
detection specified by Detection Probability.

Default: 100
Reference RCS Reference RCS for a given probability of

detection, in decibels per square meter, specified
as a nonnegative decimal scalar.

The reference RCS is the target size at which the
radar detects a target, given the reference range
specified by Reference Range and the
probability of detection specified by Detection
Probability.

Default: 0
Limit # of Detections Select this parameter to limit the number of

simultaneous detections that the sensor reports.
Specify Limit # of Detections as a positive
integer less than 263.

Default: off
Detection Coordinates Coordinate system of output detection locations,

specified as one of these values:

• Ego Cartesian — The app outputs
detections in the coordinate system of the ego
vehicle.

• Sensor Cartesian — The app outputs
detections in the coordinate system of the
sensor.

• Sensor spherical — The app outputs
detections in a spherical coordinate system.
This coordinate system is centered at the
radar and aligned with the orientation of the
radar on the ego vehicle.

Default: Ego Cartesian
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Accuracy & Noise Settings

Parameter Description
Azimuth Resolution Minimum separation in azimuth angle at which

the radar can distinguish between two targets, in
degrees, specified as a positive decimal scalar.

The azimuth resolution is typically the 3 dB
downpoint in the azimuth angle beamwidth of the
radar.

Default: 4
Azimuth Bias Fraction Maximum azimuth accuracy of the radar,

specified as a nonnegative decimal scalar.

The azimuth bias is expressed as a fraction of the
azimuth resolution specified by the Azimuth
Resolution parameter. Units are dimensionless.

Default: 0.1
Elevation Resolution Minimum separation in elevation angle at which

the radar can distinguish between two targets, in
degrees, specified as a positive decimal scalar.

The elevation resolution is typically the 3 dB
downpoint in the elevation angle beamwidth of
the radar.

To enable this parameter, in the Detection
Parameters section, select the Has Elevation
parameter.

Default: 10
Elevation Bias Fraction Maximum elevation accuracy of the radar,

specified as a nonnegative decimal scalar.

The elevation bias is expressed as a fraction of
the elevation resolution specified by the
Elevation Resolution parameter. Units are
dimensionless.

To enable this parameter, under Detection
Parameters, select the Has Elevation
parameter.

Default: 0.1
Range Resolution Minimum range separation at which the radar

can distinguish between two targets, in meters,
specified as a positive decimal scalar.

Default: 2.5
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Parameter Description
Range Bias Fraction Maximum range accuracy of the radar, specified

as a nonnegative decimal scalar.

The range bias is expressed as a fraction of the
range resolution specified in the Range
Resolution parameter. Units are dimensionless.

Default: 0.05
Range Rate Resolution Minimum range rate separation at which the

radar can distinguish between two targets, in
meters per second, specified as a positive decimal
scalar.

To enable this parameter, in the Detection
Parameters section, select the Range Rate
Min, Range Rate Max parameter and set the
range rate values.

Default: 0.5
Range Rate Bias Fraction Maximum range rate accuracy of the radar,

specified as a nonnegative decimal scalar.

The range rate bias is expressed as a fraction of
the range rate resolution specified in the Range
Rate Resolution parameter. Units are
dimensionless.

To enable this parameter, under the Detection
Parameters section, select the Range Rate
Min, Range Rate Max parameter and set the
range rate values.

Default: 0.05
Has Noise Select this parameter to enable adding noise to

sensor measurements.

Default: off
Has False Alarms Select this parameter to enable false alarms in

sensor detections.

Default: off

Sensors (Lidar) — Lidar sensor placement, point cloud reporting, and detection
parameters
tab

To access these parameters, add at least one lidar sensor to the scenario.

1 On the app toolstrip, click Add Lidar.
2 On the Sensors tab, select the sensor from the list. The parameter values change based on the

sensor you select.
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When you add a lidar sensor to a scenario, the Bird's-Eye Plot and Ego-Centric View display the
mesh representations of actors. For example, here is a sample view of actor meshes on the Ego-
Centric View.

The lidar sensors use these more detailed representations of actors to generate point cloud data. The
Scenario Canvas still displays only the cuboid representations. The other sensors still base their
detections on the cuboid representations.

To turn off actor meshes, use the properties under Display on the app toolstrip. To modify the mesh
display types of actors, select Add Actor > Edit Actor Classes. In the Class Editor, modify the Mesh
Display Type parameter of that actor class.

Parameter Description
Enabled Enable or disable the selected sensor. Select this

parameter to capture sensor data during
simulation and visualize that data in the Bird's-
Eye Plot pane.

Name Name of sensor.
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Parameter Description
Update Interval (ms) Frequency at which the sensor updates, in

milliseconds, specified as an integer multiple of
the app sample time defined under Settings, in
the Sample Time (ms) parameter.

The default Update Interval (ms) value of 100
is an integer multiple of the default Sample
Time (ms) parameter value of 10. When the
update interval is a multiple of the sample time, it
ensures that the app samples and displays the
detections found at these intervals during
simulation.

If you update the app sample time such that a
sensor is no longer a multiple of the app sample
time, the app prompts you with the option to
automatically update the Update Interval (ms)
parameter to the closest integer multiple.

Default: 100
Type Type of sensor, specified as Radar for radar

sensors, Vision for camera sensors, or Lidar for
lidar sensors.

Sensor Placement — Lidar position and orientation
tab section

Use these parameters to set the position and orientation of the selected lidar sensor.

Parameter Description
X (m) X-axis position of the sensor in the vehicle

coordinate system, in meters, specified as a
decimal scalar.

The X-axis points forward from the vehicle. The
origin is located at the center of the vehicle's rear
axle.

Y (m) Y-axis position of the sensor in the vehicle
coordinate system, in meters, specified as a
decimal scalar.

The Y-axis points to the left of the vehicle. The
origin is located at the center of the vehicle's rear
axle.

Height (m) Height of the sensor above the ground, in meters,
specified as a positive decimal scalar.

Default: 1.1
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Parameter Description
Roll (°) Orientation angle of the sensor about its X-axis,

in degrees, specified as a decimal scalar.

Roll (°) is clockwise-positive when looking in the
forward direction of the X-axis, which points
forward from the sensor.

Default: 0
Pitch (°) Orientation angle of the sensor about its Y-axis, in

degrees, specified as a decimal scalar.

Pitch (°) is clockwise-positive when looking in
the forward direction of the Y-axis, which points
to the left of the sensor.

Default: 1
Yaw (°) Orientation angle of the sensor about its Z-axis,

in degrees, specified as a decimal scalar.

Yaw (°) is clockwise-positive when looking in the
forward direction of the Z-axis, which points up
from the ground. The Sensor Canvas has a
bird's-eye-view perspective that looks in the
reverse direction of the Z-axis. Therefore, when
viewing sensor coverage areas on this canvas,
Yaw (°) is counterclockwise-positive.

Point Cloud Reporting — Point cloud reporting parameters
tab section

Parameter Description
Detection Coordinates Coordinate system of output detection locations,

specified as one of these values:

• Ego Cartesian — The app outputs
detections in the coordinate system of the ego
vehicle.

• Sensor Cartesian — The app outputs
detections in the coordinate system of the
sensor.

Default: Ego Cartesian
Output organized point cloud locations Select this parameter to output the generated

sensor data as an organized point cloud. If you
clear this parameter, the output is unorganized.

Default: on
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Parameter Description
Include ego vehicle in generated point cloud Select this parameter to include the ego vehicle

in the generated point cloud.

Default: on
Include roads in generated point cloud Select this parameter to include roads in the

generated point cloud.

Default: off

Detection Parameters — Lidar detection parameters
tab section
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Sensor Limits

Parameter Description
Max Range (m) Farthest distance at which the lidar can detect

objects, in meters, specified as a positive decimal
scalar.

Default: 50
Range Accuracy (m) Accuracy of range measurements, in meters,

specified as a positive decimal scalar.

Default: 0.002
Azimuth Azimuthal resolution of the lidar sensor, in

degrees, specified as a positive decimal scalar.
The azimuthal resolution defines the minimum
separation in azimuth angle at which the lidar
can distinguish two targets.

Default: 1.6
Elevation Elevation resolution of the lidar sensor, in

degrees, specified as a positive decimal scalar.
The elevation resolution defines the minimum
separation in elevation angle at which the lidar
can distinguish two targets.

Default: 1.25
Azimuthal Limits (deg) Azimuthal limits of the lidar sensor, in degrees,

specified as a two-element vector of decimal
scalars of the form [min, max].

Default: [-45 45]
Elevation Limits (deg) Elevation limits of the lidar sensor, in degrees,

specified as a two-element vector of decimal
scalars of the form [min, max].

Default: [-20 20]
Has Noise Select this parameter to enable adding noise to

sensor measurements.

Default: off

Settings — Simulation sample time, stop condition, and stop time
dialog box

To access these parameters, on the app toolstrip, click Settings.

1 Apps

1-60



Simulation Settings

Parameter Description
Sample Time (ms) Frequency at which the simulation updates, in

milliseconds.

Increase the sample time to speed up simulation.
This increase has no effect on actor speeds, even
though actors can appear to go faster during
simulation. The actor positions are just being
sampled and displayed on the app at less
frequent intervals, resulting in faster, choppier
animations. Decreasing the sample time results in
smoother animations, but the actors appear to
move slower, and the simulation takes longer.

The sample time does not correlate to the actual
time. For example, if the app samples every 0.1
seconds (Sample Time (ms) = 100) and runs for
10 seconds, the amount of elapsed actual time
might be less than the 10 seconds of elapsed
simulation time. Any apparent synchronization
between the sample time and actual time is
coincidental.

Default: 10
Stop Condition Stop condition of simulation, specified as one of

these values:

• First actor stops — Simulation stops
when the first actor reaches the end of its
trajectory.

• Last actor stops — Simulation stops
when the last actor reaches the end of its
trajectory.

• Set time — Simulation stops at the time
specified by the Stop Time (s) parameter.

Default: First actor stops
Stop Time (s) Stop time of simulation, in seconds, specified as a

positive decimal scalar.

To enable this parameter, set the Stop Condition
parameter to Set time.

Default: 0.1
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Parameter Description
Use RNG Seed Select this parameter to use a random number

generator (RNG) seed to reproduce the same
results for each simulation. Specify the RNG seed
as a nonnegative integer less than 232.

Default: off

Programmatic Use
drivingScenarioDesigner opens the Driving Scenario Designer app.

drivingScenarioDesigner(scenarioFileName) opens the app and loads the specified scenario
MAT-file into the app. This file must be a scenario file saved from the app. This file can include all
roads, actors, and sensors in the scenario. It can also include only the roads and actors component, or
only the sensors component.

If the scenario file is not in the current folder or not in a folder on the MATLAB path, specify the full
path name. For example:

drivingScenarioDesigner('C:\Desktop\myDrivingScenario.mat');

You can also load prebuilt scenario files. Before loading a prebuilt scenario, add the folder containing
the scenario to the MATLAB path. For an example, see “Generate Sensor Data from Scenario” on
page 1-18.

drivingScenarioDesigner(scenario) loads the specified drivingScenario object into the
app. The ClassID properties of actors in this object must correspond to these default Class ID
parameter values in the app:

• 1 — Car
• 2 — Truck
• 3 — Bicycle
• 4 — Pedestrian
• 5 — Barrier

When you create actors in the app, the actors with these Class ID values have a default set of
dimensions, radar cross-section patterns, and other properties. The camera and radar sensors
process detections differently depending on type of actor specified by the Class ID values.

When importing drivingScenario objects into the app, the behavior of the app depends on the
ClassID of the actors in that scenario.

• If an actor has a ClassID of 0, the app returns an error. In drivingScenario objects, a
ClassID of 0 is reserved for an object of an unknown or unassigned class. The app does not
recognize or use this value. Assign these actors one of the app Class ID values and import the
drivingScenario object again.

• If an actor has a nonzero ClassID that does not correspond to a Class ID value, the app returns
an error. Either change the ClassID of the actor or add a new actor class to the app. On the app
toolstrip, select Add Actor > New Actor Class.
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• If an actor has properties that differ significantly from the properties of its corresponding Class
ID actor, the app returns a warning. The ActorID property referenced in the warning
corresponds to the ID value of an actor in the list at the top of the Actors tab. The ID value
precedes the actor name. To address this warning, consider updating the actor properties or its
ClassID value. Alternatively, consider adding a new actor class to the app.

drivingScenarioDesigner( ___ ,sensors) loads the specified sensors into the app, using any of
the previous syntaxes. Specify sensors as a radarDetectionGenerator object,
visionDetectionGenerator object, lidarPointCloudGenerator object, or cell array of such
objects. If you specify sensors along with a scenario file that contains sensors, the app does not
import the sensors from the scenario file.

For an example of importing sensors, see “Import Programmatic Driving Scenario and Sensors” on
page 1-21.

Limitations
OpenStreetMap — Import Limitations

When importing OpenStreetMap data, road and lane features have these limitations:

• Lane-level information is not imported from OpenStreetMap roads. Lane specifications are based
only on the direction of travel specified in the OpenStreetMap road network, where:

• One-way roads are imported as single-lane roads with default lane specifications. These lanes
are programmatically equivalent to lanespec(1).

• Two-way roads are imported as two-lane roads with bidirectional travel and default lane
specifications. These lanes are programmatically equivalent to lanespec([1 1]).

The table shows these differences in the OpenStreetMap road network and the road network in
the imported driving scenario.

OpenStreetMap Road Network Imported Driving Scenario

• When importing OpenStreetMap road networks that specify elevation data, if elevation data is not
specified for all roads being imported, then the generated road network might contain
inaccuracies and some roads might overlap.

• The basemap used in the app can have slight differences from the map used in the
OpenStreetMap service. Some imported road issues might also be due to missing or inaccurate
map data in the OpenStreetMap service. To check whether the data is missing or inaccurate due
to the map service, consider viewing the map data on an external map viewer.

• If you receive a warning that the geometry of a road is unable to be computed, then the curvature
of the road is too sharp for it to render properly and it is not imported.

HERE HD Live Map — Import Limitations
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When importing HERE HDLM data, these road and lane features are not supported:

• Lanes with varying widths — In the generated road network, each lane is set to have the
maximum width found along its entire length. Consider a HERE HDLM lane with a width that
varies from 2 to 4 meters along its length. In the generated road network, the lane width is 4
meters along its entire length.

• Roads with varying numbers of lanes along their lengths — In the generated road network, each
road is set to have the maximum number of lanes along its entire length. Consider a HERE HDLM
road with 3 lanes on one half and 2 lanes on the other half. In the generated road network, the
road has 3 lanes along its entire length.

• Multiple lane marking styles along a lane — In the generated road network, each lane is set to
have the marking style of the lane segment with the maximum width along the road. Consider a
HERE HDLM lane with 2 lane segments. The first lane segment is 2 meters wide and has solid
markings. The second lane segment is 4 meters wide and has dashed markings. In the generated
road network, the lane has a fixed width of 4 meters throughout and dashed markings along its
entire length.

These modifications to the road networks can sometimes cause roads to overlap in the driving
scenario. Consider the HERE HDLM roads for the divided highway highlighted in blue in the table.
Due to the unsupported features, in the imported driving scenario, the lane widths of the roads
increase. This limitation causes the roads to overlap and appear as one road. Sensors that detect
lanes are unable to detect the covered lanes.

HERE HDLM Road Network Imported Driving Scenario

If you receive a warning that the geometry of a road is unable to be computed, then the curvature of
the road is too sharp for it to render properly and it is not imported.

In addition to the unsupported features, the basemap used in the app might have slight differences
from the map used in the HERE HDLM service. Some issues with the imported roads might also be
due to missing or inaccurate map data in the HERE HDLM service. To check where the issue stems
from in the map data, use the HERE HD Live Map Viewer to view the geometry of the HERE HDLM
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road network. This viewer requires a valid HERE license. For more details, see the HERE
Technologies website.

HERE HD Live Map — Route Selection Limitations

When selecting HERE HD Live Map roads to import from a region of interest, the maximum allowable
size of the region is 20 square kilometers. If you specify a driving route that is greater than 20 square
kilometers, the app draws a region that is optimized to fit as much of the beginning of the route as
possible into the display. This figure shows an example of a region drawn around the start of a route
that exceeds this maximum size.

OpenDRIVE Import Limitations

• You can import only lanes, lane type information, and roads. The import of road objects and traffic
signals is not supported.

• OpenDRIVE files containing large road networks can take up to several minutes to load. In
addition, these road networks can cause slow interactions on the app canvas. Examples of large
road networks include ones that model the roads of a city or ones with roads that are thousands of
meters long.

• Lanes with variable widths are not supported. The width is set to the highest width found within
that lane. For example, if a lane has a width that varies from 2 meters to 4 meters, the app sets
the lane width to 4 meters throughout.

• Roads with lane type information specified as driving, border, restricted, shoulder, and
parking are supported. Lanes with any other lane type information are imported as border lanes.

• Roads with multiple lane marking styles specified as 'Unmarked', 'Solid', 'DoubleSolid',
'Dashed', 'DoubleDashed', 'SolidDashed', and 'DashedSolid' are supported.

• Lane marking styles Bott Dots, Curbs, and Grass are not supported. Lanes with these marking
styles are imported as unmarked.

Euro NCAP Limitations
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• Scenarios of speed assistance systems (SAS) are not supported. These scenarios require the
detection of speed limits from traffic signs, which the app does not support.

3D Display Limitations

These limitations describe how 3D Display visualizations differ from the cuboid visualizations that
appear on the Scenario Canvas.

• Roads do not form junctions with unmarked lanes at intersections. The roads and their lane
markings overlap.

• Not all actor or lane marking colors are supported. The 3D display matches the selected color to
the closest available color that it can render.

• Lane type colors of nondriving lanes are not supported. If you select a nondriving lane type, in the
3D display, the lane displays as a driving lane.

• On the Actors tab, specified Roll (°) and Pitch (°) parameter values of an actor are ignored. In
the Waypoints table, z (m) values (that is, elevation values) are also ignored. During simulation,
actors follow the elevation and banking angle of the road surface.

• Multiple marking styles along a lane are not supported. The 3D display applies the first lane
marking style of the first lane segment along the entire length of the lane.

• Actors with a 3D Display Type of Cuboid do not move in the 3D display. During simulation, these
actors remain stationary at their initial specified positions.

More About
Actor and Vehicle Positions and Dimensions

In driving scenarios, an actor is a cuboid (box-shaped) object with a specific length, width, and
height. Actors also have a radar cross-section (RCS) pattern, specified in dBsm, which you can refine
by setting angular azimuth and elevation coordinates. The position of an actor is defined as the center
of its bottom face. This center point is used as the actor's rotational center, its point of contact with
the ground, and its origin in its local coordinate system. In this coordinate system:

• The X-axis points forward from the actor.
• The Y-axis points left from the actor.
• The Z-axis points up from the ground.

Roll, pitch, and yaw are clockwise-positive when looking in the forward direction of the X-, Y-, and Z-
axes, respectively.
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A vehicle is an actor that moves on wheels. Vehicles have three extra properties that govern the
placement of their front and rear axle.

• Wheelbase — Distance between the front and rear axles
• Front overhang — Distance between the front of the vehicle and the front axle
• Rear overhang — Distance between the rear axle and the rear of the vehicle

Unlike other types of actors, the position of a vehicle is defined by the point on the ground that is
below the center of its rear axle. This point corresponds to the natural center of rotation of the
vehicle. As with nonvehicle actors, this point is the origin in the local coordinate system of the
vehicle, where:

• The X-axis points forward from the vehicle.
• The Y-axis points left from the vehicle.
• The Z-axis points up from the ground.

Roll, pitch, and yaw are clockwise-positive when looking in the forward direction of the X-, Y-, and Z-
axes, respectively.
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The origin (that is, the position) of cuboid vehicles differs from the origin of vehicles in the 3D
simulation environment. In the 3D simulation environment, vehicle origins are on the ground, at the
geometric center of the vehicle.

Cuboid Vehicle Origin 3D Simulation Vehicle Origin

For nonvehicle actors, the origins are identical and located at the bottom of the geometric center of
the actors.
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In Simulink, to convert a vehicle from the cuboid origin to the 3D simulation origin, use a Cuboid To
3D Simulation block. For more details about 3D simulation coordinates, see “Coordinate Systems for
Unreal Engine Simulation in Automated Driving Toolbox”.

Color Specifications for Lanes and Markings

This table lists the named color options, the equivalent RGB triplets, and hexadecimal color codes
that you can use for specifying the color of lanes and markings in a road.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

red r [1 0 0] #FF0000
green g [0 1 0] #00FF00
blue b [0 0 1] #0000FF
cyan c [0 1 1] #00FFFF
magenta m [1 0 1] #FF00FF
yellow y [0.98 0.86

0.36]
#FADB5C

black k [0 0 0] #000000
white w [1 1 1] #FFFFFF

Draw Direction of Road and Numbering of Lanes

To create a road by using the road function, specify the road centers as a matrix input. The function
creates a directed line that traverses the road centers, starting from the coordinates in the first row
of the matrix and ending at the coordinates in the last row of the matrix. The coordinates in the first
two rows of the matrix specify the draw direction of the road. These coordinates correspond to the
first two consecutive road centers. The draw direction is the direction in which the roads render in
the scenario plot.

To create a road by using the Driving Scenario Designer app, you can either specify the Road
Centers parameter or interactively draw on the Scenario Canvas. For a detailed example, see
“Create a Driving Scenario” on page 1-14. In this case, the draw direction is the direction in which
roads render in the Scenario Canvas.

• For a road with a top-to-bottom draw direction, the difference between the x-coordinates of the
first two consecutive road centers is positive.

• For a road with a bottom-to-top draw direction, the difference between the x-coordinates of the
first two consecutive road centers is negative.
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• For a road with a left-to-right draw direction, the difference between the y-coordinates of the first
two consecutive road centers is positive.

• For a road with a right-to-left draw direction, the difference between the y-coordinates of the first
two consecutive road centers is negative.
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Numbering Lanes

Lanes must be numbered from left to right, with the left edge of the road defined relative to the draw
direction of the road. For a one-way road, by default, the left edge of the road is a solid yellow
marking which indicates the end of the road in transverse direction (direction perpendicular to draw
direction). For a two-way road, by default, both edges are marked with solid white lines.

For example, these diagrams show how the lanes are numbered in a one-way and two-way road with a
draw direction from top-to-bottom.

Numbering Lanes in a One-Way Road Numbering Lanes in a Two-Way Road

 Driving Scenario Designer

1-71



Specify the number of lanes as a positive integer
for a one-way road. If you set the integer value as
3, then the road has three lanes that travel in the
same direction. The lanes are numbered starting
from the left edge of the road.

1, 2, 3 denote the first, second, and third lanes of
the road, respectively.

Specify the number of lanes as a two-element
vector of positive integer for a two-way road. If
you set the vector as [1 2], then the road has
three lanes: two lanes traveling in one direction
and one lane traveling in the opposite direction.
Because of the draw direction, the road has one
left lane and two right lanes. The lanes are
numbered starting from the left edge of the road.

1L denote the only left lane of the road. 1R and
2R denote the first and second right lanes of the
road, respectively.

The lane specifications apply by the order in which the lanes are numbered.

Composite Lane Marking

A composite lane marking comprises two or more marker segments that define multiple marking
types along a lane. The geometric properties for a composite lane marking include the geometric
properties of each marking type and the normalized lengths of the marker segments.

The order in which the specified marker segments occur in a composite lane marking depends on the
draw direction of the road. Each marker segment is a directed segment with a start point and moves
towards the last road center. The first marker segment starts from the first road center and moves
towards the last road center for a specified length. The second marker segment starts from the end
point of the first marker segment and moves towards the last road center for a specified length. The
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same process applies for each marker segment that you specify for the composite lane marking. You
can set the normalized length for each of these marker segments by specifying the range input
argument.

For example, consider a one-way road with two lanes. The second lane marking from the left edge of
the road is a composite lane marking with marking types Solid and Dashed. The normalized range
for each marking type is 0.5. The first marker segment is a solid marking and the second marker
segment is a dashed marking. These diagrams show the order in which the marker segments apply
for left-to-right and right-to-left draw directions of the road.

For information on the geometric properties of lane markings, see “Lane Specifications” on page 4-
502.

Tips
• When importing map data, the map regions you specify and the number of roads you select have a

direct effect on app performance. To improve performance, specify the smallest map regions and
select the fewest roads that you need to create your driving scenario.

• You can undo (press Ctrl+Z) and redo (press Ctrl+Y) changes you make on the scenario and
sensor canvases. For example, you can use these shortcuts to delete a recently placed road center
or redo the movement of a radar sensor. For more shortcuts, see “Keyboard Shortcuts and Mouse
Actions for Driving Scenario Designer”

• In scenarios that contain many actors, to keep track of the ego vehicle, you can add an indicator
around the vehicle. On the app toolstrip, select Display > Show ego indicator. The circle around

 Driving Scenario Designer

1-73



the ego vehicle highlights the location of the vehicle in the scenario. This circle is not a sensor
coverage area.

Compatibility Considerations
Corrections to Image Width and Image Height camera parameters of Driving Scenario
Designer
Behavior changed in R2018b

Starting in R2018b, in the Camera Settings group of the Driving Scenario Designer app, the
Image Width and Image Height parameters set their expected values. Previously, Image Width
set the height of images produced by the camera, and Image Height set the width of images
produced by the camera.

If you are using R2018a, to produce the expected image sizes, transpose the values set in the Image
Width and Image Height parameters.

References
[1] European New Car Assessment Programme. Euro NCAP Assessment Protocol - SA. Version 8.0.2.

January 2018.

[2] European New Car Assessment Programme. Euro NCAP AEB C2C Test Protocol. Version 2.0.1.
January 2018.

[3] European New Car Assessment Programme. Euro NCAP LSS Test Protocol. Version 2.0.1. January
2018.

[4] Dupuis, Marius, et al. OpenDRIVE Format Specification. Revision 1.4, Issue H, Document No.
VI2014.106. Bad Aibling, Germany: VIRES Simulationstechnologie GmbH, November 4, 2015.

See Also
Apps
Bird's-Eye Scope

Blocks
Lidar Point Cloud Generator | Radar Detection Generator | Scenario Reader | Vision Detection
Generator

Objects
drivingScenario | lidarPointCloudGenerator | radarDetectionGenerator |
visionDetectionGenerator
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Topics
“Create Driving Scenario Interactively and Generate Synthetic Sensor Data”
“Create Reverse Motion Driving Scenarios Interactively”
“Import OpenDRIVE Roads into Driving Scenario”
“Import HERE HD Live Map Roads into Driving Scenario”
“Import OpenStreetMap Data into Driving Scenario”
“Generate Sensor Detection Blocks Using Driving Scenario Designer”
“Test Open-Loop ADAS Algorithm Using Driving Scenario”
“Test Closed-Loop ADAS Algorithm Using Driving Scenario”
“Keyboard Shortcuts and Mouse Actions for Driving Scenario Designer”
“Prebuilt Driving Scenarios in Driving Scenario Designer”

External Websites
Euro NCAP Safety Assist Protocols
ASAM OpenDRIVE
HERE Technologies
openstreetmap.org

Introduced in R2018a
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Ground Truth Labeler
Label ground truth data for automated driving applications

Description
The Ground Truth Labeler app enables you to label ground truth data in multiple videos, image
sequences, or lidar point clouds.

Using the app, you can:

• Simultaneously label multiple time-overlapped signals representing the same scene.
• Define rectangular region of interest (ROI) labels, polyline ROI labels, pixel ROI labels, cuboid ROI

labels for lidar labeling, and scene label definitions. Use these labels to interactively label your
ground truth data.

• Use built-in detection or tracking algorithms to label ground truth data.
• Write, import, and use custom automation algorithms to automatically label ground truth data.
• Evaluate the performance of your label automation algorithms by using a visual summary.
• Export the ground truth labels as a groundTruthMultisignal object. You can use this object for

system verification or for training an object detector or semantic segmentation network.
• Display time-synchronized signals, such as CAN bus data, by using the

driving.connector.Connector API.

To learn more about this app, see “Get Started with the Ground Truth Labeler”.
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Open the Ground Truth Labeler App
• MATLAB Toolstrip: On the Apps tab, under Automotive, click the app icon.
• MATLAB command prompt: Enter groundTruthLabeler.

Examples
• “Get Started with the Ground Truth Labeler”
• “Automate Ground Truth Labeling of Lane Boundaries”
• “Automate Ground Truth Labeling for Semantic Segmentation”
• “Automate Attributes of Labeled Objects”
• “Evaluate Lane Boundary Detections Against Ground Truth Data”
• “Evaluate and Visualize Lane Boundary Detections Against Ground Truth”

Programmatic Use
groundTruthLabeler opens a new session of the app, enabling you to label ground truth data.

groundTruthLabeler(videoFileName) opens the app and loads the input video. The video file
must have an extension supported by VideoReader.
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Example: groundTruthLabeler('caltech_cordova1.avi')

groundTruthLabeler(imageSeqFolder) opens the app and loads the image sequence from the
input folder. An image sequence is an ordered set of images that resembles a video.

imageSeqFolder must be a string scalar or character vector that specifies the folder containing the
image files. The image files must have extensions supported by imformats and are loaded in the
order returned by the dir function.

The images in imageSeqFolder must be the same size. If the images vary in size, the app imports
only the images that are of the same size as the first image in the sequence. To label a collection of
unordered images that vary in size, use the Image Labeler app instead.

groundTruthLabeler(imageSeqFolder,timestamps) opens the app and loads a sequence of
images with their corresponding timestamps. timestamps must be a duration vector of the same
length as the number of images in the sequence.

For example, load a sequence of road images and their corresponding timestamps into the app.

imageDir = fullfile(toolboxdir('driving'),'drivingdata','roadSequence');
load(fullfile(imageDir,'timeStamps.mat'))
groundTruthLabeler(imageDir,timeStamps)

groundTruthLabeler( ___ ,'ConnectorTargetHandle',connector) opens the app and loads
both of these components:

• A video or image sequence signal, depending on the input argument combination you specify
• An external analysis or visualization tool that is time-synchronized with the specified signal

The connector input is a handle to a driving.connector.Connector class that implements the
external tool.

For example, this syntax opens the app with a video signal and synchronized lidar visualization tool.

groundTruthLabeler('01_city_c2s_fcw_10s.mp4','ConnectorTargetHandle',@LidarDisplay);

When you have an external tool connected to a signal in the app, consider these tips.

• If you remove the signal that is connected to the tool, the app disconnects the tool and closes it.
• The signal connected to the tool must be the master signal, that is, the signal whose timestamps

are used in the playback controls at the bottom of the app. If you change the master signal, the
app disconnects the tool and closes it.

• If you start a new app session, the app disconnects the tool and closes it.

groundTruthLabeler(sessionFile) opens the app and loads a saved app session,
sessionFile. The sessionFile input contains the path and file name. The MAT-file that
sessionFile points to contains the saved session.

Limitations
• Lidar signals do not support line or pixel ROI labels.
• Pixel ROI labels do not support sublabels or attributes.
• Cuboid ROI labels do not support sublabels.
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• The Label Summary window does not support sublabels or attributes

More About
ROI Labels, Sublabels, and Attributes

On the left side of the app, the ROI Labels pane contains the region of interest (ROI) label definitions
that you can mark on the frames. You can create label definitions directly from this pane.
Alternatively, you can create label definitions programmatically by using a
labelDefinitionCreatorMultisignal object and then import these label definitions into an app
session.

The app supports the definition of ROI labels, sublabels, and attributes.

ROI Labels

An ROI label is a label that corresponds to a region of interest (ROI) in a signal frame. The table
describes the supported label types.

ROI Label Description Example: Driving Scene
Projected cuboid Draw cuboidal ROI labels (3-D

bounding boxes).
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ROI Label Description Example: Driving Scene
Rectangle/Cuboid Draw rectangular or cuboidal

ROI labels around objects,
depending on the signal type.

• In image signals, draw
rectangular ROI labels (2-D
bounding boxes).

• In lidar signals, draw
cuboidal ROI labels (3-D
bounding boxes). For more
on lidar labeling, see “Label
Lidar Point Clouds for Object
Detection”.

Vehicles, pedestrians, road signs

Rectangle:

Cuboid:

Line Draw linear ROI labels to
represent lines. To draw a
polyline ROI, use two or more
points.

Lane boundaries, guard rails,
road curbs
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ROI Label Description Example: Driving Scene
Pixel label Assign labels to pixels for

semantic segmentation. You can
label pixels manually using
polygons, brushes, or flood fill.
For more on pixel labeling, see
“Label Pixels for Semantic
Segmentation” (Computer
Vision Toolbox).

Vehicles, road surface, trees,
pavement

ROI Sublabels

An ROI sublabel is an ROI label that belongs to a parent label. Use ROI sublabels to provide a greater
level of detail about the ROIs in your labeled ground truth data. For example, a vehicle label might
contain headlight, licensePlate, and wheel sublabels. You can create sublabels only for rectangular
and polyline labels. For more details about sublabels, see “Use Sublabels and Attributes to Label
Ground Truth Data” (Computer Vision Toolbox).

ROI Attributes

An ROI attribute specifies additional information about an ROI label or sublabel. For example, in a
driving scene, attributes might include the type or color of a vehicle. The table describes the
supported attribute types.

Attribute Type Sample Attribute Definition Sample Default Values
Numeric Value

String

Logical
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Attribute Type Sample Attribute Definition Sample Default Values
List

For more details about attributes, see “Use Sublabels and Attributes to Label Ground Truth Data”
(Computer Vision Toolbox).

Tips
• To avoid having to relabel ground truth with new labels, organize the labeling scheme you want to

use before marking your ground truth.
• You can copy and paste labels between signals that are of the same type.

Algorithms
You can use label automation algorithms to speed up labeling within the app. To create your own
label automation algorithm to use within the app, see “Create Automation Algorithm for Labeling”
(Computer Vision Toolbox). You can also use one of the provided built-in algorithms. Follow these
steps:

1 Load the data you want to label, and create at least one label definition.
2 On the app toolstrip, click Select Algorithm, and select one of the built-in automation

algorithms.
3 Click Automate, and then follow the automation instructions in the right pane of the automation

window.
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ACF Vehicle Detector

Detect and label vehicles using aggregate channel features (ACF). This algorithm is based on the
vehicleDetectorACF function. To use this algorithm, you must define at least one rectangle ROI
label. You do not need to draw any ROI labels.

To help improve the algorithm results, first click Settings. You can change any of these settings.

• The pretrained vehicle detector model that the algorithm uses — The 'full-view' model was
trained using unoccluded images of the front, rear, left, and right sides of vehicles. The 'front-
rear-view' model was trained using images of only the front and rear sides of the vehicle.

• The overlap ratio threshold, from 0 to 1, for detecting vehicles — When rectangle ROIs overlap by
more than this threshold, the algorithm discards one of the ROIs.

• The classification score threshold for detecting vehicles — Increase the score to increase the
prediction confidence of the algorithm. Rectangles with scores below this threshold are discarded.

You can also configure the detector with a calibrated monocular camera by importing a monoCamera
object into the MATLAB workspace. Specify the length and width ranges of the vehicle in world units,
such as meters.

ACF People Detector

Detect and label people using aggregate channel features (ACF). This algorithm is based on the
peopleDetectorACF function. To use this algorithm, you must define at least one rectangle ROI
label. You do not need to draw any ROI labels.

To help improve the algorithm results, first click Settings. You can change any of these settings.

• The pretrained people detector model that the algorithm uses — The 'inria-100x41' model
was trained using the INRIA person data set. The 'caltech-50x21' model was trained using the
Caltech Pedestrian data set.

• The overlap ratio threshold, from 0 to 1, for detecting people — When rectangle ROIs overlap by
more than this threshold, the algorithm discards one of the ROIs.

• The classification score threshold for detecting people — Increase the score to increase the
prediction confidence of the algorithm. Rectangles with scores below this threshold are discarded.

Point Tracker

Track and label one or more rectangle ROI labels over short intervals by using the Kanade-Lucas-
Tomasi (KLT) algorithm. This algorithm is based on the vision.PointTracker System object™. To
use this algorithm, you must define at least one rectangle ROI label, but you do not need to draw any
ROI labels.

To change the feature detector used to obtain the initial points for tracking, click Settings. This table
shows the feature detector options.

Feature Detector Description Equivalent Function
Minimum Eigen Value Detect corners by using the

minimum eigenvalue algorithm.
detectMinEigenFeatures

Harris Detect corners by using the
Harris–Stephens algorithm.

detectHarrisFeatures
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Feature Detector Description Equivalent Function
FAST Detect corners by using the

features from accelerated
segment test (FAST) algorithm.

detectFASTFeatures

BRISK Detect features by using the
binary robust invariant scalable
keypoints (BRISK) algorithm.

detectBRISKFeatures

KAZE Detect features by using
nonlinear diffusion to construct
a scale space of an image, and
then detecting multiscale corner
features (KAZE features) from
that scale space.

detectKAZEFeatures

SURF Detect blob features by using
the speeded-up robust features
(SURF) algorithm.

detectSURFFeatures

MSER Detect regions by using the
maximally stable extremal
regions (MSER) algorithm.

detectMSERFeatures

Temporal Interpolator

Estimate rectangle ROIs between frames by interpolating the ROI locations across the time interval.
To use this algorithm, you must draw a rectangle ROI on a minimum of two frames: one at the
beginning of the interval and one at the end of the interval. The interpolation algorithm estimates and
draws ROIs in the intermediate frames.

Consider a video with 10 frames. The first frame has a rectangle ROI centered at [5, 5]. The 10th
frame has a rectangle ROI centered at [25, 25]. At each frame, the algorithm moves the ROI 2 pixels
in the x-direction and 2 pixels in the y-direction. Therefore, the algorithm centers the ROI at [7, 7] in
the second frame, [9, 9] in the third frame, and so on, up to [23, 23] in the second-to-last frame.

Point Cloud Temporal Interpolator

Estimate cuboid ROIs between point cloud frames by interpolating the ROI locations across the time
interval. To use this algorithm, you must draw a cuboid ROI on a minimum of two frames: one at the
beginning of the interval and one at the end of the interval. The interpolation algorithm estimates and
draws ROIs in the intermediate frames.

Consider a point cloud sequence with 10 frames. The first frame has a cuboid ROI centered at [5, 5,
0]. The 10th frame has a cuboid ROI centered at [25, 25, 0]. At each frame, the algorithm moves the
ROI 2 points in the x-direction, 2 points in the y-direction, and 0 points in the z-direction. Therefore,
the algorithm centers the ROI at [7, 7, 0] in the second frame, [9, 9, 0] in the third frame, and so on,
up to [23, 23, 0] in the second-to-last frame.

Lane Boundary Detector

Detect and label lane boundaries using an estimated bird’s-eye-view projected image. To use this
algorithm, you must define at least one line ROI label. You do not need to draw any ROI labels. To
detect lane boundaries, the algorithm follows these steps:
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1 It makes an initial guess at the placement of the lane boundaries in the image.
2 It transforms the ROI around the lanes into a bird's-eye view image to make the lanes parallel

and remove distortion.
3 It uses this image to segment the lane boundaries.

To help improve the algorithm results, first click Settings. You can change any of these settings.

• The placement of the lane lines for generating the bird's-eye view image
• The ROI around the lanes, which you can expand to include more than just the ego lane

boundaries in the image
• The pixel width of detected lane boundaries in the image

You can also change the number of lane boundaries that you want to detect. The default number of
lane boundaries is 2.

Compatibility Considerations
Ground Truth Labeler app no longer exports groundTruth objects
Behavior change in future release

If you import labels or open an app session created before R2020a, the Ground Truth Labeler
exports labeled data as a groundTruthMultisignal object instead of as a groundTruth object.

If you do not need to label multiple signals simultaneously and do not require lidar labeling, import
the labels or session into the Video Labeler app instead. The Video Labeler app continues to export
groundTruth objects.

See Also
Apps
Image Labeler | Video Labeler

Objects
groundTruthDataSource | groundTruthMultisignal |
labelDefinitionCreatorMultisignal

Classes
driving.connector.Connector | vision.labeler.AutomationAlgorithm |
vision.labeler.loading.MultiSignalSource | vision.labeler.mixin.Temporal

Topics
“Get Started with the Ground Truth Labeler”
“Automate Ground Truth Labeling of Lane Boundaries”
“Automate Ground Truth Labeling for Semantic Segmentation”
“Automate Attributes of Labeled Objects”
“Evaluate Lane Boundary Detections Against Ground Truth Data”
“Evaluate and Visualize Lane Boundary Detections Against Ground Truth”
“Choose an App to Label Ground Truth Data” (Computer Vision Toolbox)
“Keyboard Shortcuts and Mouse Actions for Ground Truth Labeler”
“Label Pixels for Semantic Segmentation” (Computer Vision Toolbox)
“Label Lidar Point Clouds for Object Detection”
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“Create Class for Loading Custom Ground Truth Data Sources”
“Create Automation Algorithm for Labeling” (Computer Vision Toolbox)
“Share and Store Labeled Ground Truth Data” (Computer Vision Toolbox)

Introduced in R2017a
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Bicycle Model
Implement a single track 3DOF rigid vehicle body to calculate longitudinal, lateral, and yaw motion

Description
The Bicycle Model block implements a rigid two-axle single track vehicle body model to calculate
longitudinal, lateral, and yaw motion. The block accounts for body mass, aerodynamic drag, and
weight distribution between the axles due to acceleration and steering. There are two types of
Bicycle Model blocks.

Block Implementation
Bicycle Model - Velocity Input • Block assumes that the external longitudinal velocity is

quasi-steady state so the longitudinal acceleration is
approximately zero.

• Since the motion is quasi-steady, the block calculates
only lateral forces using the tire slip angles and linear
cornering stiffness.

Bicycle Model - Force Input • Block uses the external longitudinal force to accelerate
or brake the vehicle.

• Block calculates lateral forces using the tire slip angles
and linear cornering stiffness.

To calculate the normal forces on the front and rear axles, the block uses rigid-body vehicle motion,
suspension system forces, and wind and drag forces. The block resolves the force and moment
components on the rigid vehicle body frame.

Ports
Input

WhlAngF — Wheel angle
scalar

Front wheel angle, in rad.

FxF — Force Input: Total longitudinal force on the front axle
scalar

Longitudinal force on the front axle, FxF, along vehicle-fixed x-axis, in N.
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Bicycle Model - Force Input block input port.

FxR — Force Input: Total longitudinal force on the rear axle
scalar

Longitudinal force on the rear axle, FxR, along vehicle-fixed x-axis, in N.

Bicycle Model - Force Input block input port.

xdotin — Velocity Input: Longitudinal velocity
scalar

Vehicle CG velocity along vehicle-fixed x-axis, in m/s.

Bicycle Model - Velocity Input block input port.

Output

Info — Bus signal
bus

Bus signal containing these block values.

Signal Description Value Units
InertFrm Cg Disp X Vehicle CG displacement

along the earth-fixed X-
axis

Computed m

Y Vehicle CG displacement
along the earth-fixed Y-
axis

Computed m

Z Vehicle CG displacement
along the earth-fixed Z-
axis

0 m

Vel Xdot Vehicle CG velocity along
the earth-fixed X-axis

Computed m/s

Ydot Vehicle CG velocity along
the earth-fixed Y-axis

Computed m/s

Zdot Vehicle CG velocity along
the earth-fixed Z-axis

0 m/s

Ang phi Rotation of the vehicle-
fixed frame about the
earth-fixed X-axis (roll)

0 rad

theta Rotation of the vehicle-
fixed frame about the
earth-fixed Y-axis (pitch)

0 rad

psi Rotation of the vehicle-
fixed frame about the
earth-fixed Z-axis (yaw)

Computed rad

 Bicycle Model

2-3



Signal Description Value Units
FrntAxl Disp X Front wheel displacement

along the earth-fixed X-
axis

Computed m

Y Front wheel displacement
along the earth-fixed Y-
axis

Computed m

Z Front wheel displacement
along the earth-fixed Z-
axis

0 m

Vel Xdot Front wheel velocity along
the earth-fixed X-axis

Computed m/s

Ydot Front wheel velocity along
the earth-fixed Y-axis

Computed m/s

Zdot Front wheel velocity along
the earth-fixed Z-axis

0 m/s

RearAxl Disp X Rear wheel displacement
along the earth-fixed X-
axis

Computed m

Y Rear wheel displacement
along the earth-fixed Y-
axis

Computed m

Z Rear wheel displacement
along the earth-fixed Z-
axis

0 m

Vel Xdot Rear wheel velocity along
the earth-fixed X-axis

Computed m/s

Ydot Rear wheel velocity along
the earth-fixed Y-axis

Computed m/s

Zdot Rear wheel velocity along
the earth-fixed Z-axis

0 m/s

Hitch Disp X Hitch offset from axle
plane along the earth-
fixed X-axis

Computed m

Y Hitch offset from center
plane along the earth-
fixed Y-axis

Computed m

Z Hitch offset from axle
plane along the earth-
fixed Z-axis

Computed m

Vel Xdot Hitch offset velocity from
axle plane along the
earth-fixed X-axis

Computed m
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Signal Description Value Units
Ydot Hitch offset velocity from

center plane along the
earth-fixed Y-axis

Computed m

Zdot Hitch offset velocity from
axle plane along the
earth-fixed Z-axis

Computed m

Geom Disp X Vehicle chassis offset from
axle plane along the
earth-fixed X-axis

Computed m

Y Vehicle chassis offset from
center plane along the
earth-fixed Y-axis

Computed m

Z Vehicle chassis offset from
axle plane along the
earth-fixed Z-axis

Computed m

Vel Xdot Vehicle chassis offset
velocity along the earth-
fixed X-axis

Computed m/s

Ydot Vehicle chassis offset
velocity along the earth-
fixed Y-axis

Computed m/s

Zdot Vehicle chassis offset
velocity along the earth-
fixed Z-axis

Computed m/s

BdyFrm Cg Vel xdot Vehicle CG velocity along
the vehicle-fixed x-axis

Computed m/s

ydot Vehicle CG velocity along
the vehicle-fixed y-axis

Computed m/s

zdot Vehicle CG velocity along
the vehicle-fixed z-axis

0 m/s

Ang Beta Body slip angle, β

β =
Vy
Vx

Computed rad

AngVel p Vehicle angular velocity
about the vehicle-fixed x-
axis (roll rate)

0 rad/s

q Vehicle angular velocity
about the vehicle-fixed y-
axis (pitch rate)

0 rad/s

r Vehicle angular velocity
about the vehicle-fixed z-
axis (yaw rate)

Computed rad/s
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Signal Description Value Units
Acc ax Vehicle CG acceleration

along the vehicle-fixed x-
axis

Computed gn

ay Vehicle CG acceleration
along the vehicle-fixed y-
axis

Computed gn

az Vehicle CG acceleration
along the vehicle-fixed z-
axis

0 gn

xddot Vehicle CG acceleration
along the vehicle-fixed x-
axis

Computed m/s^2

yddot Vehicle CG acceleration
along the vehicle-fixed y-
axis

Computed m/s^2

zddot Vehicle CG acceleration
along the vehicle-fixed z-
axis

0 m/s^2

AngAcc pdot Vehicle angular
acceleration about the
vehicle-fixed x-axis

0 rad/s

qdot Vehicle angular
acceleration about the
vehicle-fixed y-axis

0 rad/s

rdot Vehicle angular
acceleration about the
vehicle-fixed z-axis

Computed rad/s

DCM Direction cosine matrix Computed rad
Forces Body Fx Net force on vehicle CG

along the vehicle-fixed x-
axis

Computed N

Fy Net force on vehicle CG
along the vehicle-fixed y-
axis

Computed N

Fz Net force on vehicle CG
along the vehicle-fixed z-
axis

0 N

Ext Fx External force on vehicle
CG along the vehicle-fixed
x-axis

Computed N

Fy External force on vehicle
CG along the vehicle-fixed
y-axis

Computed N
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Signal Description Value Units
Fz External force on vehicle

CG along the vehicle-fixed
z-axis

0 N

Hitch Fx Hitch force applied to
body at the hitch location
along the vehicle-fixed x-
axis

Input N

Fy Hitch force applied to
body at the hitch location
along the vehicle-fixed y-
axis

Input N

Fz Hitch force applied to
body at the hitch location
along the vehicle-fixed z-
axis

Input N

FrntAxl Fx Longitudinal force on
front wheel, along the
vehicle-fixed x-axis

Computed N

Fy Lateral force on front
wheel along the vehicle-
fixed y-axis

Computed N

Fz Normal force on front
wheel, along the vehicle-
fixed z-axis

Computed N

RearAxl Fx Longitudinal force on rear
wheel, along the vehicle-
fixed x-axis

Computed N

Fy Lateral force on rear
wheel along the vehicle-
fixed y-axis

Computed N

Fz Normal force on rear
wheel, along the vehicle-
fixed z-axis

Computed N

Tires FrntTir
e

Fx Front tire force, along the
vehicle-fixed x-axis

Computed N

Fy Front tire force, along the
vehicle-fixed y-axis

Computed N

Fz Front tire force, along the
vehicle-fixed z-axis

Computed N

RearTir
e

FxF
x

Rear tire force, along the
vehicle-fixed x-axis

Computed N

Fy Rear tire force, along the
vehicle-fixed y-axis

Computed N
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Signal Description Value Units
Fz Rear tire force, along the

vehicle-fixed z-axis
Computed N

Drag Fx Drag force on vehicle CG
along the vehicle-fixed x-
axis

Computed N

Fy Drag force on vehicle CG
along the vehicle-fixed y-
axis

Computed N

Fz Drag force on vehicle CG
along the vehicle-fixed z-
axis

Computed N

Grvty Fx Gravity force on vehicle
CG along the vehicle-fixed
x-axis

Computed N

Fy Gravity force on vehicle
CG along the vehicle-fixed
y-axis

Computed N

Fz Gravity force on vehicle
CG along the vehicle-fixed
z-axis

Computed N

Moments Body Mx Body moment on vehicle
CG about the vehicle-fixed
x-axis

0 N·m

My Body moment on vehicle
CG about the vehicle-fixed
y-axis

Computed N·m

Mz Body moment on vehicle
CG about the vehicle-fixed
z-axis

0 N·m

Drag Mx Drag moment on vehicle
CG about the vehicle-fixed
x-axis

0 N·m

My Drag moment on vehicle
CG about the vehicle-fixed
y-axis

Computed N·m

Mz Drag moment on vehicle
CG about the vehicle-fixed
z-axis

0 N·m

Ext Mx External moment on
vehicle CG about the
vehicle-fixed x-axis

0 N·m

My External moment on
vehicle CG about the
vehicle-fixed y-axis

Computed N·m
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Signal Description Value Units
Mz External moment on

vehicle CG about the
vehicle-fixed z-axis

0 N·m

Hitch Mx Hitch moment at the hitch
location about vehicle-
fixed x-axis

0 N·m

My Hitch moment at the hitch
location about vehicle-
fixed y-axis

Computed N·m

Mz Hitch moment at the hitch
location about vehicle-
fixed z-axis

0 N·m

FrntAxl Disp x Front wheel displacement
along the vehicle-fixed x-
axis

Computed m

y Front wheel displacement
along the vehicle-fixed y-
axis

Computed m

z Front wheel displacement
along the vehicle-fixed z-
axis

Computed m

Vel xdot Front wheel velocity along
the vehicle-fixed x-axis

Computed m/s

ydot Front wheel velocity along
the vehicle-fixed y-axis

Computed m/s

zdot Front wheel velocity along
the vehicle-fixed z-axis

0 m/s

Steer WhlAngFL Front left wheel steering
angle

Computed rad

WhlAngFR Front right wheel steering
angle

Computed rad

RearAxl Disp x Rear wheel displacement
along the vehicle-fixed x-
axis

Computed m

y Rear wheel displacement
along the vehicle-fixed y-
axis

Computed m

z Rear wheel displacement
along the vehicle-fixed z-
axis

Computed m

Vel xdot Rear wheel velocity along
the vehicle-fixed x-axis

Computed m/s

ydot Rear wheel velocity along
the vehicle-fixed y-axis

Computed m/s
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Signal Description Value Units
zdot Rear wheel velocity along

the vehicle-fixed z-axis
0 m/s

Steer WhlAngRL Rear left wheel steering
angle

Computed rad

WhlAngRR Rear right wheel steering
angle

Computed rad

Hitch Disp x Hitch offset from axle
plane along the vehicle-
fixed x-axis

Input m

y Hitch offset from center
plane along the vehicle-
fixed y-axis

Input m

z Hitch offset from axle
plane along the earth-
fixed z-axis

Input m

Vel xdo
t

Hitch offset velocity along
the vehicle-fixed x-axis

Computed m/s

ydo
t

Hitch offset velocity along
the vehicle-fixed y-axis

Computed m/s

zdo
t

Hitch offset velocity along
the vehicle-fixed z-axis

Computed m/s

Pwr Ext Applied external power Computed W
Hitch Power loss due to hitch Computed W
Drag Power loss due to drag Computed W

Geom Disp x Vehicle chassis offset from
axle plane along the
vehicle-fixed x-axis

Input m

y Vehicle chassis offset from
center plane along the
vehicle-fixed y-axis

Input m

z Vehicle chassis offset from
axle plane along the
earth-fixed z-axis

Input m

Vel xdo
t

Vehicle chassis offset
velocity along the vehicle-
fixed x-axis

Computed m/s

ydo
t

Vehicle chassis offset
velocity along the vehicle-
fixed y-axis

Computed m/s

zdo
t

Vehicle chassis offset
velocity along the vehicle-
fixed z-axis

0 m/s
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Signal Description Value Units
Ang Bet

a
Body slip angle, β

β =
Vy
Vx

Computed rad

Signal Description Value Units
PwrInfo PwrTrnsfrd PwrFxExt Externally applied longitudinal force

power
Comp
uted

W

PwrFyExt Externally applied lateral force
power

Comp
uted

W

PwrMzExt Externally applied roll moment
power

Comp
uted

W

PwrFwFx Longitudinal force applied at the
front axle power

Comp
uted

W

PwrFwFy Lateral force applied at the front
axle power

Comp
uted

W

PwrFwRx Longitudinal force applied at the
rear axle power

Comp
uted

W

PwrFwRy Lateral force applied at the rear
axle power

Comp
uted

W

PwrNotTrnsfr
d

PwrFxDrag Longitudinal drag force power Comp
uted

W

PwrFyDrag Lateral drag force power Comp
uted

W

PwrMzDrag Drag pitch moment power Comp
uted

W

PwrStored PwrStoredGrvty Rate change in gravitational
potential energy

Comp
uted

W

PwrStoredxdot Rate of change of longitudinal
kinetic energy

Comp
uted

W

PwrStoredydot Rate of change of lateral kinetic
energy

Comp
uted

W

PwrStoredr Rate of change of rotational yaw
kinetic energy

Comp
uted

W

xdot — Vehicle body longitudinal velocity
scalar

Vehicle CG velocity along vehicle-fixed x-axis, in m/s.

ydot — Vehicle body lateral velocity
scalar

Vehicle CG velocity along vehicle-fixed y-axis, in m/s.
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psi — Yaw
scalar

Rotation of the vehicle-fixed frame about earth-fixed Z-axis (yaw), in rad..

r — Yaw rate
scalar

Vehicle angular velocity, r, about the vehicle-fixed z-axis (yaw rate), in rad/s.

Parameters
Longitudinal

Number of wheels on front axle, NF — Front wheel count
2 (default) | scalar

Number of wheels on front axle, NF. The value is dimensionless.

Number of wheels on rear axle, NR — Rear wheel count
2 (default) | scalar

Number of wheels on rear axle, NR. The value is dimensionless.

Vehicle mass, m — Vehicle mass
2000 (default) | scalar

Vehicle mass, m, in kg.

Longitudinal distance from center of mass to front axle, a — Front axle distance
1.4 (default) | scalar

Horizontal distance a from the vehicle CG to the front wheel axle, in m.

Longitudinal distance from center of mass to rear axle, b — Rear axle distance
1.6 (default) | scalar

Horizontal distance b from the vehicle CG to the rear wheel axle, in m.

Vertical distance from center of mass to axle plane, h — Height
0.35 (default) | scalar

Height of vehicle CG above the axles, h, in m.

Longitudinal distance from center of mass to hitch, dh — Distance from CM to
hitch
1 (default) | scalar

Longitudinal distance from center of mass to hitch, dh, in m.
Dependencies

To enable this parameter, on the Input signals pane, select Hitch forces or Hitch moments.

Vertical distance from hitch to axle plane, hh — Distance from hitch to axle plane
0.2 (default) | scalar
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Vertical distance from hitch to axle plane, hh, in m.

Dependencies

To enable this parameter, on the Input signals pane, select Hitch forces or Hitch moments.

Initial inertial frame longitudinal position, X_o — Position
0 (default) | scalar

Initial vehicle CG displacement along earth-fixed X-axis, in m.

Initial longitudinal velocity, xdot_o — Velocity
0 (default) | scalar

Initial vehicle CG velocity along vehicle-fixed x-axis, in m/s.

Dependencies

For the Vehicle Body 3DOF Single Track or Vehicle Body 3DOF Dual Track blocks, to enable this
parameter, set Axle forces to one of these options:

• External longitudinal forces
• External forces

Lateral

Front tire corner stiffness, Cy_f — Stiffness
12e3 (default) | scalar

Front tire corner stiffness, Cyf, in N/rad.

Dependencies

For the Vehicle Body 3DOF Single Track or Vehicle Body 3DOF Dual Track blocks, to enable this
parameter:

1 Set Axle forces to one of these options:

• External longitudinal velocity
• External longitudinal forces

2 Clear Mapped corner stiffness.

Rear tire corner stiffness, Cy_r — Stiffness
11e3 (default) | scalar

Rear tire corner stiffness, Cyr, in N/rad.

Dependencies

For the Vehicle Body 3DOF Single Track or Vehicle Body 3DOF Dual Track blocks, to enable this
parameter:

1 Set Axle forces to one of these options:

• External longitudinal velocity
• External longitudinal forces
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2 Clear Mapped corner stiffness.

Initial inertial frame lateral displacement, Y_o — Position
0 (default) | scalar

Initial vehicle CG displacement along earth-fixed Y-axis, in m.

Initial lateral velocity, ydot_o — Velocity
0 (default) | scalar

Initial vehicle CG velocity along vehicle-fixed y-axis, in m/s.

Yaw

Yaw polar inertia, Izz — Inertia
4000 (default) | scalar

Yaw polar inertia, in kg*m^2.

Initial yaw angle, psi_o — Psi rotation
0 (default) | scalar

Rotation of the vehicle-fixed frame about earth-fixed Z-axis (yaw), in rad.

Initial yaw rate, r_o — Yaw rate
0 (default) | scalar

Vehicle angular velocity about the vehicle-fixed z-axis (yaw rate), in rad/s.

Aerodynamic

Longitudinal drag area, Af — Effective vehicle cross-sectional area
2 (default) | scalar

Effective vehicle cross-sectional area, Af, to calculate the aerodynamic drag force on the vehicle, in
m2.

Longitudinal drag coefficient, Cd — Air drag coefficient
.3 (default) | scalar

Air drag coefficient, Cd. The value is dimensionless.

Longitudinal lift coefficient, Cl — Air lift coefficient
.1 (default) | scalar

Air lift coefficient, Cl. The value is dimensionless.

Longitudinal drag pitch moment, Cpm — Pitch drag
.1 (default) | scalar

Longitudinal drag pitch moment coefficient, Cpm. The value is dimensionless.

Relative wind angle vector, beta_w — Wind angle
[0:0.01:0.3] (default) | vector

Relative wind angle vector, βw, in rad.
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Side force coefficient vector, Cs — Side force coefficient
[0:0.03:0.9] (default) | vector

Side force coefficient vector coefficient, Cs. The value is dimensionless.

Yaw moment coefficient vector, Cym — Yaw moment drag
[0:0.01:0.3] (default) | vector

Yaw moment coefficient vector coefficient, Cym. The value is dimensionless.

Environment

Absolute air pressure, Pabs — Pressure
101325 (default) | scalar | scalar

Environmental absolute pressure, Pabs, in Pa.

Air temperature, Tair — Temperature
273 (default) | scalar

Environmental absolute temperature, T, in K.

Dependencies

To enable this parameter, clear Air temperature.

Gravitational acceleration, g — Gravity
9.81 (default) | scalar

Gravitational acceleration, g, in m/s^2.

Nominal friction scaling factor, mu — Friction scale factor
1 (default) | scalar

Nominal friction scale factor, μ. The value is dimensionless.

Dependencies

For the Vehicle Body 3DOF Single Track or Vehicle Body 3DOF Dual Track blocks, to enable this
parameter:

1 Set Axle forces to one of these options:

• External longitudinal velocity
• External longitudinal forces

2 Clear External Friction.

Simulation

Longitudinal velocity tolerance, xdot_tol — Tolerance
.01 (default) | scalar

Longitudinal velocity tolerance, in m/s.

Nominal normal force, Fznom — Normal force
5000 (default) | scalar
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Nominal normal force, in N.

Dependencies

For the Vehicle Body 3DOF Single Track or Vehicle Body 3DOF Dual Track blocks, to enable this
parameter, set Axle forces to one of these options:

• External longitudinal velocity
• External longitudinal forces

Geometric longitudinal offset from axle plane, longOff — Longitudinal offset
0 (default) | scalar

Vehicle chassis offset from axle plane along body-fixed x-axis, in m. When you use the 3D visualization
engine, consider using the offset to locate the chassis independent of the vehicle CG.

Geometric lateral offset from center plane, latOff — Lateral offset
0 (default) | scalar

Vehicle chassis offset from center plane along body-fixed y-axis, in m. When you use the 3D
visualization engine, consider using the offset to locate the chassis independent of the vehicle CG.

Geometric vertical offset from axle plane, vertOff — Vertical offset
0 (default) | scalar

Vehicle chassis offset from axle plane along body-fixed z-axis, in m. When you use the 3D visualization
engine, consider using the offset to locate the chassis independent of the vehicle CG.

Wrap Euler angles, wrapAng — Selection
off (default) | on

Wrap the Euler angles to the interval [-pi, pi]. For vehicle maneuvers that might undergo vehicle
yaw rotations that are outside of the interval, consider deselecting the parameter if you want to:

• Track the total vehicle yaw rotation.
• Avoid discontinuities in the vehicle state estimators.

References
[1] Gillespie, Thomas. Fundamentals of Vehicle Dynamics. Warrendale, PA: Society of Automotive

Engineers (SAE), 1992.

Introduced in R2018a
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Cuboid To 3D Simulation
Convert actor from cuboid coordinates to 3D simulation coordinates
Library: Automated Driving Toolbox / Driving Scenario and Sensor

Modeling

Description
The Cuboid To 3D Simulation block converts a cuboid actor pose in world coordinates to the X, Y, and
Yaw coordinates used by the Simulation 3D Vehicle with Ground Following block. Use the converted
values to set vehicle positions within the 3D simulation environment for actors created using the
Driving Scenario Designer app. The ground terrain of the scene determines the roll (x-axis
rotation), pitch (y-axis rotation), and elevation (z-axis position) of the vehicle.

You can specify a bus containing a single actor pose or multiple actor poses. By default, the block
converts the pose of the first actor in the bus. To specify the actor whose pose you want to convert,
specify the ActorID of that actor.

In cuboid and 3D simulation driving scenarios, the coordinate systems are the same, but the origins
of vehicles differ. In cuboid driving scenarios, the vehicle origin is on the ground, under the center of
the rear axle. The block transforms this origin to the origin used in the 3D simulation environment,
which is under the geometric center of the vehicle. The table shows the origin difference between the
two environments.

Cuboid Vehicle Origin 3D Simulation Vehicle Origin
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Ports
Input

Actor — Cuboid actor pose in world coordinates
Simulink bus containing MATLAB structure

Cuboid actor pose in world coordinates, specified as a Simulink bus containing a MATLAB structure.

To obtain this structure input, use the Scenario Reader block to read actors from a scenario. By
default, the Scenario Reader block outputs actors in ego vehicle coordinates. To convert these poses
from ego vehicle to world coordinates, use the Vehicle To World block.

The structure in this bus can contain a single actor pose or multiple actor poses.

Single-Pose Structure

To specify a single actor pose, the structure must contain these fields.

Field Description
ActorID Scenario-defined actor identifier, specified as a

positive integer.
Position Position of actor, specified as a real-valued vector

of the form [x, y, z]. Units are in meters.
Velocity Velocity (v) of actor in the x-, y-, and z-direction,

specified as a real-valued vector of the form [vx,
vy, vz]. Units are in meters per second.

Roll Roll angle of actor, specified as a real-valued
scalar. Units are in degrees.

Pitch Pitch angle of actor, specified as a real-valued
scalar. Units are in degrees.

Yaw Yaw angle of actor, specified as a real-valued
scalar. Units are in degrees.

AngularVelocity Angular velocity (ω) of actor in the x-, y-, and z-
direction, specified as a real-valued vector of the
form [ωx, ωy, ωz]. Units are in degrees per second.

Multiple-Pose Structure

To specify multiple actor poses, the structure must contain these fields.

Field Description Type
NumActors Number of actors Nonnegative integer
Time Current simulation time Real-valued scalar
Actors Actor poses NumActors-length array of

actor pose structures

Each actor pose structure in Actors must have these fields.
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Field Description
ActorID Scenario-defined actor identifier, specified as a

positive integer.
Position Position of actor, specified as a real-valued vector

of the form [x, y, z]. Units are in meters.
Velocity Velocity (v) of actor in the x-, y-, and z-direction,

specified as a real-valued vector of the form [vx,
vy, vz]. Units are in meters per second.

Roll Roll angle of actor, specified as a real-valued
scalar. Units are in degrees.

Pitch Pitch angle of actor, specified as a real-valued
scalar. Units are in degrees.

Yaw Yaw angle of actor, specified as a real-valued
scalar. Units are in degrees.

AngularVelocity Angular velocity (ω) of actor in the x-, y-, and z-
direction, specified as a real-valued vector of the
form [ωx, ωy, ωz]. Units are in degrees per second.

The block converts only one pose from the Actors array. To specify which pose to convert, select
Specify Actor ID, and then specify the ActorID of the actor by using the ActorID used for
conversion parameter.

Output

X — Longitudinal position of actor in 3D simulation coordinates
numeric scalar

Longitudinal position of the actor in 3D simulation coordinates, returned as a numeric scalar. Units
are in meters.

In this coordinate system, when looking in the positive direction of the X-axis, the positive Y-axis
points left, and the Z-axis points up.

To specify the X-position of a vehicle in the 3D simulation environment, connect this port to the X
input port of a Simulation 3D Vehicle with Ground Following block.

Y — Lateral position of actor in 3D simulation coordinates
numeric scalar

Lateral position of the actor in 3D simulation coordinates, returned as a numeric scalar. Units are in
meters.

In this coordinate system, when looking in the positive direction of the X-axis, the positive Y-axis
points left, and the Z-axis points up.

To specify the Y-position of a vehicle in the 3D simulation environment, connect this port to the Y
input port of a Simulation 3D Vehicle with Ground Following block.

Yaw — Yaw orientation angle of actor in 3D simulation coordinates
numeric scalar
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Yaw orientation angle of the actor about the Z-axis in 3D simulation coordinates, returned as a
numeric scalar. Units are in degrees.

In this coordinate system, when looking in the positive direction of the Z-axis, yaw is clockwise-
positive. However, if you view the simulation from a 2D top-down perspective, then yaw is
counterclockwise-positive, because you are viewing the scene along the negative Z-axis.

To specify the yaw orientation angle of a vehicle in the 3D simulation environment, connect this port
to the Yaw input port of a Simulation 3D Vehicle with Ground Following block.

Parameters
Specify Actor ID — Enable ID specification of cuboid actor
off (default) | on

Select this parameter to enable the ActorID used for conversion parameter, where you can specify
the ActorID of the cuboid actor pose to convert to 3D simulation coordinates.

If you clear this parameter, then the block converts the first actor pose in the input Actor bus.

ActorID used for conversion — ActorID value of cuboid actor
1 (default) | positive integer

ActorID value of the cuboid actor to convert to 3D simulation coordinates, specified as a positive
integer. This parameter must be a valid ActorID from the input Actor bus.

Dependencies

To enable this parameter, select Specify Actor ID.

Simulate using — Type of simulation to run
Interpreted execution (default) | Code generation

• Interpreted execution — Simulate the model using the MATLAB interpreter. This option
shortens startup time. In Interpreted execution mode, you can debug the source code of the
block.

• Code generation — Simulate the model using generated C/C++ code. The first time you run a
simulation, Simulink generates C/C++ code for the block. The C code is reused for subsequent
simulations as long as the model does not change. This option requires additional startup time.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Scenario Reader | Simulation 3D Vehicle with Ground Following | Vehicle To World | World To Vehicle

Topics
“Coordinate Systems in Automated Driving Toolbox”
“Coordinate Systems for Unreal Engine Simulation in Automated Driving Toolbox”
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Introduced in R2020a
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Detection Concatenation
Combine detection reports from different sensors
Library: Automated Driving Toolbox

Description
The Detection Concatenation block combines detection reports from multiple Radar Detection
Generator or Vision Detection Generator blocks onto a single output bus. Concatenation is useful
when detections from multiple sensor blocks are passed into a Multi-Object Tracker block. You can
accommodate additional sensors by changing the Number of input sensors to combine parameter
to increase the number of input ports.

Ports
Input

In1, In2, ..., InN — Sensor detections to combine
Simulink buses containing MATLAB structures

Sensor detections to combine, where each detection is a Simulink bus containing a MATLAB
structure. See “Create Nonvirtual Buses” (Simulink) for more details.

The definitions of the detection lists are found in the Detections output port descriptions of the
Radar Detection Generator and Vision Detection Generator blocks.

By default, the block includes two ports for input detections. To add more ports, use the Number of
input sensors to combine parameter.

Output

Out — Combined sensor detections
Simulink bus containing MATLAB structure

Combined sensor detections from all input buses, returned as a Simulink bus containing a MATLAB
structure. See “Create Nonvirtual Buses” (Simulink). The definitions of the detection lists are found
in the Detections output port descriptions of the Radar Detection Generator and Vision Detection
Generator blocks

The Maximum number of reported detections output is the sum of the Maximum number of
reported detections of all input ports. The number of actual detections is the sum of the number of
actual detections in each input port. The ObjectAttributes fields in the detection structure are the
union of the ObjectAttributes fields in each input port.
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Parameters
Number of input sensors to combine — Number of input sensor ports
2 (default) | positive integer

Number of input sensor ports, specified as a positive integer. Each input port is labeled In1, In2, …,
InN, where N is the value set by this parameter.
Data Types: double

Source of output bus name — Source of output bus name
Auto (default) | Property

Source of output bus name, specified as Auto or Property.

• If you select Auto, the block automatically generates a bus name.
• If you select Property, specify the bus name using the Specify an output bus name parameter.

Specify an output bus name — Name of output bus
no default

Dependencies

To enable this parameter, set the Source of output bus name parameter to Property.

Simulate using — Type of simulation to run
Interpreted execution (default) | Code generation

• Interpreted execution — Simulate the model using the MATLAB interpreter. This option
shortens startup time. In Interpreted execution mode, you can debug the source code of the
block.

• Code generation — Simulate the model using generated C/C++ code. The first time you run a
simulation, Simulink generates C/C++ code for the block. The C code is reused for subsequent
simulations as long as the model does not change. This option requires additional startup time.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Apps
Bird's-Eye Scope

Blocks
Multi-Object Tracker | Radar Detection Generator | Scenario Reader | Vision Detection Generator

Topics
“Create Nonvirtual Buses” (Simulink)

Introduced in R2017b
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Lateral Controller Stanley
Control steering angle of vehicle for path following by using Stanley method
Library: Automated Driving Toolbox / Vehicle Control

Description
The Lateral Controller Stanley block computes the steering angle command, in degrees, that adjusts
the current pose of a vehicle to match a reference pose, given the vehicle's current velocity and
direction. The controller computes this command using the Stanley method [1], whose control law is
based on both a kinematic and dynamic bicycle model. To change between models, use the Vehicle
model parameter.

• The kinematic bicycle model is suitable for path following in low-speed environments such as
parking lots, where inertial effects are minimal.

• The dynamic bicycle model is suitable for path following in high-speed environments such as
highways, where inertial effects are more pronounced. This vehicle model provides additional
parameters that describe the dynamics of the vehicle.

Ports
Input

RefPose — Reference pose
[x, y, Θ] vector

Reference pose, specified as an [x, y, Θ] vector. x and y are in meters, and Θ is in degrees.

x and y specify the reference point to steer the vehicle toward. Θ specifies the orientation angle of the
path at this reference point and is positive in the counterclockwise direction.

• For a vehicle in forward motion, the reference point is the point on the path that is closest to the
center of the vehicle's front axle.

2 Blocks

2-24



• For a vehicle in reverse motion, the reference point is the point on the path that is closest to the
center of the vehicle's rear axle.

Data Types: single | double

CurrPose — Current pose
[x, y, Θ] vector

Current pose of the vehicle, specified as an [x, y, Θ] vector. x and y are in meters, and Θ is in degrees.
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x and y specify the location of the vehicle, which is defined as the center of the vehicle's rear axle.

Θ specifies the orientation angle of the vehicle at location (x,y) and is positive in the counterclockwise
direction.

For more details on vehicle pose, see “Coordinate Systems in Automated Driving Toolbox”.
Data Types: single | double

CurrVelocity — Current longitudinal velocity
real scalar

Current longitudinal velocity of the vehicle, specified as a real scalar. Units are in meters per second.

• If the vehicle is in forward motion, then this value must be greater than 0.
• If the vehicle is in reverse motion, then this value must be less than 0.
• A value of 0 represents a vehicle that is not in motion.

Data Types: single | double

Direction — Driving direction of vehicle
1 (forward motion) | -1 (reverse motion)

Driving direction of the vehicle, specified as 1 for forward motion or -1 for reverse motion. The
driving direction determines the position error and angle error used to compute the steering angle
command. For more details, see “Algorithms” on page 2-31.

Curvature — Curvature of path
real scalar

Curvature of the path at the reference point, in radians per meter, specified as a real scalar.

• For a vehicle in forward motion, the reference point is the point on the path that is closest to the
center of the vehicle's front axle.
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• For a vehicle in reverse motion, the reference point is the point on the path that is closest to the
center of the vehicle's rear axle.

You can obtain the curvature of a path from the Curvatures output port of a Path Smoother Spline
block. You can also obtain curvatures of lane boundaries from the output lane boundary structures of
a Scenario Reader block.
Dependencies

To enable this port, set Vehicle model to Dynamic bicycle model.
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CurrYawRate — Current yaw rate
real scalar

Current yaw rate of the vehicle, in degrees per second, specified as a real scalar. The current yaw
rate is the rate of change in the angular velocity of the vehicle.

Dependencies

To enable this port, set Vehicle model to Dynamic bicycle model.

CurrSteer — Current steering angle
real scalar

Current steering angle of the vehicle, in degrees, specified as a real scalar. This value is positive in
the counterclockwise direction.

For more details, see “Coordinate Systems in Automated Driving Toolbox”.

Dependencies

To enable this port, set Vehicle model to Dynamic bicycle model.

Output

SteerCmd — Steering angle command
real scalar

Steering angle command, in degrees, returned as a real scalar. This value is positive in the
counterclockwise direction.
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For more details, see “Coordinate Systems in Automated Driving Toolbox”.

Parameters
Vehicle model — Vehicle model
Kinematic bicycle model (default) | Dynamic bicycle model

Select the type of vehicle model to set the Stanley method control law used by the block.

• Kinematic bicycle model — Kinematic bicycle model for path following in low-speed
environments such as parking lots, where inertial effects are minimal

• Dynamic bicycle model — Dynamic bicycle model for path following in high-speed
environments such as highways, where inertial effects are more pronounced

Position gain of forward motion — Position gain of vehicle in forward motion
2.5 (default) | positive real scalar

Position gain of the vehicle when it is in forward motion, specified as a positive scalar. This value
determines how much the position error affects the steering angle. Typical values are in the range [1,
5]. Increase this value to increase the magnitude of the steering angle.

Position gain of reverse motion — Position gain of vehicle in reverse motion
2.5 (default) | positive real scalar

Position gain of the vehicle when it is in reverse motion, specified as a positive scalar. This value
determines how much the position error affects the steering angle. Typical values are in the range [1,
5]. Increase this value to increase the magnitude of the steering angle.

Yaw rate feedback gain — Yaw rate feedback gain
2.5 (default) | nonnegative real scalar

Yaw rate feedback gain, specified as a nonnegative real scalar. This value determines how much
weight is given to the current yaw rate of the vehicle when the block computes the steering angle
command.
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Dependencies

To enable this parameter, set Vehicle model to Dynamic bicycle model.

Steering angle feedback gain — Steering angle feedback gain
2.5 (default) | nonnegative real scalar

Steering angle feedback gain, specified as a nonnegative real scalar. This value determines how much
the difference between the current steering angle command, SteerCmd, and the current steering
angle, CurrSteer, affects the next steering angle command.
Dependencies

To enable this parameter, set Vehicle model to Dynamic bicycle model.

Wheelbase of vehicle (m) — Distance between front and rear axle
2.8 (default) | real scalar

Distance between the front and rear axle of the vehicle, in meters, specified as a real scalar. This
value applies only when the vehicle is in forward motion, that is, when the Direction input port is 1.
Dependencies

To enable this parameter, set Vehicle model to Kinematic bicycle model.

Vehicle mass (kg) — Vehicle mass
1575 (default) | positive real scalar

Vehicle mass, in kilograms, specified as a positive real scalar.
Dependencies

To enable this parameter, set Vehicle model to Dynamic bicycle model.

Longitudinal distance from center of mass to front axle (m) — Distance to front
axle
1.2 (default) | positive real scalar

Longitudinal distance from the vehicle's center of mass to its front wheel axle, in meters, specified as
a positive real scalar.
Dependencies

To enable this parameter, set Vehicle model to Dynamic bicycle model.

Longitudinal distance from center of mass to rear axle (m) — Distance to rear
axle
1.6 (default) | positive real scalar

Longitudinal distance from the vehicle's center of mass to its rear wheel axle, in meters, specified as
a positive real scalar.
Dependencies

To enable this parameter, set Vehicle model to Dynamic bicycle model.

Front tire corner stiffness (N/rad) — Cornering stiffness of front tires
19000 (default) | positive real scalar
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Cornering stiffness of front tires, in Newtons per radian, specified as a positive real scalar.

Dependencies

To enable this parameter, set Vehicle model to Dynamic bicycle model.

Maximum steering angle (deg) — Maximum allowed steering angle
35 (default) | real scalar in the range (0, 180)

Maximum allowed steering angle of the vehicle, in degrees, specified as a real scalar in the range (0,
180).

The output from the SteerCmd port is saturated to the range [–M, M], where M is the value of the
Maximum steering angle (deg) parameter.

• Values below –M are set to –M.
• Values above M are set to M.

Tips
• You can switch between bicycle models as the vehicle environment changes. Add two Lateral

Controller Stanley blocks to a variant subsystem and specify a different bicycle model for each
block. For an example, see “Lateral Control Tutorial”.

Algorithms
To compute the steering angle command, the controller minimizes the position error and the angle
error of the current pose with respect to the reference pose. The driving direction of the vehicle
determines these error values.

When the vehicle is in forward motion (Direction parameter is 1):

• The position error is the lateral distance from the center of the front axle to the reference point on
the path.

• The angle error is the angle of the front wheel with respect to reference path.

When the vehicle is in reverse motion (Direction parameter is -1):

• The position error is the lateral distance from the center of the rear axle to the reference point on
the path.

• The angle error is the angle of the rear wheel with respect to reference path.

For details on how the controller minimizes these errors for kinematic and dynamic bicycle models,
see [1].

References
[1] Hoffmann, Gabriel M., Claire J. Tomlin, Michael Montemerlo, and Sebastian Thrun. "Autonomous

Automobile Trajectory Tracking for Off-Road Driving: Controller Design, Experimental
Validation and Racing." American Control Conference. 2007, pp. 2296–2301. doi:10.1109/
ACC.2007.4282788

 Lateral Controller Stanley

2-31



Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Longitudinal Controller Stanley | Path Smoother Spline | Velocity Profiler

Functions
lateralControllerStanley

Objects
pathPlannerRRT

Topics
“Coordinate Systems in Automated Driving Toolbox”

Introduced in R2018b
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Lidar Point Cloud Generator
Generate lidar point cloud data for driving scenario
Library: Automated Driving Toolbox / Driving Scenario and Sensor

Modeling

Description
The Lidar Point Cloud Generator block generates a point cloud from lidar measurements taken by a
lidar sensor mounted on an ego vehicle.

The block derives the point cloud from simulated roads and actor poses in a driving scenario and
generates the point cloud at intervals equal to the sensor update interval. By default, detections are
referenced to the coordinate system of the ego vehicle. The block can simulate added noise at a
specified range accuracy by using a statistical model. The block also provides parameters to exclude
the ego vehicle and roads from the generated point cloud.

The lidar generates point cloud data based on the mesh representations of the roads and actors in the
scenario. A mesh is a 3-D geometry of an object that is composed of faces and vertices.

When building scenarios and sensor models using the Driving Scenario Designer app, the lidar
sensors exported to Simulink are output as Lidar Point Cloud Generator blocks.

Limitations
• C/C++ code generation is not supported.
• For Each subsystems are not supported.
• Rapid acceleration mode is not supported.
• Use of the Detection Concatenation block with this block is not supported. You cannot concatenate

point cloud data with detections from other sensors.
• If a model does not contain a Scenario Reader block, then this block does not include roads in the

generated point cloud.
• Point cloud data is not generated for lane markings.

Ports
Input

Actors — Scenario actor poses
Simulink bus containing MATLAB structure

Scenario actor poses in ego vehicle coordinates, specified as a Simulink bus containing a MATLAB
structure.

The structure must contain these fields.
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Field Description Type
NumActors Number of actors Nonnegative integer
Time Current simulation time Real-valued scalar
Actors Actor poses NumActors-length array of

actor pose structures

Each actor pose structure in Actors must have these fields.

Field Description
ActorID Scenario-defined actor identifier, specified as a

positive integer.
Position Position of actor, specified as a real-valued vector

of the form [x, y, z]. Units are in meters.
Velocity Velocity (v) of actor in the x-, y-, and z-direction,

specified as a real-valued vector of the form [vx,
vy, vz]. Units are in meters per second.

Roll Roll angle of actor, specified as a real-valued
scalar. Units are in degrees.

Pitch Pitch angle of actor, specified as a real-valued
scalar. Units are in degrees.

Yaw Yaw angle of actor, specified as a real-valued
scalar. Units are in degrees.

AngularVelocity Angular velocity (ω) of actor in the x-, y-, and z-
direction, specified as a real-valued vector of the
form [ωx, ωy, ωz]. Units are in degrees per second.

Ego Vehicle — Ego vehicle pose
Simulink bus containing MATLAB structure

Ego vehicle pose, specified as a Simulink bus containing a MATLAB structure.

The structure must have these fields.

Field Description
ActorID Scenario-defined actor identifier, specified as a

positive integer.
Position Position of actor, specified as a real-valued vector

of the form [x, y, z]. Units are in meters.
Velocity Velocity (v) of actor in the x-, y-, and z-direction,

specified as a real-valued vector of the form [vx,
vy, vz]. Units are in meters per second.

Roll Roll angle of actor, specified as a real-valued
scalar. Units are in degrees.

Pitch Pitch angle of actor, specified as a real-valued
scalar. Units are in degrees.
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Field Description
Yaw Yaw angle of actor, specified as a real-valued

scalar. Units are in degrees.
AngularVelocity Angular velocity (ω) of actor in the x-, y-, and z-

direction, specified as a real-valued vector of the
form [ωx, ωy, ωz]. Units are in degrees per second.

You can output the ego vehicle pose from a Scenario Reader block. In the Scenario Reader block used
in your model, select the Output ego vehicle pose parameter.

Output

Point Cloud — Point cloud data
m-by-n-by-3 array of positive real-valued [x, y, z] points

Point cloud data, returned as an m-by-n-by 3 array of positive real-valued [x, y, z] points. m is the
number of elevation (vertical) channels in the point cloud. n is the number of azimuthal (horizontal)
channels in the point cloud. m and n define the number of points in the point cloud, as shown in this
equation:

m × n =
VFOV
VRES

×
HFOV
HRES

• VFOV is the vertical field of view of the lidar, in degrees, as specified by the Elevation limits of
lidar (deg) parameter.

• VRES is the vertical angular resolution of the lidar, in degrees, as specified by the Elevation
resolution of lidar (deg) parameter.

• HFOV is the horizontal field of view of the lidar, in degrees, as specified by the Azimuthal limits of
lidar (deg) parameter.

• HRES is the horizontal angular resolution of the lidar, in degrees, as specified by the Azimuthal
resolution of lidar (deg) parameter.

Each m-by-n entry in the array specifies the x-, y-, and z-coordinates of a detected point in the ego
vehicle coordinate system. If the lidar does not detect a point at a given coordinate, then x, y, and z
are returned as NaN.

By default, the Lidar Point Cloud Generator block includes road data in the generated point cloud.
The block obtains the road data in world coordinates from a Scenario Reader block that is in the
same model as the Lidar Point Cloud Generator block. The Lidar Point Cloud Generator block
computes the road mesh in ego vehicle coordinates based on the road data and the ego vehicle pose
at the Ego Vehicle input port. The Maximum detection range (m) parameter of the Lidar Point
Cloud Generator block determines the extent of the road mesh. To exclude road data from the point
cloud, clear the Include roads in generated point cloud parameter.

Parameters
Parameters
Sensor Identification

Unique identifier of sensor — Unique sensor identifier
1 (default) | positive integer
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Unique sensor identifier, specified as a positive integer. The sensor identifier distinguishes detections
that come from different sensors in a multisensor system. If a model contains multiple sensor blocks
that have the same sensor identifier, the Bird's-Eye Scope displays an error.

Required interval between sensor updates (s) — Required time interval between
sensor updates
0.1 (default) | positive scalar

Required time interval between sensor updates, specified as a positive scalar. The value of this
parameter must be an integer multiple of the Actors input port data interval. Updates requested
from the sensor between update intervals contain no detections. Units are in seconds.

Sensor Extrinsics

Sensor's (x,y) position (m) — Location of center of lidar sensor
[1.5 0] (default) | real-valued 1-by-2 vector

Location of the center of the lidar sensor, specified as a real-valued 1-by-2 vector. The Sensor's (x,y)
position (m) and Sensor's height (m) parameters define the coordinates of the lidar sensor with
respect to the ego vehicle coordinate system. The default value corresponds to a lidar sensor
mounted on a sedan, at the center of the roof's front edge. Units are in meters.

Sensor's height (m) — Height of lidar sensor
1.6 (default) | positive scalar

Height of the lidar sensor above the ground plane, specified as a positive scalar. The Sensor's (x,y)
position (m) and Sensor's height (m) parameters define the coordinates of the lidar sensor with
respect to the ego vehicle coordinate system. The default value corresponds to a lidar sensor
mounted on a sedan, at the center of the roof front edge. Units are in meters.

Yaw angle of sensor mounted on ego vehicle (deg) — Yaw angle of lidar sensor
0 (default) | real-valued scalar

Yaw angle of the lidar sensor, specified as a real-valued scalar. The yaw angle is the angle between
the center line of the ego vehicle and the downrange axis of the lidar sensor. A positive yaw angle
corresponds to a clockwise rotation when you look in the positive direction of the z-axis of the ego
vehicle coordinate system. Units are in degrees.

Pitch angle of sensor mounted on ego vehicle (deg) — Pitch angle of lidar sensor
0 (default) | real-valued scalar

Pitch angle of the lidar sensor, specified as a real-valued scalar. The pitch angle is the angle between
the downrange axis of the lidar sensor and the xy-plane of the ego vehicle coordinate system. A
positive pitch angle corresponds to a clockwise rotation when you look in the positive direction of the
y-axis of the ego vehicle coordinate system. Units are in degrees.

Roll angle of sensor mounted on ego vehicle (deg) — Roll angle of lidar sensor
0 (default) | real-valued scalar

Roll angle of the lidar sensor, specified as a real-valued scalar. The roll angle is the angle of rotation
of the downrange axis of the lidar sensor around the x-axis of the ego vehicle coordinate system. A
positive roll angle corresponds to a clockwise rotation when you look in the positive direction of the x-
axis of the ego vehicle coordinate system. Units are in degrees.
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Point Cloud Reporting

Coordinate system used to report point cloud — Coordinate system of reported
detections
Ego Cartesian (default) | Sensor Cartesian

Coordinate system of reported detections, specified as one of these values:

• Ego Cartesian — Detections are reported in the ego vehicle Cartesian coordinate system.
• Sensor Cartesian — Detections are reported in the sensor Cartesian coordinate system.

Include ego vehicle in generated point cloud — Include ego vehicle in point cloud
on (default) | off

Select this parameter to include the ego vehicle in the generated point cloud.

ActorID of ego vehicle — ActorID value of ego vehicle
1 (default) | positive integer

ActorID value of the ego vehicle, specified as a positive integer. ActorID is the unique identifier for
an actor. This parameter must be a valid ActorID from the input Actor bus.

Dependencies

To enable this parameter, select the Include ego vehicle in generated point cloud parameter.

Include roads in generated point cloud — Include roads in point cloud
on (default) | off

Select this parameter to include the roads in the generated point cloud.

Source of actor profiles — Source of actor profiles
From Scenario Reader block (default) | From workspace

Source of actor profiles, which are the physical and radar characteristics of all actors in the driving
scenario, specified as one of these options:

• From Scenario Reader block — The block obtains the actor profiles from the scenario
specified by the Scenario Reader block.

• From workspace — The block obtains the actor profiles from the MATLAB or model workspace
variable specified by the MATLAB or model workspace variable name parameter.

MATLAB or model workspace variable name — Variable name of actor profiles
actor_profiles (default) | valid variable name

Variable name of actor profiles, specified as the name of a MATLAB or model workspace variable
containing actor profiles.

Actor profiles are the physical and radar characteristics of all actors in a driving scenario and are
specified as a structure or structure array.

• If the actor profiles variable contains a single structure, then all actors specified in the input
Actors bus use this profile.

• If the actor profiles variable is a structure array, then each actor specified in the input Actors bus
must have a unique actor profile.
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To generate an array of structures for your driving scenario, use the actorProfiles function. The
table shows the valid structure fields. If you do not specify a field, the fields are set to their default
values.

Field Description
ActorID Scenario-defined actor identifier, specified as a

positive integer.
ClassID Classification identifier, specified as a

nonnegative integer. 0 represents an object of an
unknown or unassigned class.

Length Length of actor, specified as a positive real-valued
scalar. Units are in meters.

Width Width of actor, specified as a positive real-valued
scalar. Units are in meters.

Height Height of actor, specified as a positive real-valued
scalar. Units are in meters.

OriginOffset Offset of actor's rotational center from its
geometric center, specified as a real-valued
vector of the form [x, y, z]. The rotational center,
or origin, is located at the bottom center of the
actor. For vehicles, the rotational center is the
point on the ground beneath the center of the
rear axle. Units are in meters.

MeshVertices Mesh vertices of actor, specified as an n-by-3 real-
valued matrix of vertices. Each row in the matrix
defines a point in 3-D space.

MeshFaces Mesh faces of actor, specified as an m-by-3 matrix
of integers. Each row of MeshFaces represents a
triangle defined by the vertex IDs, which are the
row numbers of vertices.

RCSPattern Radar cross-section (RCS) pattern of actor,
specified as a numel(RCSElevationAngles)-
by-numel(RCSAzimuthAngles) real-valued
matrix. Units are in decibels per square meter.

RCSAzimuthAngles Azimuth angles corresponding to rows of
RCSPattern, specified as a vector of values in
the range [–180, 180]. Units are in degrees.

RCSElevationAngles Elevation angles corresponding to rows of
RCSPattern, specified as a vector of values in
the range [–90, 90]. Units are in degrees.

For complete definitions of the structure fields, see the actor and vehicle functions.

Dependencies

To enable this parameter, set the Source of actor profiles parameter to From workspace.
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Measurements

Settings

Maximum detection range (m) — Maximum detection range
120 (default) | positive scalar

Maximum detection range of the lidar sensor, specified as a positive scalar. The sensor cannot detect
actors beyond this range. This parameter also determines the extent of the road mesh. Units are in
meters.

Range accuracy (m) — Accuracy of range measurements
0.002 (default) | positive scalar

Accuracy of range measurements, specified as a positive scalar. Units are in meters.

Azimuthal resolution of lidar (deg) — Azimuthal resolution of lidar sensor
0.16 (default) | positive scalar

Azimuthal resolution of the lidar sensor, specified as a positive scalar. The azimuthal resolution
defines the minimum separation in azimuth angle at which the lidar can distinguish between two
targets. Units are in degrees.

Elevation resolution of lidar (deg) — Elevation resolution of lidar sensor
1.25 (default) | positive scalar

Elevation resolution of the lidar sensor, specified as a positive scalar. The elevation resolution defines
the minimum separation in elevation angle at which the lidar can distinguish between two targets.
Units are in degrees.

Azimuthal limits of lidar (deg) — Azimuthal limits of lidar sensor
[-180 180] (default) | 1-by-2 real-valued vector of form [min, max]

Azimuthal limits of the lidar sensor, specified as a 1-by-2 real-valued vector of the form [min, max].
Units are in degrees.

Elevation limits of lidar (deg) — Elevation limits of lidar sensor
[-20 20] (default) | 1-by-2 real-valued vector of form [min, max]

Elevation limits of the lidar sensor, specified as a 1-by-2 real-valued vector of the form [min, max].
Units are in degrees.

Add noise to measurements — Add noise to measurements
on (default) | off

Select this parameter to add noise to lidar sensor measurements. When you clear this parameter, the
measurements have no noise.

See Also
Apps
Bird's-Eye Scope

Blocks
Radar Detection Generator | Scenario Reader | Simulation 3D Lidar | Vision Detection Generator
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Objects
lidarPointCloudGenerator

Introduced in R2020b
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Longitudinal Controller Stanley
Control longitudinal velocity of vehicle by using Stanley method
Library: Automated Driving Toolbox / Vehicle Control

Description
The Longitudinal Controller Stanley block computes the acceleration and deceleration commands, in
meters per second, that control the velocity of the vehicle. Specify the reference velocity, current
velocity, and current driving direction. The controller computes these commands using the Stanley
method [1], which the block implements as a discrete proportional-integral (PI) controller with
integral anti-windup. For more details, see “Algorithms” on page 2-42.

You can also compute the steering angle command of a vehicle using the Stanley method. See the
Lateral Controller Stanley block.

Ports
Input

RefVelocity — Reference velocity
real scalar

Reference velocity, in meters per second, specified as a real scalar.

CurrVelocity — Current velocity
real scalar

Current velocity of the vehicle, in meters per second, specified as a real scalar.

Direction — Driving direction
1 (forward motion) | -1 (reverse motion)

Driving direction of vehicle, specified as 1 for forward motion and -1 for reverse motion.

Reset — Trigger to reset integral of velocity error
0 (hold steady) | nonzero scalar (reset)

Trigger to reset the integral of velocity error, e(k), to zero. A value of 0 holds e(k) steady. A nonzero
value resets e(k).

Output

AccelCmd — Acceleration command
real scalar in the range [0, MA]

Acceleration command, returned as a real scalar in the range [0, MA], where MA is the value of the
Maximum longitudinal acceleration (m/s^2) parameter.
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DecelCmd — Deceleration command
real scalar in the range [0, MD]

Deceleration command, returned as a real scalar in the range [0, MD], where MD is the value of the
Maximum longitudinal deceleration (m/s^2) parameter.

Parameters
Proportional gain, Kp — Proportional gain
2.5 (default) | positive real scalar

Proportional gain of controller, Kp, specified as a positive real scalar.

Integral gain, Ki — Integral gain
1 (default) | positive real scalar

Integral gain of controller, Ki, specified as a positive real scalar.

Sample time (s) — Sample time
0.05 (default) | positive real scalar

Sample time of controller, in seconds, specified as a positive real scalar.

Maximum longitudinal acceleration (m/s^2) — Maximum longitudinal acceleration
3 (default) | positive real scalar

Maximum longitudinal acceleration, in meters per second squared, specified as a positive real scalar.

The block saturates the output from the AccelCmd to the range [0, MA], where MA is the value of this
parameter. Values above MA are set to MA.

Maximum longitudinal deceleration (m/s^2) — Maximum longitudinal deceleration
6 (default) | positive real scalar

Maximum longitudinal deceleration, in meters per second squared, specified as a positive real scalar.

The block saturates the output from the DecelCmd port to the range [0, MD], where MD is the value
of this parameter. Values above MD are set to MD.

Algorithms
The Longitudinal Controller Stanley block implements a discrete proportional-integral (PI) controller
with integral anti-windup, as described by the “Anti-windup method” (Simulink) parameter of the PID
Controller block. The block uses this equation:

u(k) = (Kp + Ki
Ts z
z − 1) e(k)

• u(k) is the control signal at the kth time step.
• Kp is the proportional gain, as set by the Proportional gain, Kp parameter.
• Ki is the integral gain, as set by the Integral gain, Ki parameter.
• Ts is the sample time of the block in seconds, as set by the Sample time (s) parameter.
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• e(k) is the velocity error (CurrVelocity – RefVelocity) at the kth time step. For each k, this error
is equal to the difference between the current velocity and reference velocity inputs
(CurrVelocity – RefVelocity).

The control signal, u, determines the value of acceleration command AccelCmd and deceleration
command DecelCmd. The block saturates the acceleration and deceleration commands to respective
ranges of [0, MA] and [0, MD], where:

• MA is value of the Maximum longitudinal acceleration (m/s^2) parameter.
• MD is the value of the Maximum longitudinal deceleration (m/s^2) parameter.

At each time step, only one of the AccelCmd and DecelCmd port values is positive, and the other
port value is 0. In other words, the vehicle can either accelerate or decelerate in one time step, but it
cannot do both at one time.

The direction of motion, as specified in the Direction input port, determines which command is
positive at the given time step.

Direction Port
Value

Control Signal
Value u(k)

AccelCmd Port
Value

DecelCmd Port
Value

Description

1 (forward motion) u(k) > 0 positive real scalar 0 Vehicle speeds up
as it travels
forward

u(k) < 0 0 positive real scalar Vehicle slows down
as it travels
forward

-1 (reverse
motion)

u(k) > 0 0 positive real scalar Vehicle slows down
as it travels in
reverse

u(k) < 0 positive real scalar 0 Vehicle speeds up
as it travels in
reverse

References
[1] Hoffmann, Gabriel M., Claire J. Tomlin, Michael Montemerlo, and Sebastian Thrun. "Autonomous

Automobile Trajectory Tracking for Off-Road Driving: Controller Design, Experimental
Validation and Racing." American Control Conference. August 2007, pp. 2296–2301.
doi:10.1109/ACC.2007.4282788.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Lateral Controller Stanley | PID Controller | Path Smoother Spline | Velocity Profiler
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Multi-Object Tracker
Create and manage tracks of multiple objects
Library: Automated Driving Toolbox

Description
The Multi-Object Tracker block initializes, confirms, predicts, corrects, and deletes the tracks of
moving objects. Inputs to the multi-object tracker are detection reports generated by Radar Detection
Generator and Vision Detection Generator blocks. The multi-object tracker accepts detections from
multiple sensors and assigns them to tracks using a global nearest neighbor (GNN) criterion. Each
detection is assigned to a separate track. If the detection cannot be assigned to any track, the multi-
object tracker creates a new track.

A new track starts in a tentative state. If enough detections are assigned to a tentative track, its
status changes to confirmed. When a track is confirmed, the multi-object tracker considers that track
to represent a physical object. If detections are not added to the track within a specifiable number of
updates, the track is deleted.

The multi-object tracker also estimates the state vector and state vector covariance matrix for each
track using a Kalman filter. These state vectors are used to predict a track's location in each frame
and determine the likelihood of each detection being assigned to each track.

Ports
Input

Detections — Detection list
Simulink bus containing MATLAB structure

Detection list, specified as a Simulink bus containing a MATLAB structure. See “Group Signal Lines
into Virtual Buses” (Simulink). The structure has the form:

Field Description Type
NumDetections Number of detections integer
IsValidTime False when updates are

requested at times that are
between block invocation
intervals

Boolean

Detections Object detections Array of object detection
structures. The first
NumDetections of these
detections are actual detections.

The definitions of the object detection structures are found in the Detections output port
descriptions of the Radar Detection Generator and Vision Detection Generator blocks.

 Multi-Object Tracker

2-45



Note The object detection structure contains a Time field. The time tag of each object detection
must be less than or equal to the time of the current invocation of the block. The time tag must also
be greater than the update time specified in the previous invocation of the block.

Prediction Time — Track update time
real scalar

Track update time, specified as a real scalar. The multi-object tracker updates all tracks to this time.
Update time must always increase with each invocation of the block. Units are in seconds.

Note The object detection structure contains a Time field. The time tag of each object detection
must be less than or equal to the time of the current invocation of the block. The time tag must also
be greater than the update time in the previous invocation of the block.

Dependencies

To enable this port, set Prediction time source to Input port.

Cost Matrix — Cost matrix
real-valued Nt-by-Nd matrix

Cost matrix, specified as a real-valued Nt-by-Nd matrix, where Nt is the number of existing tracks and
Nd is the number of current detections.

The rows of the cost matrix correspond to the existing tracks. The columns correspond to the
detections. Tracks are ordered as they appear in the list of tracks in the All Tracks output port of the
previous invocation of the block.

In the first update to the multi-object tracker, or if the track has no previous tracks, assign the cost
matrix a size of [0, Nd]. The cost must be calculated so that lower costs indicate a higher likelihood
that the multi-object tracker assigns a detection to a track. To prevent certain detections from being
assigned to certain tracks, use Inf.

Dependencies

To enable this port, select Enable cost matrix input.

Detectable Track IDs — Detectable track IDs
real-valued M-by-1 vector | real-valued M-by-2 matrix

Detectable track IDs, specified as a real-valued M-by-1 vector or M-by-2 matrix. Detectable tracks are
tracks that the sensors expect to detect. The first column of the matrix contains a list of track IDs that
the sensors report as detectable. The optional second column contains the detection probability for
the track.

Tracks whose identifiers are not included in Detectable Track IDs are considered undetectable. The
track deletion logic does not count the lack of detection as a "missed detection" for track deletion
purposes.

If this port is not enabled, the tracker assumes all tracks to be detectable at each invocation of the
block.
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Dependencies

To enable this port, in the Port Setting tab, select Enable detectable track IDs Input.

Output

Confirmed Tracks — Confirmed tracks
Simulink bus containing MATLAB structure

Confirmed tracks, returned as a Simulink bus containing a MATLAB structure. See “Create
Nonvirtual Buses” (Simulink).

This table shows the structure fields.

Field Description
NumTracks Number of tracks
Tracks Array of track structures of a length set by the

Maximum number of tracks parameter. Only
the first NumTracks of these are actual tracks.

This table shows the fields of each track structure.

Field Description
TrackID Unique integer that identifies the track.
SourceIndex Unique identifier the tracker in a multiple tracker

environment. The SourceIndex is exactly the
same with the TrackerIndex.

UpdateTime The time the track was updated.
Age Number of times the track survived.
State Value of state vector at the update time.
StateCovariance Uncertainty covariance matrix.
Extent Spatial extent estimate of the tracked object,

returned as a d-by-d matrix, where d is the
dimension of the object. This field is only
returned when the tracking filter is specified as a
ggiwphd filter.

MeasurementRate Expected number of detections from the tracked
object. This field is only returned when the
tracking filter is specified as a ggiwphd filter.

IsConfirmed True if the track is assumed to be of a real target.
IsCoasted trackerPHD does not support the IsCoasted

field. The value is always 0.
ObjectClassID trackerPHD does not support the

ObjectClassID field. The value is always 0.
StateParameters Parameters about the track state reference frame

specified in the StateParameters property of
the PHD tracker.
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IsSelfReported Indicate if the track is reported by the tracker.
This field is used in a track fusion environment. It
is returned as true by default.

A track is confirmed if:

• At least M detections are assigned to the track during the first N updates after track initialization.
To specify the values M and N, use the M and N for the M-out-of-N confirmation parameter.

• The detection initiating the track has an ObjectClassID greater than zero.

Tentative Tracks — Tentative tracks
Simulink bus containing MATLAB structure

Tentative tracks, returned as a Simulink bus containing a MATLAB structure. See “Create Nonvirtual
Buses” (Simulink). A track is tentative before it is confirmed.

This table shows the structure fields.

Field Description
NumTracks Number of tracks
Tracks Array of track structures of a length set by the

Maximum number of tracks parameter. Only
the first NumTracks of these are actual tracks.

This table shows the fields of each track structure.

Field Description
TrackID Unique integer that identifies the track.
SourceIndex Unique identifier the tracker in a multiple tracker

environment. The SourceIndex is exactly the
same with the TrackerIndex.

UpdateTime The time the track was updated.
Age Number of times the track survived.
State Value of state vector at the update time.
StateCovariance Uncertainty covariance matrix.
Extent Spatial extent estimate of the tracked object,

returned as a d-by-d matrix, where d is the
dimension of the object. This field is only
returned when the tracking filter is specified as a
ggiwphd filter.

MeasurementRate Expected number of detections from the tracked
object. This field is only returned when the
tracking filter is specified as a ggiwphd filter.

IsConfirmed True if the track is assumed to be of a real target.
IsCoasted trackerPHD does not support the IsCoasted

field. The value is always 0.

2 Blocks

2-48



ObjectClassID trackerPHD does not support the
ObjectClassID field. The value is always 0.

StateParameters Parameters about the track state reference frame
specified in the StateParameters property of
the PHD tracker.

IsSelfReported Indicate if the track is reported by the tracker.
This field is used in a track fusion environment. It
is returned as true by default.

Dependencies

To enable this port, select Enable tentative tracks output.

All Tracks — All tracks
Simulink bus containing MATLAB structure

Combined list of confirmed and tentative tracks, returned as a Simulink bus containing a MATLAB
structure. See “Create Nonvirtual Buses” (Simulink).

This table shows the structure fields.

Field Description
NumTracks Number of tracks
Tracks Array of track structures of a length set by the

Maximum number of tracks parameter. Only
the first NumTracks of these are actual tracks.

This table shows the fields of each track structure.

Field Description
TrackID Unique integer that identifies the track.
SourceIndex Unique identifier the tracker in a multiple tracker

environment. The SourceIndex is exactly the
same with the TrackerIndex.

UpdateTime The time the track was updated.
Age Number of times the track survived.
State Value of state vector at the update time.
StateCovariance Uncertainty covariance matrix.
Extent Spatial extent estimate of the tracked object,

returned as a d-by-d matrix, where d is the
dimension of the object. This field is only
returned when the tracking filter is specified as a
ggiwphd filter.

MeasurementRate Expected number of detections from the tracked
object. This field is only returned when the
tracking filter is specified as a ggiwphd filter.

IsConfirmed True if the track is assumed to be of a real target.
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IsCoasted trackerPHD does not support the IsCoasted
field. The value is always 0.

ObjectClassID trackerPHD does not support the
ObjectClassID field. The value is always 0.

StateParameters Parameters about the track state reference frame
specified in the StateParameters property of
the PHD tracker.

IsSelfReported Indicate if the track is reported by the tracker.
This field is used in a track fusion environment. It
is returned as true by default.

Dependencies

To enable this port, select Enable all tracks output.

Parameters
Tracker Management

Tracker identifier — Unique tracker identifier
0 (default) | nonnegative integer

Unique tracker identifier, specified as a nonnegative integer. This parameter is used as the
SourceIndex in the outputs, and distinguishes tracks that come from different trackers in a
multiple-tracker system. You must specify this property as a positive integer to use the track outputs
as inputs to a track fuser.
Example: 1

Filter initialization function name — Kalman filter initialization function
initcvkf (default) | function name

Kalman filter initialization function, specified as a function name. The toolbox provides several
initialization functions. For an example of an initialization function, see initcvekf.

Threshold for assigning detections to tracks — Detection assignment threshold
30.0 (default) | positive real scalar

Detection assignment threshold, specified as a positive real scalar. To assign a detection to a track,
the detection's normalized distance from the track must be less than the assignment threshold. If
some detections remain unassigned to tracks that you want them assigned to, then increase the
threshold. If some detections are assigned to incorrect tracks, decrease the threshold.

M and N for the M-out-of-N confirmation — Confirmation parameters for track
creation
[2,3] (default) | two-element vector of positive integers

Confirmation parameters for track creation, specified as a two-element vector of positive integers,
[M,N]. A track is confirmed when at least M detections are assigned to the track during the first N
updates after track initialization. M must be less than or equal to N.
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• When setting N, consider the number of times you want the tracker to update before it confirms a
track. For example, if a tracker updates every 0.05 seconds, and you allow 0.5 seconds to make a
confirmation decision, set N = 10.

• When setting M, take into account the probability of object detection for the sensors. The
probability of detection depends on factors such as occlusion or clutter. You can reduce M when
tracks fail to be confirmed or increase M when too many false detections are assigned to tracks.

Example: [3,5]

P and R for the P-out-of-R deletion — Track deletion threshold
[5 5] (default) | real-valued 1-by-2 vector of positive integers

Track deletion threshold for history logic, specified as a real-valued 1-by-2 vector of positive integers
[P R]. If a confirmed track is not assigned to any detection P times in the last Q tracker updates,
then the track is deleted.

Maximum number of tracks — Maximum number of tracks
200 (default) | positive integer

Maximum number of tracks that the block can process, specified as a positive integer.

Maximum number of sensors — Maximum number of sensors
20 (default) | positive integer

Maximum number of sensors that the block can process, specified as a positive integer. This value
should be greater than or equal to the highest SensorIndex value used in the Detections input
port.

Track state parameters — Parameters of the track state reference frame
struct (default) | struct | struct array

Parameters of the track state reference frame, specified as a struct or a struct array. Use this
property to define the track state reference frame and how to transform the track from the tracker
(called source) coordinate system to the fuser coordinate system.

Inputs and Outputs

Prediction time source — Source for prediction time
Input port (default) | Auto

Source for prediction time, specified as Input port or Auto. Select Input port to input an update
time by using the Prediction Time input port. Otherwise, the simulation clock managed by Simulink
determines the update time.
Example: Auto

Enable cost matrix input — Enable input port for cost matrix
off (default) | on

Select this check box to enable the input of a cost matrix by using the Cost Matrix input port.

Enable detectable track IDs input — Enable detectable track IDs input
off (default) | on

Select this check box to enable the Detectable Track IDs input port.
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Source of output bus name — Source of output bus name
Auto (default) | Property

Source of output bus name, specified as Auto or Property.

• If you select Auto, the block automatically creates a bus name.
• If you select Property, specify the bus name using the Specify an output bus name parameter.

Specify an output bus name — Name of output bus
no default

Dependencies

To enable this parameter, set the Source of output bus name parameter to Property.

Enable tentative tracks output — Enable output port for tentative tracks
off (default) | on

Select this check box to enable the output of tentative tracks by using the Tentative Tracks output
port.

Enable all tracks output — Enable output port for all tracks
off (default) | on

Select this check box to enable the output of all the tracks by using the All Tracks output port.

Simulate using — Type of simulation to run
Interpreted execution (default) | Code generation

• Interpreted execution — Simulate the model using the MATLAB interpreter. This option
shortens startup time. In Interpreted execution mode, you can debug the source code of the
block.

• Code generation — Simulate the model using generated C/C++ code. The first time you run a
simulation, Simulink generates C/C++ code for the block. The C code is reused for subsequent
simulations as long as the model does not change. This option requires additional startup time.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Apps
Bird's-Eye Scope

Blocks
Detection Concatenation | Radar Detection Generator | Scenario Reader | Vision Detection Generator

Objects
multiObjectTracker

Introduced in R2017b
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Path Smoother Spline
Smooth vehicle path using cubic spline interpolation
Library: Automated Driving Toolbox

Description
The Path Smoother Spline block generates a smooth vehicle path, consisting of a sequence of
discretized poses, by fitting the input reference path poses to a cubic spline. Given the input
reference path directions, the block also returns the directions that correspond to each pose.

Use this block to convert a C1-continuous path to a C2-continuous path. C1-continuous paths include
Dubins or Reeds-Shepp paths that are returned by path planners. For more details on these path
types, see “C1-Continuous and C2-Continuous Paths” on page 2-55.

You can use the returned poses and directions with a vehicle controller, such as the Lateral Controller
Stanley block.

Ports
Input

RefPoses — Reference poses
M-by-3 matrix of [x, y, Θ] vectors

Reference poses of the vehicle along the path, specified as an M-by-3 matrix of [x, y, Θ] vectors,
where M is the number of poses.

x and y specify the location of the vehicle in meters. Θ specifies the orientation angle of the vehicle in
degrees.
Data Types: single | double

RefDirections — Reference directions
M-by-1 column vector of 1s (forward motion) and –1s (reverse motion)

Reference directions of the vehicle along the path, specified as an M-by-1 column vector of 1s
(forward motion) and –1s (reverse motion). M is the number of reference directions. Each element of
RefDirections corresponds to a pose in the RefPoses input port.
Data Types: single | double

Output

Poses — Discretized poses of smoothed path
N-by-3 matrix of [x, y, Θ] vectors

Discretized poses of the smoothed path, returned as an N-by-3 matrix of [x, y, Θ] vectors. N is the
number of poses specified in the Number of output poses parameter.
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x and y specify the location of the vehicle in meters. Θ specifies the orientation angle of the vehicle in
degrees.

The values in Poses are of the same data type as the values in the RefPoses input port.

Directions — Driving directions at each output pose
N-by-1 column vector of 1s (forward motion) and –1s (reverse motion)

Driving directions of the vehicle at each output pose in Poses, returned as an N-by-1 column vector
of 1s (forward motion) and –1s (reverse motion). N is the number of poses specified in the Number
of output poses parameter.

The values in Directions are of the same data type as the values in the RefDirections input port.

You can use Directions to specify the reference path of a vehicle. You can also use Directions, along
with CumLengths and Curvatures, to generate a reference velocity profile for the vehicle. See the
Velocity Profiler block and the “Automated Parking Valet in Simulink” example.

CumLengths — Cumulative path lengths
N-by-1 real-valued column vector

Cumulative path lengths at each output pose in Poses, returned as an N-by-1 real-valued column
vector. N is the number of poses specified in the Number of output poses parameter. Units are in
meters.

You can use CumLengths, along with Directions and Curvatures, to generate a reference velocity
profile for the vehicle. See the Velocity Profiler block and the “Automated Parking Valet in Simulink”
example.

Dependencies

To enable this port, select the Show CumLengths and Curvatures output ports parameter.

Curvatures — Signed path curvatures
N-by-1 real-valued column vector

Signed path curvatures at each output pose in Poses, returned as an N-by-1 real-valued column
vector. N is the number of poses specified in the Number of output poses parameter. Units are in
radians per meter.

You can use Curvatures, along with Directions and CumLengths, to generate a reference velocity
profile for the vehicle. See the Velocity Profiler block and the “Automated Parking Valet in Simulink”
example.

Dependencies

To enable this port, select the Show CumLengths and Curvatures output ports parameter.

Parameters
Number of output poses — Number of smooth poses to return
100 (default) | positive integer

Number of smooth poses to return in the Poses output port, specified as a positive integer. To
increase the granularity of the returned poses, increase this parameter value.
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Minimum separation of input poses — Minimum separation between poses
1e-3 (default) | positive real scalar

Minimum separation between poses, in meters, specified as a positive real scalar. If the Euclidean (x,
y) distance between two poses is less than this value, then the block uses only one of these poses for
interpolation.

Sample time — Sample time
-1 (default) | positive real scalar

Sample time of the block, in seconds, specified as -1 or as a positive real scalar. The default of -1
means that the block inherits its sample time from upstream blocks.

Show CumLengths and Curvatures output ports — Output cumulative path lengths and
curvatures
off (default) | on

Select this parameter to enable the CumLengths and Curvatures output ports.

Simulate using — Type of simulation to run
Code Generation (default) | Interpreted Execution

• Code generation — Simulate the model using generated C/C++ code. The first time you run a
simulation, Simulink generates C/C++ code for the block. The C code is reused for subsequent
simulations as long as the model does not change. This option requires additional startup time.

• Interpreted execution — Simulate the model using the MATLAB interpreter. This option
shortens startup time. In Interpreted execution mode, you can debug the source code of the
block.

More About
C1-Continuous and C2-Continuous Paths

A path is C1-continuous if its derivative exists and is continuous. Paths that are only C1-continuous
have discontinuities in their curvature. For example, a path composed of Dubins or Reeds-Sheep path
segments has discontinuities in curvature at the points where the segments join. These
discontinuities result in changes in direction that are not smooth enough for driving with passengers.

A path is also C2-continuous if its second derivative exists and is continuous. C2-continuous paths
have continuous curvature and are smooth enough for driving with passengers.
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Algorithms
• The path-smoothing algorithm interpolates a parametric cubic spline that passes through all input

reference pose points. The parameter of the spline is the cumulative chord length at these points.
[1]

• The tangent direction of the smoothed output path approximately matches the orientation angle of
the vehicle at the starting and goal poses.

References
[1] Floater, Michael S. "On the Deviation of a Parametric Cubic Spline Interpolant from Its Data

Polygon." Computer Aided Geometric Design. Vol. 25, Number 3, 2008, pp. 148–156.

[2] Lepetic, Marko, Gregor Klancar, Igor Skrjanc, Drago Matko, and Bostjan Potocnik. "Time Optimal
Path Planning Considering Acceleration Limits." Robotics and Autonomous Systems. Vol. 45,
Numbers 3–4, 2003, pp. 199–210.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Functions
smoothPathSpline

Blocks
Lateral Controller Stanley | Longitudinal Controller Stanley | Velocity Profiler

Introduced in R2019a
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Radar Detection Generator
Create detection objects from radar measurements
Library: Automated Driving Toolbox / Driving Scenario and Sensor

Modeling

Description
The Radar Detection Generator block generates detections from radar measurements taken by a
radar sensor mounted on an ego vehicle. Detections are derived from simulated actor poses and are
generated at intervals equal to the sensor update interval. By default, detections are referenced to
the coordinate system of the ego vehicle. The generator can simulate real detections with added
random noise and also generate false alarm detections. A statistical model generates the
measurement noise, true detections, and false positives. The random numbers generated by the
statistical model are controlled by random number generator settings on the Measurements tab.
You can use the Radar Detection Generator to create input to a Multi-Object Tracker block. When
building scenarios and sensor models using the Driving Scenario Designer app, the radar sensors
exported to Simulink are output as Radar Detection Generator blocks.

Ports
Input

Actors — Scenario actor poses
Simulink bus containing MATLAB structure

Scenario actor poses in ego vehicle coordinates, specified as a Simulink bus containing a MATLAB
structure.

The structure must contain these fields.

Field Description Type
NumActors Number of actors Nonnegative integer
Time Current simulation time Real-valued scalar
Actors Actor poses NumActors-length array of

actor pose structures

Each actor pose structure in Actors must contain these fields.

Field Description
ActorID Scenario-defined actor identifier, specified as a

positive integer.
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Field Description
Position Position of actor, specified as a real-valued vector

of the form [x, y, z]. Units are in meters.
Velocity Velocity (v) of actor in the x-, y-, and z-direction,

specified as a real-valued vector of the form [vx,
vy, vz]. Units are in meters per second.

Roll Roll angle of actor, specified as a real-valued
scalar. Units are in degrees.

Pitch Pitch angle of actor, specified as a real-valued
scalar. Units are in degrees.

Yaw Yaw angle of actor, specified as a real-valued
scalar. Units are in degrees.

AngularVelocity Angular velocity (ω) of actor in the x-, y-, and z-
direction, specified as a real-valued vector of the
form [ωx, ωy, ωz]. Units are in degrees per second.

Output

Detections — Detections
Simulink bus containing MATLAB structure

Object detections, returned as a Simulink bus containing a MATLAB structure. For more details about
buses, see “Create Nonvirtual Buses” (Simulink).

You can pass object detections from these sensors and other sensors to a tracker, such as a Multi-
Object Tracker block, and generate tracks.

Field Description Type
NumDetections Number of detections integer
IsValidTime False when updates are

requested at times that are
between block invocation
intervals

Boolean

Detections Object detections Array of object detection
structures of length set by the
Maximum number of
reported detections
parameter. Only
NumDetections of these are
actual detections.

Each object detection structure contains these properties.

Property Definition
Time Measurement time
Measurement Object measurements
MeasurementNoise Measurement noise covariance matrix
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Property Definition
SensorIndex Unique ID of the sensor
ObjectClassID Object classification
ObjectAttributes Additional information passed to tracker
MeasurementParameters Parameters used by initialization functions of

nonlinear Kalman tracking filters

• For Cartesian coordinates, Measurement and MeasurementNoise are reported in the coordinate
system specified by the Coordinate system used to report detections parameter.

• For spherical coordinates, Measurement and MeasurementNoise are reported in the spherical
coordinate system based on the sensor Cartesian coordinate system.

Measurement and Measurement Noise

Coordinate System Used to Report
Detections

Measurement and Measurement Noise
Coordinates

'Ego Cartesian' Coordinate dependence on Enable range
rate measurements

Enable range rate
measurements

Coordinates

true [x;y;z;vx;vy;vz]
false [x;y;z]

'Sensor Cartesian'

'Sensor spherical' Coordinate dependence on Enable elevation
angle measurements and Enable range rate
measurements

Enable range
rate
measurement
s

Enable
elevation
angle
measurement
s

Coordinates

true true [az;el;rng;
rr]

true false [az;rng;rr]
false true [az;el;rng]
false false [az;rng]
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MeasurementParameters

Parameter Definition
Frame Enumerated type indicating the frame used to

report measurements. When Frame is set to
'rectangular', detections are reported in
Cartesian coordinates. When Frame is set
'spherical', detections are reported in
spherical coordinates.

OriginPosition 3-D vector offset of the sensor origin from the ego
vehicle origin. The vector is derived from the
SensorLocation and Height properties
specified in the radarDetectionGenerator.

Orientation Orientation of the radar sensor coordinate system
with respect to the ego vehicle coordinate
system. The orientation is derived from the Yaw,
Pitch, and Roll properties of the
radarDetectionGenerator.

HasVelocity Indicates whether measurements contain velocity
or range rate components.

HasElevation Indicates whether measurements contain
elevation components.

The ObjectAttributes property of each detection is a structure with these fields.

Field Definition
TargetIndex Identifier of the actor, ActorID, that generated

the detection. For false alarms, this value is
negative.

SNR Signal-to-noise ratio of the detection. Units are in
dB.

Parameters
Parameters

Sensor Identification

Unique identifier of sensor — Unique sensor identifier
1 (default) | positive integer

Unique sensor identifier, specified as a positive integer. The sensor identifier distinguishes detections
that come from different sensors in a multisensor system. If a model contains multiple sensor blocks
with the same sensor identifier, the Bird's-Eye Scope displays an error.
Example: 5

Required interval between sensor updates (s) — Required time interval
0.1 (default) | positive real scalar
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Required time interval between sensor updates, specified as a positive real scalar. The value of this
parameter must be an integer multiple of the Actors input port data interval. Updates requested
from the sensor between update intervals contain no detections. Units are in seconds.

Sensor Extrinsics

Sensor's (x,y) position (m) — Location of the radar sensor center
[3.4 0] (default) | real-valued 1-by-2 vector

Location of the radar sensor center, specified as a real-valued 1-by-2 vector. The Sensor's (x,y)
position (m) and Sensor's height (m) parameters define the coordinates of the radar sensor with
respect to the ego vehicle coordinate system. The default value corresponds to a radar mounted at
the center of the front grill of a sedan. Units are in meters.

Sensor's height (m) — Radar sensor height above the ground plane
0.2 (default) | positive real scalar

Radar sensor height above the ground plane, specified as a positive real scalar. The height is defined
with respect to the vehicle ground plane. The Sensor's (x,y) position (m) and Sensor's height (m)
parameters define the coordinates of the radar sensor with respect to the ego vehicle coordinate
system. The default value corresponds to a radar mounted at the center of the front grill of a sedan.
Units are in meters.
Example: 0.25

Yaw angle of sensor mounted on ego vehicle (deg) — Yaw angle of sensor
0 (default) | real scalar

Yaw angle of radar sensor, specified as a real scalar. Yaw angle is the angle between the center line of
the ego vehicle and the downrange axis of the radar sensor. A positive yaw angle corresponds to a
clockwise rotation when looking in the positive direction of the z-axis of the ego vehicle coordinate
system. Units are in degrees.
Example: -4.0

Pitch angle of sensor mounted on ego vehicle (deg) — Pitch angle of sensor
0 (default) | real scalar

Pitch angle of sensor, specified as a real scalar. The pitch angle is the angle between the downrange
axis of the radar sensor and the x-y plane of the ego vehicle coordinate system. A positive pitch angle
corresponds to a clockwise rotation when looking in the positive direction of the y-axis of the ego
vehicle coordinate system. Units are in degrees.
Example: 3.0

Roll angle of sensor mounted on ego vehicle (deg) — Roll angle of sensor
0 (default) | real scalar

Roll angle of the radar sensor, specified as a real scalar. The roll angle is the angle of rotation of the
downrange axis of the radar around the x-axis of the ego vehicle coordinate system. A positive roll
angle corresponds to a clockwise rotation when looking in the positive direction of the x-axis of the
coordinate system. Units are in degrees.

Port Settings

Source of output bus name — Source of output bus name
Auto (default) | Property
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Source of output bus name, specified as Auto or Property. If you choose Auto, the block will
automatically create a bus name. If you choose Property, specify the bus name using the Specify
an output bus name parameter.
Example: Property

Specify an output bus name — Name of output bus
no default

Name of output bus.

Dependencies

To enable this parameter, set the Source of output bus name parameter to Property.

Detection Reporting

Maximum number of reported detections — Maximum number of reported detections
50 (default) | positive integer

Maximum number of detections reported by the sensor, specified as a positive integer. Detections are
reported in order of increasing distance from the sensor until the maximum number is reached.
Example: 100

Coordinate system used to report detections — Coordinate system of reported
detections
Ego Cartesian (default) | Sensor Cartesian | Sensor Spherical

Coordinate system of reported detections, specified as one of these values:

• Ego Cartesian — Detections are reported in the ego vehicle Cartesian coordinate system.
• Sensor Cartesian— Detections are reported in the sensor Cartesian coordinate system.
• Sensor spherical — Detections are reported in a spherical coordinate system. This coordinate

system is centered at the radar and aligned with the orientation of the radar on the ego vehicle.

Simulate using — Type of simulation to run
Interpreted execution (default) | Code generation

• Interpreted execution — Simulate the model using the MATLAB interpreter. This option
shortens startup time. In Interpreted execution mode, you can debug the source code of the
block.

• Code generation — Simulate the model using generated C/C++ code. The first time you run a
simulation, Simulink generates C/C++ code for the block. The C code is reused for subsequent
simulations as long as the model does not change. This option requires additional startup time.

Measurements

Accuracy Settings

Azimuthal resolution of radar (deg) — Azimuth resolution of radar
4.0 (default) | positive real scalar

Azimuth resolution of the radar, specified as a positive real scalar. The azimuth resolution defines the
minimum separation in azimuth angle at which the radar can distinguish two targets. The azimuth
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resolution is typically the 3dB-downpoint in azimuth angle beamwidth of the radar. Units are in
degrees.
Example: 6.5

Elevation resolution of radar (deg) — Elevation resolution of radar
10.0 (default) | positive real scalar

Elevation resolution of the radar, specified as a positive real scalar. The elevation resolution defines
the minimum separation in elevation angle at which the radar can distinguish two targets. The
elevation resolution is typically the 3dB-downpoint in elevation angle beamwidth of the radar. Units
are in degrees.
Example: 3.5

Dependencies

To enable this parameter, select the Enable elevation angle measurements check box.

Range resolution of radar (m) — Range resolution of radar
2.5 (default) | positive real scalar

Range resolution of the radar, specified as a positive real scalar. The range resolution defines the
minimum separation in range at which the radar can distinguish between two targets. Units are in
meters.
Example: 5.0

Range rate resolution of radar (m/s) — Range rate resolution of the radar
0.5 (default) | positive real scalar

Range rate resolution of the radar, specified as a positive real scalar. The range rate resolution
defines the minimum separation in range rate at which the radar can distinguish between two
targets. Units are in meters per second.
Example: 0.75

Dependencies

To enable this parameter, select the Enable range rate measurements check box.

Bias Settings

Fractional azimuthal bias component of radar — Azimuth bias fraction
0.1 (default) | nonnegative real scalar

Azimuth bias fraction of the radar, specified as a nonnegative real scalar. The azimuth bias is
expressed as a fraction of the azimuth resolution specified in the Azimuthal resolution of radar
(deg) parameter. Units are dimensionless.
Example: 0.3

Fractional elevation bias component of radar — Elevation bias fraction
0.1 (default) | nonnegative real scalar

Elevation bias fraction of the radar, specified as a nonnegative real scalar. The elevation bias is
expressed as a fraction of the elevation resolution specified in the Elevation resolution of radar
(deg) parameter. Units are dimensionless.
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Example: 0.2

Dependencies

To enable this parameter, select the Enable elevation angle measurements check box.

Fractional range bias component of radar — Range bias fraction
0.05 (default) | nonnegative real scalar

Range bias fraction of the radar, specified as a nonnegative real scalar. Range bias is expressed as a
fraction of the range resolution specified in the Range resolution of radar (m) parameter. Units are
dimensionless.
Example: 0.15

Fractional range rate bias component of radar — Range rate bias fraction of the
radar
0.05 (default) | nonnegative real scalar

Range rate bias fraction of the radar, specified as a nonnegative real scalar. Range rate bias is
expressed as a fraction of the range rate resolution specified in Range rate resolution of radar (m)
parameter. Units are dimensionless.
Example: 0.2

Dependencies

To enable this parameter, select the Enable range rate measurements check box.

Detector Settings

Total angular field of view for radar (deg) — Field of view of radar sensor
[20 5] (default) | real-valued 1-by-2 vector of positive values

Field of view of radar sensor, specified as a real-valued 1-by-2 vector of positive values, [azfov
elfov]. The field of view defines the angular extent spanned by the sensor. Each component must lie
in the interval (0,180]. Targets outside of the field of view of the radar are not detected. Units are in
degrees.
Example: [14 7]

Maximum detection range (m) — Maximum detection range
150 (default) | positive real scalar

Maximum detection range, specified as a positive real scalar. The radar cannot detect a target beyond
this range. Units are in meters.
Example: 250

Minimum and maximum range rates that can be reported — Minimum and maximum
detection range rates
[-100 100] (default) | real-valued 1-by-2 vector

Minimum and maximum detection range rates, specified as a real-valued 1-by-2 vector. The radar
cannot detect a target outside of this range rate interval. Units are in meters per second.
Example: [-200 200]
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Dependencies

To enable this parameter, select the Enable range rate measurements check box.

Detection probability — Probability of detecting a target
0.9 (default) | positive real scalar less than or equal to 1

Probability of detecting a target, specified as a positive real scalar less than or equal to one. This
quantity defines the probability of detecting target that has a radar cross-section specified by the
Radar cross section at which detection probability is achieved (dBsm) parameter at the
reference detection range specified by the Range where detection probability is achieved (m)
parameter.
Example: 0.95

Rate at which false alarms are reported — False alarm rate
1e-6 (default) | positive real scalar

False alarm rate within a radar resolution cell, specified as a positive real scalar in the range [10–7,
10–3]. Units are dimensionless.
Example: 1e-5

Range where detection probability is achieved (m): — Reference range for given
probability of detection
100 (default) | positive real scalar

Reference range for a given probability of detection, specified as a positive real scalar. The reference
range is the range when a target having a radar cross-section specified by Radar cross section at
which detection probability is achieved (dBsm) is detected with a probability of specified by
Detection probability. Units are in meters.
Example: 150

Radar cross section at which detection probability is achieved (dBsm) —
Reference radar cross-section for given probability of detection
0.0 (default) | nonnegative real scalar

Reference radar cross-section (RCS) for given probability of detection, specified as a nonnegative real
scalar. The reference RCS is the value at which a target is detected with probability specified by
Detection probability. Units are in dBsm.
Example: 2.0

Measurement Settings

Enable elevation angle measurements — Enable radar to measure elevation
off (default) | on

Select this check box to model a radar that can measure target elevation angles.

Enable range rate measurements — Enable radar to measure range rate
on (default) | off | on

Select this check box to model a radar that can measure target range rate.
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Add noise to measurements — Enable adding noise to radar sensor measurements
on (default) | off

Select this check box to add noise to radar sensor measurements. Otherwise, the measurements are
noise-free. The MeasurementNoise property of each detection is always computed and is not
affected by the value you specify for the Add noise to measurements parameter. By leaving this
check box off, you can pass the sensor's ground truth measurements into a Multi-Object Tracker
block.

Enable false detections — Enable creating false alarm radar detections
on (default) | off

Select this check box to enable reporting false alarm radar measurements. Otherwise, only actual
detections are reported.

Random Number Generator Settings

Select method to specify initial seed — Method to specify random number generator
seed
Repeatable (default) | Specify seed | Not repeatable

Method to set the random number generator seed, specified as one of the options in the table.

Option Description
Repeatable The block generates a random initial seed for the

first simulation and reuses this seed for all
subsequent simulations. Select this parameter to
generate repeatable results from the statistical
sensor model. To change this initial seed, at the
MATLAB command prompt, enter: clear all.

Specify seed Specify your own random initial seed for
reproducible results by using the Specify seed
parameter.

Not repeatable The block generates a new random initial seed
after each simulation run. Select this parameter
to generate nonrepeatable results from the
statistical sensor model.

Initial seed — Random number generator seed
0 (default) | nonnegative integer less than 232

Random number generator seed, specified as a nonnegative integer less than 232.
Example: 2001

Dependencies

To enable this parameter, set the Random Number Generator Settings parameter to Specify
seed.

Actor Profiles

Select method to specify actor profiles — Method to specify actor profiles
Parameters (default) | MATLAB expression
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Method to specify actor profiles, specified as Parameters or MATLAB expression. When you select
Parameters, you set the actor profiles using the parameters in the Actor Profiles tab. When you
select MATLAB expression, set the actor profiles using the MATLAB expression for actor
profiles parameter.

MATLAB expression for actor profiles — MATLAB expression for actor profiles
struct('ClassID',0,'Length',4.7,'Width',1.8,'Height',1.4,'OriginOffset',
[-1.35,0,0]) (default) | MATLAB structure | MATLAB structure array | valid MATLAB expression

MATLAB expression for actor profiles, specified as a MATLAB structure, a MATLAB structure array,
or a valid MATLAB expression that produces such a structure or structure array.

If your Scenario Reader block reads data from a drivingScenario object, to obtain the actor
profiles directly from this object, set this expression to call the actorProfiles function on the
object. For example: actorProfiles(scenario).
Example: struct('ClassID',5,'Length',5.0,'Width',2,'Height',2,'OriginOffset',
[-1.55,0,0])

Dependencies

To enable this parameter, set the Select method to specify actor profiles parameter to MATLAB
expression.

Unique identifier for actors — Scenario-defined actor identifier
[] (default) | positive integer | length-L vector of unique positive integers

Scenario-defined actor identifier, specified as a positive integer or length-L vector of unique positive
integers. L must equal the number of actors input into the Actor input port. The vector elements
must match ActorID values of the actors. You can specify Unique identifier for actors as []. In
this case, the same actor profile parameters apply to all actors.
Example: [1,2]

Dependencies

To enable this parameter, set the Select method to specify actor profiles parameter to
Parameters.

User-defined integer to classify actors — User-defined classification identifier
0 (default) | integer | length-L vector of integers

User-defined classification identifier, specified as an integer or length-L vector of integers. When
Unique identifier for actors is a vector, this parameter is a vector of the same length with elements
in one-to-one correspondence to the actors in Unique identifier for actors. When Unique
identifier for actors is empty, [], you must specify this parameter as a single integer whose value
applies to all actors.
Example: 2

Dependencies

To enable this parameter, set the Select method to specify actor profiles parameter to
Parameters.

Length of actors cuboids (m) — Length of cuboid
4.7 (default) | positive real scalar | length-L vector of positive values
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Length of cuboid, specified as a positive real scalar or length-L vector of positive values. When
Unique identifier for actors is a vector, this parameter is a vector of the same length with elements
in one-to-one correspondence to the actors in Unique identifier for actors. When Unique
identifier for actors is empty, [], you must specify this parameter as a positive real scalar whose
value applies to all actors. Units are in meters.
Example: 6.3

Dependencies

To enable this parameter, set the Select method to specify actor profiles parameter to
Parameters.

Width of actors cuboids (m) — Width of cuboid
4.7 (default) | positive real scalar | length-L vector of positive values

Width of cuboid, specified as a positive real scalar or length-L vector of positive values. When Unique
identifier for actors is a vector, this parameter is a vector of the same length with elements in one-
to-one correspondence to the actors in Unique identifier for actors. When Unique identifier for
actors is empty, [], you must specify this parameter as a positive real scalar whose value applies to
all actors. Units are in meters.
Example: 4.7

Dependencies

To enable this parameter, set the Select method to specify actor profiles parameter to
Parameters.

Height of actors cuboids (m) — Height of cuboid
4.7 (default) | positive real scalar | length-L vector of positive values

Height of cuboid, specified as a positive real scalar or length-L vector of positive values. When
Unique identifier for actors is a vector, this parameter is a vector of the same length with elements
in one-to-one correspondence to the actors in Unique identifier for actors. When Unique
identifier for actors is empty, [], you must specify this parameter as a positive real scalar whose
value applies to all actors. Units are in meters.
Example: 2.0

Dependencies

To enable this parameter, set the Select method to specify actor profiles parameter to
Parameters.

Rotational center of actors from bottom center (m) — Rotational center of the actor
{ [ -1.35, 0, 0 ] } (default) | length-L cell array of real-valued 1-by-3 vectors

Rotational center of the actor, specified as a length-L cell array of real-valued 1-by-3 vectors. Each
vector represents the offset of the rotational center of the actor from the bottom-center of the actor.
For vehicles, the offset corresponds to the point on the ground beneath the center of the rear axle.
When Unique identifier for actors is a vector, this parameter is a cell array of vectors with cells in
one-to-one correspondence to the actors in Unique identifier for actors. When Unique identifier
for actors is empty, [], you must specify this parameter as a cell array of one element containing the
offset vector whose values apply to all actors. Units are in meters.
Example: [ -1.35, .2, .3 ]
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Dependencies

To enable this parameter, set the Select method to specify actor profiles parameter to
Parameters.

Radar cross section pattern (dBsm) — Radar cross-section
{[10,10;10,10]} (default) | real-valued Q-by-P matrix | length-L cell array of real-valued Q-by-P
matrices

Radar cross-section (RCS) of actor, specified as a real-valued Q-by-P matrix or length-L cell array of
real-valued Q-by-P matrices. Q is the number of elevation angles specified by the corresponding cell
in the Elevation angles defining RCSPattern (deg) parameter. P is the number of azimuth angles
specified by the corresponding cell in Azimuth angles defining RCSPattern (deg) property. When
Unique identifier for actors is a vector, this parameter is a cell array of matrices with cells in one-
to-one correspondence to the actors in Unique identifier for actors. Q and P can vary in the cell
array. When Unique identifier for actors is empty, [], you must specify this parameter as a cell
array with one element containing a matrix whose values apply to all actors. Units are in dBsm.
Example: [10 14 10; 9 13 9]

Dependencies

To enable this parameter, set the Select method to specify actor profiles parameter to
Parameters.

Azimuth angles defining RCSPattern (deg) — Azimuth angles of radar cross-section
pattern
{[-180 180]} (default) | length-L cell array of real-valued P-length vectors

Azimuth angles of radar cross-section pattern, specified as a length-L cell array of real-valued P-
length vectors . Each vector represents the azimuth angles of the P-columns of the radar cross
section specified in Radar cross section pattern (dBsm). When Unique identifier for actors is a
vector, this parameter is a cell array of vectors with cells in one-to-one correspondence to the actors
in Unique identifier for actors. P can vary in the cell array. When Unique identifier for actors is
empty, [], you must specify this parameter as a cell array with one element containing a vector
whose values apply to all actors. Units are in degrees. Azimuth angles lie in the range -180° to 180°
and must be in strictly increasing order.

When the radar cross sections specified in the cells of Radar cross section pattern (dBsm) all have
the same dimensions, you need only specify a cell array with one element containing the azimuth
angle vector.
Example: [-90:90]

Dependencies

To enable this parameter, set the Select method to specify actor profiles parameter to
Parameters.

Elevation angles defining RCSPattern (deg) — Elevation angles of radar cross-section
pattern
{[-90 90]} (default) | length-L cell array of real-valued Q-length vectors

Elevation angles of radar cross-section pattern, specified as a length-L cell array of real-valued Q-
length vectors . Each vector represent the elevation angles of the Q-columns of the radar cross
section specified in Radar cross section pattern (dBsm). When Unique identifier for actors is a
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vector, this parameter is a cell array of vectors with cells in one-to-one correspondence to the actors
in Unique identifier for actors. Q can vary in the cell array. When Unique identifier for actors is
empty, [], you must specify this parameter as a cell array with one element containing a vector
whose values apply to all actors. Units are in degrees. Elevation angles lie in the range -90° to 90°
and must be in strictly increasing order.

When the radar cross sections that are specified in the cells of Radar cross section pattern
(dBsm) all have the same dimensions, you need only specify a cell array with one element containing
an elevation angle vector.
Example: [-25:25]

Dependencies

To enable this parameter, set the Select method to specify actor profiles parameter to
Parameters.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Apps
Bird's-Eye Scope

Blocks
Detection Concatenation | Lidar Point Cloud Generator | Multi-Object Tracker | Scenario Reader |
Vision Detection Generator

Objects
radarDetectionGenerator

Topics
“Create Nonvirtual Buses” (Simulink)

Introduced in R2017b
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Scenario Reader
Read driving scenario into model
Library: Automated Driving Toolbox / Driving Scenario and Sensor

Modeling

Description
The Scenario Reader block reads the roads and actors from a scenario file created using the Driving
Scenario Designer app or from a drivingScenario object. The block outputs the poses of actors
in either the coordinate system of the ego vehicle or the world coordinates of the scenario. You can
also output the lane boundaries or output the ego vehicle pose for use in the 3D simulation
environment.

To generate object and lane boundary detections from output actor poses and lane boundaries, pass
the pose and boundary outputs to sensor blocks. Use the synthetic detections generated from these
sensors to test the performance of sensor fusion algorithms, tracking algorithms, and other
automated driving assistance system (ADAS) algorithms. To visualize the performance of these
algorithms, use the Bird's-Eye Scope.

You can read the ego vehicle from the scenario or specify an ego vehicle defined in your model as an
input to the Scenario Reader block. Use this option to test closed-loop vehicle controller algorithms,
such as autonomous emergency braking (AEB), lane keeping assist (LKA), or adaptive cruise control
(ACC).

Limitations
• The Scenario Reader block does not read sensor data from scenario files saved from the Driving

Scenario Designer app. To reproduce sensors in Simulink, in the app, open the scenario file that
contains the sensors. Then, from the app toolstrip, select Export > Export Sensor Simulink
Model. Copy the generated sensor blocks into an existing model. Alternatively, select Export >
Export Simulink Model and start a new model from the generated Scenario Reader block and
sensor blocks.

• Large road networks, including OpenDRIVE road networks, can take up to several minutes to read
into models.

Ports
Input

Ego Vehicle — Ego vehicle pose
Simulink bus containing MATLAB structure

Ego vehicle pose, specified as a Simulink bus containing a MATLAB structure.

The structure must have these fields.
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Field Description
ActorID Scenario-defined actor identifier, specified as a

positive integer.
Position Position of actor, specified as a real-valued vector

of the form [x, y, z]. Units are in meters.
Velocity Velocity (v) of actor in the x-, y-, and z-direction,

specified as a real-valued vector of the form [vx,
vy, vz]. Units are in meters per second.

Roll Roll angle of actor, specified as a real-valued
scalar. Units are in degrees.

Pitch Pitch angle of actor, specified as a real-valued
scalar. Units are in degrees.

Yaw Yaw angle of actor, specified as a real-valued
scalar. Units are in degrees.

AngularVelocity Angular velocity (ω) of actor in the x-, y-, and z-
direction, specified as a real-valued vector of the
form [ωx, ωy, ωz]. Units are in degrees per second.

Output the ego vehicle pose when you are converting actors from ego vehicle coordinates to world
coordinates for use in the 3D simulation environment. For example, see “Visualize Sensor Data from
Unreal Engine Simulation Environment”.

Dependencies

To enable this port, set these parameters in this order:

1 Set Coordinate system of actors output to Vehicle coordinates.
2 Set Source of ego vehicle to Input port.

Output

Actors — Scenario actor poses
Simulink bus containing MATLAB structure

Scenario actor poses, returned as a Simulink bus containing a MATLAB structure.

The structure has these fields.

Field Description Type
NumActors Number of actors Nonnegative integer
Time Current simulation time Real-valued scalar
Actors Actor poses NumActors-length array of

actor pose structures

Each actor pose structure in Actors has these fields.

Field Description
ActorID Scenario-defined actor identifier, specified as a

positive integer.
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Field Description
Position Position of actor, specified as a real-valued vector

of the form [x, y, z]. Units are in meters.
Velocity Velocity (v) of actor in the x-, y-, and z-direction,

specified as a real-valued vector of the form [vx,
vy, vz]. Units are in meters per second.

Roll Roll angle of actor, specified as a real-valued
scalar. Units are in degrees.

Pitch Pitch angle of actor, specified as a real-valued
scalar. Units are in degrees.

Yaw Yaw angle of actor, specified as a real-valued
scalar. Units are in degrees.

AngularVelocity Angular velocity (ω) of actor in the x-, y-, and z-
direction, specified as a real-valued vector of the
form [ωx, ωy, ωz]. Units are in degrees per second.

The pose of the ego vehicle is excluded from the Actors array.

To return actor poses from the block, you must run the entire driving scenario simulation to
completion.

Lane Boundaries — Scenario lane boundaries
Simulink bus containing MATLAB structure

Scenario lane boundaries, returned as a Simulink bus containing a MATLAB structure.

The structure has these fields.

Field Description Type
NumLaneBoundaries Number of lane boundaries Nonnegative integer
Time Current simulation time Real scalar
LaneBoundaries Lane boundaries NumLaneBoundaries-length

array of lane boundary
structures

Each lane boundary structure in LaneBoundaries has these fields.

Field Description
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Coordinates Lane boundary coordinates, specified as a real-
valued N-by-3 matrix, where N is the number of
lane boundary coordinates. Lane boundary
coordinates define the position of points on the
boundary at specified longitudinal distances away
from the ego vehicle, along the center of the
road.

• In MATLAB, specify these distances by using
the 'XDistance' name-value pair argument
of the laneBoundaries function.

• In Simulink, specify these distances by using
the Distances from ego vehicle for
computing boundaries (m) parameter of
the Scenario Reader block or the Distance
from parent for computing lane
boundaries parameter of the Simulation 3D
Vision Detection Generator block.

This matrix also includes the boundary
coordinates at zero distance from the ego vehicle.
These coordinates are to the left and right of the
ego-vehicle origin, which is located under the
center of the rear axle. Units are in meters.

Curvature Lane boundary curvature at each row of the
Coordinates matrix, specified as a real-valued
N-by-1 vector. N is the number of lane boundary
coordinates. Units are in radians per meter.

CurvatureDerivative Derivative of lane boundary curvature at each
row of the Coordinates matrix, specified as a
real-valued N-by-1 vector. N is the number of lane
boundary coordinates. Units are in radians per
square meter.

HeadingAngle Initial lane boundary heading angle, specified as
a real scalar. The heading angle of the lane
boundary is relative to the ego vehicle heading.
Units are in degrees.

LateralOffset Distance of the lane boundary from the ego
vehicle position, specified as a real scalar. An
offset to a lane boundary to the left of the ego
vehicle is positive. An offset to the right of the
ego vehicle is negative. Units are in meters.
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BoundaryType Type of lane boundary marking, specified as one
of these values:

• 'Unmarked' — No physical lane marker
exists

• 'Solid' — Single unbroken line
• 'Dashed' — Single line of dashed lane

markers
• 'DoubleSolid' — Two unbroken lines
• 'DoubleDashed' — Two dashed lines
• 'SolidDashed' — Solid line on the left and a

dashed line on the right
• 'DashedSolid' — Dashed line on the left

and a solid line on the right
Strength Saturation strength of the lane boundary

marking, specified as a real scalar from 0 to 1. A
value of 0 corresponds to a marking whose color
is fully unsaturated. The marking is gray. A value
of 1 corresponds to a marking whose color is fully
saturated.

Width Lane boundary width, specified as a positive real
scalar. In a double-line lane marker, the same
width is used for both lines and for the space
between lines. Units are in meters.

Length Length of dash in dashed lines, specified as a
positive real scalar. In a double-line lane marker,
the same length is used for both lines.

Space Length of space between dashes in dashed lines,
specified as a positive real scalar. In a dashed
double-line lane marker, the same space is used
for both lines.

The number of returned lane boundary structures depends on the Lane boundaries to output
parameter value.

Dependencies

To enable this port, set these parameters in this order:

1 Set Coordinate system of actors output to Vehicle coordinates.
2 Set Lane boundaries to output to Ego lane boundaries or All lane boundaries.

Ego Vehicle — Ego vehicle pose
Simulink bus containing MATLAB structure

Ego vehicle pose, returned as a Simulink bus containing a MATLAB structure.

The structure must contain these fields.
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Field Description
ActorID Scenario-defined actor identifier, specified as a

positive integer.
Position Position of actor, specified as a real-valued vector

of the form [x, y, z]. Units are in meters.
Velocity Velocity (v) of actor in the x-, y-, and z-direction,

specified as a real-valued vector of the form [vx,
vy, vz]. Units are in meters per second.

Roll Roll angle of actor, specified as a real-valued
scalar. Units are in degrees.

Pitch Pitch angle of actor, specified as a real-valued
scalar. Units are in degrees.

Yaw Yaw angle of actor, specified as a real-valued
scalar. Units are in degrees.

AngularVelocity Angular velocity (ω) of actor in the x-, y-, and z-
direction, specified as a real-valued vector of the
form [ωx, ωy, ωz]. Units are in degrees per second.

Dependencies

To enable this port, set these parameters in this order:

1 Set Coordinate system of actors output to Vehicle coordinates.
2 Set Source of ego vehicle to Scenario.
3 Select Output ego vehicle pose.

Parameters
Source of driving scenario — Source of driving scenario
From file (default) | From workspace

Source of driving scenario, specified as one of these options:

• From file — In the Driving Scenario Designer file name parameter, specify the name of a
scenario file that was saved from the Driving Scenario Designer app.

• From workspace — In the MATLAB or model workspace variable name parameter, specify
the name of a MATLAB or model workspace variable that contains a drivingScenario object.

Driving Scenario Designer file name — Scenario file name
EgoVehicleGoesStraight.mat (default) | scenario file on MATLAB search path | path to scenario
file

Scenario file name, specified as a scenario file on the MATLAB search path or as the full path to a
scenario file. A scenario file must be a MAT-file saved from the Driving Scenario Designer app. If
the Source of ego vehicle parameter is set to Scenario, then the scenario must contain an ego
vehicle. Otherwise, the block returns an error during simulation.

If the specified scenario file contains sensors, the block ignores them. To include sensors from the
scenario in your model, see “Tips” on page 2-83.
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The default scenario file shows an ego vehicle traveling north on a straight, two-lane road, with
another vehicle traveling south in the opposite lane.

To add a scenario file to the MATLAB search path, use the addpath function. For example, this code
adds the set of folders containing prebuilt Euro NCAP scenarios to the MATLAB search path.

path = fullfile(matlabroot,'toolbox','driving','drivingdata', ...
    'PrebuiltScenarios','EuroNCAP');
addpath(genpath(path))

In the Driving Scenario Designer file name parameter, you can then specify the name of any
scenario located in these folders, without having to specify the full file path. For example:
AEB_PedestrianChild_Nearside_50width.mat.

When you are done using the scenario in your models, you can remove any added folders from the
MATLAB search path by using the rmpath function.

rmpath(genpath(path))

Dependencies

To enable this parameter, set Source of driving scenario to From file.

MATLAB or model workspace variable name — Scenario variable name
scenario (default) | drivingScenario object variable name

Scenario variable name, specified as the name of a MATLAB or model workspace variable that
contains a valid drivingScenario object. If a scenario variable with the same name appears in both
the MATLAB and model workspace, the block uses the variable defined in the model workspace.

If the Source of ego vehicle parameter is set to Scenario, then the drivingScenario object
must contain an ego vehicle. To designate which actor in the object is the ego vehicle, in the Ego
vehicle ActorID parameter, specify the ActorID property value of that actor.

When connecting the Actors output port to Radar Detection Generator and Vision Detection
Generator blocks, update these blocks to obtain the actor profiles directly from the
drivingScenario object. On the Actor Profiles tab of each block, set the Select method to
specify actor profiles parameter to MATLAB expression. Then, set the MATLAB expression for
actor profiles parameter to call the actorProfiles function on the object. For example:
actorProfiles(scenario).

When connecting the Actors output port to Lidar Point Cloud Generator blocks, leave the Source of
actor profiles parameter in these blocks set to the default From Scenario Reader block. With
this option selected, the lidar sensors obtain the actor profiles directly from the scenario read by the
Scenario Reader block.

The default variable name, scenario, is the default name of drivingScenario objects produced by
the MATLAB functions that are exported from the Driving Scenario Designer app. By default, this
variable is not included in the MATLAB or model workspace.

Dependencies

To enable this parameter, set Source of driving scenario to From workspace.

Coordinate system of actors output — Coordinate system of actors output
Vehicle coordinates (default) | World coordinates
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Coordinate system of the output actors, specified as one of these values:

• Vehicle coordinates — Coordinates are defined with respect to the ego vehicle. Select this
value when your scenario has only one ego vehicle.

• World coordinates — Coordinates are defined with respect to the driving scenario. Select this
value in multi-agent scenarios that contain more than one ego vehicle. If you select this value,
model visualization using the Bird's-Eye Scope is not supported.

For more details on the vehicle and world coordinate systems, see “Coordinate Systems in Automated
Driving Toolbox”.

Source of ego vehicle — Source of ego vehicle
Scenario (default) | Input port

Source of ego vehicle, specified as one of these options:

• Scenario — Use the ego vehicle defined in the scenario that is specified by the Driving
Scenario Designer file name or MATLAB or model workspace variable name parameter. The
pose of the ego vehicle is excluded from the Actors output port. Actor positions are in vehicle
coordinates, meaning that they are relative to the world coordinate position of the ego vehicle in
the scenario.

Select this option to test open-loop ADAS algorithms, where the ego vehicle behavior is predefined
and does not change as the scenario advances. For an example, see “Test Open-Loop ADAS
Algorithm Using Driving Scenario”.

• Input port — Specify the ego vehicle by using the Ego Vehicle input port. The pose of the ego
vehicle is not included in the Actors output port.

With this option, the ego vehicle in your model must include a starting position that is in world
coordinates. All other actor poses are in vehicle coordinates and are positioned relative to the ego
vehicle. For an example of an ego vehicle with defined position information, see “Lane Keeping
Assist with Lane Detection”. When defining the starting position of the ego vehicle, consider using
the position that is already defined in the scenario. By using this position, if you set Source of
ego vehicle to Scenario and then back to Input port, you do not have to manually change the
starting position.

Select this option to test closed-loop ADAS algorithms, where the ego vehicle reacts to changes as
the scenario advances. For an example, see “Test Closed-Loop ADAS Algorithm Using Driving
Scenario”.

Dependencies

To enable this parameter, set Coordinate system of actors output to Vehicle coordinates.

Ego vehicle ActorID — Actor ID of ego vehicle
1 (default) | positive integer

Actor ID of ego vehicle, specified as a positive integer. Use this parameter to simulate using the ego
vehicle that is read from a drivingScenario object.

• When Source of ego vehicle is set to Scenario, set this parameter to an ActorID value that is
stored in the Actors property of the specified drivingScenario object. To check valid ActorID
values, use this syntax, where scenario is the name of the drivingScenario variable name.

actorIDs = [scenario.Actors.ActorID]
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• When Source of ego vehicle is set to Input Port, you must set this parameter to the ActorID
value at the Ego Vehicle input port of the block.

Dependencies

To enable this parameter, set these parameters in this order:

1 Set Source of driving scenario to From workspace.
2 Set Coordinate system of actors output to Vehicle coordinates.

Output ego vehicle pose — Output pose of ego vehicle
off (default) | on

Select this parameter to output the pose of the ego vehicle at the Ego Vehicle port.

Dependencies

To enable this parameter, set Coordinate system of actors output to Vehicle coordinates and
Source of ego vehicle to Scenario.

Ego vehicle follows ground — Orient ego vehicle to follow road surface
off (default) | on

Select this parameter to orient the ego vehicle to follow the elevation of the road surface. The block
updates the elevation, roll, pitch, and yaw of the ego vehicle and outputs actors and lane boundaries
relative to the updated ego vehicle coordinates. The block does not update the velocity or angular
velocity of the ego vehicle.

Use this parameter in closed-loop simulations where the elevation of the road network varies.

Note At the junctions of roads that have different elevations and banking angles, the updated ego
vehicle values might not be accurate.

In open-loop simulations, where Source of ego vehicle is set to Scenario, the ego vehicle follows
the elevation specified in the driving scenario.

Dependencies

To enable this parameter, set Coordinate system of actors output to Vehicle coordinates and
Source of ego vehicle to Input port.

Sample time (s) — Sample time of simulation
0.1 (default) | positive real scalar

Sample time of simulation, in seconds, specified as a positive real scalar. Inherited and continuous
sample times are not supported. This sample time is separate from the sample times that the Driving
Scenario Designer app and drivingScenario object use for simulations.

Lane boundaries to output — Lane boundaries to output
None (default) | Ego vehicle lane boundaries | All lane boundaries

Lane boundaries to output, specified as one of these options:

• None — Do not output any lane boundaries.
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• Ego vehicle lane boundaries — Output the left and right lane boundaries of the ego vehicle.
• All lane boundaries — Output all lane boundaries of the road on which the ego vehicle is

traveling.

If you select Ego vehicle lane boundaries or All lane boundaries, then the block returns
the lane boundaries in the Lane Boundaries output port.

Dependencies

To enable this parameter, set Coordinate system of actors output to Vehicle coordinates.

Distances from ego vehicle for computing boundaries (m) — Distances from ego
vehicle at which to compute lane boundaries
linspace(-150,150,101) (default) | N-element real-valued vector

Distances from the ego vehicle at which to compute the lane boundaries, specified as an N-element
real-valued vector. N is the number of distance values. When detecting lanes from rear-facing
cameras, specify negative distances. When detecting lanes from front-facing cameras, specify positive
distances. Units are in meters.

By default, the block computes 101 lane boundaries over the range from 150 meters behind the ego
vehicle to 150 meters ahead of the ego vehicle. These distances are linearly spaced 3 meters apart.
Example: 1:0.1:10 computes a lane boundary every 0.1 meters over the range from 1 to 10 meters
ahead of the ego vehicle.

Dependencies

To enable this parameter, set Lane boundaries to output to Ego vehicle lane boundaries or
All lane boundaries.

Location of boundaries on lane markings — Lane boundary location
Center of lane markings (default) | Inner edge of lane markings

Lane boundary location on the lane markings, specified as one of the options in this table.

Lane Boundary Location Description Example
Center of lane markings Lane boundaries are centered

on the lane markings.
A three-lane road has four lane
boundaries: one per lane
marking.
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Lane Boundary Location Description Example
Inner edge of lane
markings

Lane boundaries are placed at
the inner edges of the lane
markings.

A three-lane road has six lane
boundaries: two per lane.

Dependencies

To enable this parameter, set Lane boundaries to output to Ego vehicle lane boundaries or
All lane boundaries.

Source of actors bus name — Source of name for actor poses bus
Auto (default) | Property

Source of the name for the actor poses bus returned in the Actors output port, specified as one of
these options:

• Auto — The block automatically creates an actor poses bus name.
• Property — Specify the actor poses bus name by using the Actors bus name parameter.

Actors bus name — Name of actor poses bus
valid bus name

Name of the actor poses bus returned in the Actors output port, specified as a valid bus name.

Dependencies

To enable this parameter, set Source of actors bus name to Property.

Source of lane boundaries bus name — Source of name for lane boundaries bus
Auto (default) | Property

Source of the name for the lane boundaries bus returned in the Lane Boundaries output port,
specified as one of these options:

• Auto — The block automatically creates a lane boundaries bus name.
• Property — Specify the lane boundaries bus name by using the Lane boundaries bus name

parameter.

Dependencies

To enable this parameter, set Lane boundaries to output to Ego vehicle lane boundaries or
All lane boundaries.

Lane boundaries bus name — Name of lane boundaries bus
valid bus name
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Name of the lane boundaries bus returned in the Lane Boundaries output port, specified as a valid
bus name.

Dependencies

To enable this parameter:

1 Set Lane boundaries to output to Ego vehicle lane boundaries or All lane
boundaries.

2 Set Source of lane boundaries bus name to Property.

Source of ego vehicle bus name — Source of name for ego vehicle pose bus
Auto (default) | Property

Source of the name for the ego vehicle pose bus returned in the Ego Vehicle output port, specified as
one of these options:

• Auto — The block automatically creates an ego vehicle pose bus name.
• Property — Specify the ego vehicle pose bus name by using the Ego vehicle bus name

parameter.

Dependencies

To enable this parameter, select the Output ego vehicle pose parameter.

Ego vehicle bus name — Name of ego vehicle pose bus
valid bus name

Name of the ego vehicle pose bus returned in the Ego Vehicle output port, specified as a valid bus
name.

Dependencies

To enable this parameter, select the Output ego vehicle pose parameter and set Source of ego
vehicle bus name to Property.

Show coordinate labels — Display coordinate system of inputs and outputs
on (default) | off

Select this parameter to display the coordinate system of block inputs and outputs on the Scenario
Reader block in the block diagram.

• The Ego Vehicle input and output are always in world coordinates.
• The Lane Boundaries output is always in vehicle coordinates.
• You can return the Actors output in either vehicle or world coordinates, depending on the

Coordinate system of actors output parameter selection.

Simulate using — Type of simulation to run
Interpreted execution (default) | Code generation

• Interpreted execution — Simulate the model using the MATLAB interpreter. This option
shortens startup time. In Interpreted execution mode, you can debug the source code of the
block.
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• Code generation — Simulate the model using generated C/C++ code. The first time you run a
simulation, Simulink generates C/C++ code for the block. The C code is reused for subsequent
simulations as long as the model does not change. This option requires additional startup time.

Tips
• For best results, use only one active Scenario Reader block per model. To use multiple Scenario

Reader blocks in one model, switch between the blocks by specifying them in a variant subsystem.
• To test your algorithm on variations of a driving scenario, you can update the scenario between

simulations.

• If the source of the scenario is a scenario file, open the scenario file in the Driving Scenario
Designer app, update the parameters, and resave the file.

• If the source of the scenario is a drivingScenario object, update the object in the MATLAB
or model workspace. Alternatively, import the object into the app, modify the scenario in the
app, and then generate a new object from the app. For more details, see “Create Driving
Scenario Variations Programmatically”.

• To switch between scenarios with different parameter settings, you can use Simulink Test™
software. For an example, see “Automate Testing for Highway Lane Following”.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Usage notes and limitations:

• When a model is in rapid accelerator mode, the Scenario Reader block does not automatically
regenerate code based on changes made to the driving scenario between simulations. To
regenerate these changes, manually delete the Simulink project folder, slprj, that was generated
from the previous simulation. Then, rerun the simulation. Alternatively, either change modes or
disable code generation by setting the Simulate using parameter to Interpreted execution.

• The Driving Scenario Designer file name and MATLAB or model workspace variable name
parameters are character vectors. The limitations described in “Encoding of Characters in Code
Generation” (Simulink) apply to these parameters.

See Also
Apps
Bird's-Eye Scope | Driving Scenario Designer

Blocks
Cuboid To 3D Simulation | Detection Concatenation | Lidar Point Cloud Generator | Multi-Object
Tracker | Radar Detection Generator | Vehicle To World | Vision Detection Generator | World To
Vehicle

Topics
“Coordinate Systems in Automated Driving Toolbox”
“Create Nonvirtual Buses” (Simulink)
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Simulation 3D Scene Configuration
Scene configuration for 3D simulation environment
Library: Automated Driving Toolbox / Simulation 3D

Vehicle Dynamics Blockset / Vehicle Scenarios / Sim3D /
Sim3D Core

Description
The Simulation 3D Scene Configuration block implements a 3D simulation environment that is
rendered by using the Unreal Engine from Epic Games. Automated Driving Toolbox integrates the 3D
simulation environment with Simulink so that you can query the world around the vehicle and
virtually test perception, control, and planning algorithms.

You can simulate from a set of prebuilt scenes or from your own custom scenes. Scene customization
requires the Automated Driving Toolbox Interface for Unreal Engine 4 Projects support package. For
more details, see “Customize Unreal Engine Scenes for Automated Driving”.

Note The Simulation 3D Scene Configuration block must execute after blocks that send data to the
3D environment and before blocks that receive data from the 3D environment. To verify the execution
order of such blocks, right-click the blocks and select Properties. Then, on the General tab, confirm
these Priority settings:

• For blocks that send data to the 3D environment, such as Simulation 3D Vehicle with Ground
Following blocks, Priority must be set to -1. That way, these blocks prepare their data before the
3D environment receives it.

• For the Simulation 3D Scene Configuration block in your model, Priority must be set to 0.
• For blocks that receive data from the 3D environment, such as Simulation 3D Camera blocks,

Priority must be set to 1. That way, the 3D environment can prepare the data before these blocks
receive it.

For more information about execution order, see “How Unreal Engine Simulation for Automated
Driving Works”.

Parameters
Scene Selection

Scene source — Source of scene
Default Scenes (default) | Unreal Executable | Unreal Editor

Source of the scene in which to simulate, specified as one of the options in the table.
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Option Description
Default Scenes Simulate in one of the default, prebuilt scenes

specified in the Scene name parameter.
Unreal Executable Simulate in a scene that is part of an Unreal

Engine executable file. Specify the executable file
in the File name parameter. Specify the scene in
the Scene parameter.

Select this option to simulate in custom scenes
that have been packaged into an executable for
faster simulation.

Unreal Editor Simulate in a scene that is part of an Unreal
Engine project (.uproject) file and is open in
the Unreal® Editor. Specify the project file in the
Project parameter.

Select this option when developing custom
scenes. By clicking Open Unreal Editor, you can
co-simulate within Simulink and the Unreal
Editor and modify your scenes based on the
simulation results.

Scene name — Name of prebuilt 3D scene
Straight road (default) | Curved road | Parking lot | Double lane change | Open
surface | US city block | US highway | Virtual Mcity | Large parking lot

Name of the prebuilt 3D scene in which to simulate, specified as one of these options. For details
about a scene, see its listed corresponding reference page.

• Straight road — Straight Road
• Curved road — Curved Road
• Parking lot — Parking Lot
• Double lane change — Double Lane Change
• Open surface — Open Surface
• US city block — US City Block
• US highway — US Highway
• Virtual Mcity — Virtual Mcity
• Large parking lot — Large Parking Lot

The Automated Driving Toolbox Interface for Unreal Engine 4 Projects contains customizable versions
of these scenes. For details about customizing scenes, see “Customize Unreal Engine Scenes for
Automated Driving”.

Dependencies

To enable this parameter, set Scene source to Default Scenes.

File name — Name of Unreal Engine executable file
VehicleSimulation.exe (default) | valid executable file name
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Name of the Unreal Engine executable file, specified as a valid executable file name. You can either
browse for the file or specify the full path to the file, using backslashes. To specify a scene from this
file to simulate in, use the Scene parameter.

By default, File name is set to VehicleSimulation.exe, which is on the MATLAB search path.
Example: C:\Local\WindowsNoEditor\AutoVrtlEnv.exe
Dependencies

To enable this parameter, set Scene source to Unreal Executable.

Scene — Name of scene from executable file
/Game/Maps/HwStrght (default) | path to valid scene name

Name of a scene from the executable file specified by the File name parameter, specified as a path to
a valid scene name.

When you package scenes from an Unreal Engine project into an executable file, the Unreal Editor
saves the scenes to an internal folder within the executable file. This folder is located at the path /
Game/Maps. Therefore, you must prepend /Game/Maps to the scene name. You must specify this
path using forward slashes. For the file name, do not specify the .umap extension. For example, if the
scene from the executable in which you want to simulate is named myScene.umap, specify Scene
as /Game/Maps/myScene.

Alternatively, you can browse for the scene in the corresponding Unreal Engine project. These scenes
are typically saved to the Content/Maps subfolder of the project. This subfolder contains all the
scenes in your project. The scenes have the extension .umap. Select one of the scenes that you
packaged into the executable file specified by the File name parameter. Use backward slashes and
specify the .umap extension for the scene.

By default, Scene is set to /Game/Maps/HwStrght, which is a scene from the default
VehicleSimulation.exe executable file specified by the File name parameter. This scene
corresponds to the prebuilt Straight Road scene.
Example: /Game/Maps/scene1
Example: C:\Local\myProject\Content\Maps\scene1.umap
Dependencies

To enable this parameter, set Scene source to Unreal Executable.

Project — Name of Unreal Engine project file
valid project file name

Name of the Unreal Engine project file, specified as a valid project file name. You can either browse
for the file or specify the full path to the file, using backslashes. The file must contain no spaces. To
simulate scenes from this project in the Unreal Editor, click Open Unreal Editor. If you have an
Unreal Editor session open already, then this button is disabled.

To run the simulation, in Simulink, click Run. Before you click Play in the Unreal Editor, wait until
the Diagnostic Viewer window displays this confirmation message:
In the Simulation 3D Scene Configuration block, you set the scene source to 'Unreal Editor'.
In Unreal Editor, select 'Play' to view the scene.

This message confirms that Simulink has instantiated the scene actors, including the vehicles and
cameras, in the Unreal Engine 3D environment. If you click Play before the Diagnostic Viewer
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window displays this confirmation message, Simulink might not instantiate the actors in the Unreal
Editor.

Dependencies

To enable this parameter, set Scene source to Unreal Editor.

Scene Parameters

Scene view — Configure placement of virtual camera that displays scene
Scene Origin (default) | vehicle name

Configure the placement of the virtual camera that displays the scene during simulation.

• If your model contains no Simulation 3D Vehicle with Ground Following blocks, then during
simulation, you view the scene from a camera positioned at the scene origin.

• If your model contains at least one vehicle block, then by default, you view the scene from behind
the first vehicle that was placed in your model. To change the view to a different vehicle, set
Scene view to the name of that vehicle. The Scene view parameter list is populated with all the
Name parameter values of the vehicle blocks contained in your model.

If you add a Simulation 3D Scene Configuration block to your model before adding any vehicle blocks,
the virtual camera remains positioned at the scene. To reposition the camera to follow a vehicle,
update this parameter.

When Scene view is set to a vehicle name, during simulation, you can change the location of the
camera around the vehicle.

To smoothly change the camera views, use these key commands.

Key Camera View
1 Back left
2 Back
3 Back right
4 Left
5 Internal
6 Right
7 Front left
8 Front
9 Front right
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Key Camera View
0 Overhead View Animated GIF

For additional camera controls, use these key commands.

Key Camera Control
Tab Cycle the view between all vehicles in the scene.

View Animated GIF
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Key Camera Control
Mouse scroll wheel Control the camera distance from the vehicle.

View Animated GIF

L Toggle a camera lag effect on or off. When you enable the lag effect, the
camera view includes:

• Position lag, based on the vehicle translational acceleration
• Rotation lag, based on the vehicle rotational velocity

This lag enables improved visualization of overall vehicle acceleration and
rotation.

View Animated GIF
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Key Camera Control
F Toggle the free camera mode on or off. When you enable the free camera

mode, you can use the mouse to change the pitch and yaw of the camera.
This mode enables you to orbit the camera around the vehicle.

View Animated GIF

Sample time — Sample time of visualization engine
1/60 (default) | scalar greater than or equal to 0.01

Sample time, Ts, of the visualization engine, specified as a scalar greater than or equal to 0.01. Units
are in seconds.

The graphics frame rate of the visualization engine is the inverse of the sample time. For example, if
Sample time is 1/60, then the visualization engine solver tries to achieve a frame rate of 60 frames
per second. However, the real-time graphics frame rate is often lower due to factors such as graphics
card performance and model complexity.

By default, blocks that receive data from the visualization engine, such as Simulation 3D Camera
blocks, inherit this sample rate.

Display 3D simulation window — Unreal Engine visualization
on (default) | off

Select whether to run simulations in the 3D visualization environment without visualizing the results,
that is, in headless mode.

Consider running in headless mode in these cases:

• You want to run multiple 3D simulations in parallel to test models in different Unreal Engine
scenarios.

• You want to capture sensor data to analyze in MATLAB but do not need to watch the visualization.

Dependencies

To enable this parameter, set Scene source to Default Scenes or Unreal Executable.
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See Also
Simulation 3D Camera | Simulation 3D Fisheye Camera | Simulation 3D Lidar | Simulation 3D
Probabilistic Radar | Simulation 3D Vehicle with Ground Following | Simulation 3D Vision Detection
Generator

Topics
“Unreal Engine Simulation for Automated Driving”
“Unreal Engine Simulation Environment Requirements and Limitations”
“How Unreal Engine Simulation for Automated Driving Works”
“Customize Unreal Engine Scenes for Automated Driving”

Introduced in R2019b
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Simulation 3D Vehicle with Ground Following
Implement vehicle that follows ground in 3D environment
Library: Automated Driving Toolbox / Simulation 3D

Vehicle Dynamics Blockset / Vehicle Scenarios / Sim3D /
Sim3D Vehicle / Components

Description
The Simulation 3D Vehicle with Ground Following block implements a vehicle with four wheels in a
3D simulation environment. This environment is rendered using the Unreal Engine from Epic Games.
The block uses the input (X, Y) position and yaw angle of the vehicle to adjust the elevation, roll
angle, and pitch angle of the vehicle so that it follows the ground terrain. The block determines the
vehicle velocity and heading and adjusts the steering angle and rotation for each wheel. Use this
block for automated driving applications.

To use this block, ensure that the Simulation 3D Scene Configuration block is in your model. If you
set the Sample time parameter of the Simulation 3D Vehicle with Ground Following block to -1, the
block inherits the sample time specified in the Simulation 3D Scene Configuration block.

The block input uses the vehicle Z-up right-handed (RH) Cartesian coordinate system defined in SAE
J670 [1] and ISO 8855 [2]. The coordinate system is inertial and initially aligned with the vehicle
geometric center:

• The X-axis is along the longitudinal axis of the vehicle and points forward.
• The Y-axis is along the lateral axis of the vehicle and points to the left.
• The Z-axis points upward.

The yaw, pitch, and roll angles of the Z-axis, Y-axis, and X-axis, respectively, are positive in the
clockwise directions, when looking in the positive directions of these axes. Vehicles are placed in the
world coordinate system of the scenes. For more details, see “Coordinate Systems for Unreal Engine
Simulation in Automated Driving Toolbox”.

Note The Simulation 3D Vehicle with Ground Following block must execute before the Simulation 3D
Scene Configuration block. That way, the Simulation 3D Vehicle with Ground Following block
prepares the signal data before the Unreal Engine 3D visualization environment receives it. To check
the block execution order, right-click the blocks and select Properties. On the General tab, confirm
these Priority settings:

• Simulation 3D Scene Configuration — 0
• Simulation 3D Vehicle with Ground Following — -1

For more information about execution order, see “How Unreal Engine Simulation for Automated
Driving Works”.
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Limitations
• The Bird's-Eye Scope is unable to find ground truth signals, such as roads, lanes, and actors,

from the Simulation 3D Scene Configuration block.

Ports
Input

X — Longitudinal position of vehicle
scalar

Longitudinal position of the vehicle along the X-axis of the scene. X is in the inertial Z-up coordinate
system. Units are in meters.

The X value of the Initial position [X, Y, Z] (m) parameter must match the value of this port at the
start of simulation.

To specify multiple positions at port X along an entire vehicle path, first define a time series of X
waypoints in MATLAB. Then, feed these waypoints to X by using a From Workspace block. To learn
how to select and specify waypoints, see the “Select Waypoints for Unreal Engine Simulation”
example.

Y — Lateral position of vehicle
scalar

Lateral position of the vehicle along the Y-axis of the scene. Y is in the inertial Z-up coordinate
system. Units are in meters.

The Y value of the Initial position [X, Y, Z] (m) parameter must match the value of this port at the
start of simulation.

To specify multiple positions at port Y along an entire vehicle path, first define a time series of Y
waypoints in MATLAB. Then, feed these waypoints to Y by using a From Workspace block. To learn
how to select and specify waypoints, see the “Select Waypoints for Unreal Engine Simulation”
example.

Yaw — Yaw orientation angle of vehicle
scalar

Yaw orientation angle of the vehicle along the Z-axis of the scene. Yaw is in the Z-up coordinate
system. Units are in degrees.

The yaw value of the Initial rotation [Roll, Pitch, Yaw] (deg) parameter must match the value of
this port at the start of simulation.

To specify multiple orientation angles at port Yaw along an entire vehicle path, first define a time
series of yaw waypoints in MATLAB. Then, feed these waypoints to Yaw by using a From Workspace
block. To learn how to select and specify waypoints, see the “Select Waypoints for Unreal Engine
Simulation” example.

Output

Location — Location of vehicle
real-valued 1-by-3 vector
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(X, Y, Z) location of the vehicle in the scene, returned as a real-valued 1-by-3 vector. This location is
based on the vehicle origin, which is on the ground, at the geometric center of the vehicle. Location
values are in the inertial Z-up world coordinate system. Units are in meters.

Dependencies

To enable this port, on the Ground Truth tab, select Output location (m) and orientation (rad).
Data Types: double

Orientation — Orientation of vehicle
real-valued 1-by-3 vector

Yaw, pitch, and roll orientation angles of the vehicle about the Z-axis, Y-axis, and X-axes of the scene,
respectively, returned as a real-valued 1-by-3 vector. This orientation is based on the vehicle origin,
which is on the ground, at the geometric center of the vehicle. Orientation values are in the inertial
Z-up coordinate system. Units are in radians.

Dependencies

To enable this port, on the Ground Truth tab, select Output location (m) and orientation (rad).
Data Types: double

Parameters
Vehicle Parameters

Type — Type of vehicle
Muscle car (default) | Sedan | Sport utility vehicle | Small pickup truck | Hatchback |
Box truck

Select the type of vehicle. To obtain the dimensions of each vehicle type, see these reference pages:

• Muscle car — Muscle Car
• Sedan — Sedan
• Sport utility vehicle — Sport Utility Vehicle
• Small pickup truck — Small Pickup Truck
• Hatchback — Hatchback
• Box truck —Box Truck

Color — Color of vehicle
Red (default) | Orange | Yellow | Green | Blue | Black | White | Silver

Select the color of the vehicle.

Initial position [X, Y, Z] (m) — Initial vehicle position
[0, 0, 0] (default) | real-valued 1-by-3 vector

Initial vehicle position along the X-axis, Y-axis, and Z-axis of the scene. This position is in the inertial
Z-up coordinate system. Units are in meters.

Set the X and Y values of this parameter to match the X and Y input port values at the start of
simulation.
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Initial rotation [Roll, Pitch, Yaw] (deg) — Initial angle of vehicle rotation
[0, 0, 0] (default) | real-valued 1-by-3 vector

Initial angle of vehicle rotation. The angle of rotation is defined by the roll, pitch, and yaw of the
vehicle. Units are in degrees.

Set the yaw value of this parameter to match the Yaw input port value at the start of simulation.

Name — Name of vehicle
SimulinkVehicle1 (default) | vehicle name

Name of vehicle. By default, when you use the block in your model, the block sets the Name
parameter to SimulinkVehicleX. The value of X depends on the number of Simulation 3D Vehicle
with Ground Following blocks that you have in your model.

The vehicle name appears as a selection in the Parent name parameter of any Automated Driving
Toolbox Simulation 3D sensor blocks within the same model as the vehicle. With the Parent name
parameter, you can select the vehicle on which to mount the sensor.

Sample time — Sample time
-1 (default) | positive scalar

Sample time, Ts, in seconds. The graphics frame rate is the inverse of the sample time.

If you set the sample time to -1, the block uses the sample time specified in the Simulation 3D Scene
Configuration block.

Ground Truth

Output location (m) and orientation (rad) — Output location and orientation of
vehicle
off (default) | on

Select this parameter to output the location and orientation of the vehicle at the Location and
Orientation ports, respectively.

References
[1] Vehicle Dynamics Standards Committee. Vehicle Dynamics Terminology. SAE J670. Warrendale,

PA: Society of Automotive Engineers, 2008.

[2] Technical Committee. Road vehicles — Vehicle dynamics and road-holding ability — Vocabulary.
ISO 8855:2011. Geneva, Switzerland: International Organization for Standardization, 2011.

See Also
Simulation 3D Camera | Simulation 3D Fisheye Camera | Simulation 3D Lidar | Simulation 3D
Probabilistic Radar | Simulation 3D Scene Configuration | Simulation 3D Vision Detection Generator

Topics
“How Unreal Engine Simulation for Automated Driving Works”
“Coordinate Systems for Unreal Engine Simulation in Automated Driving Toolbox”

Introduced in R2019b
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Simulation 3D Camera
Camera sensor model with lens in 3D simulation environment
Library: Automated Driving Toolbox / Simulation 3D

Description
The Simulation 3D Camera block provides an interface to a camera with a lens in a 3D simulation
environment. This environment is rendered using the Unreal Engine from Epic Games. The sensor is
based on the ideal pinhole camera model, with a lens added to represent a full camera model,
including lens distortion. For more details, see “Algorithms” on page 2-108.

If you set Sample time to -1, the block uses the sample time specified in the Simulation 3D Scene
Configuration block. To use this sensor, you must include a Simulation 3D Scene Configuration block
in your model.

The block outputs images captured by the camera during simulation. You can use these images to
visualize and verify your driving algorithms. In addition, on the Ground Truth tab, you can select
options to output the ground truth data for developing depth estimation and semantic segmentation
algorithms. You can also output the location and orientation of the camera in the world coordinate
system of the scene. The image shows the block with all ports enabled.

The table summarizes the ports and how to enable them.
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Port Description Parameter for
Enabling Port

Sample
Visualization

Image Outputs an RGB image captured by
the camera

n/a

Depth Outputs a depth map with values
from 0 m to 1000 meters

Output depth

Labels Outputs a semantic segmentation
map of label IDs that correspond to
objects in the scene

Output semantic
segmentation

Location Outputs the location of the camera
in the world coordinate system

Output location
(m) and
orientation (rad)

n/a

Orientation Outputs the orientation of the
camera in the world coordinate
system

Output location
(m) and
orientation (rad)

n/a
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Note The Simulation 3D Scene Configuration block must execute before the Simulation 3D Camera
block. That way, the Unreal Engine 3D visualization environment prepares the data before the
Simulation 3D Camera block receives it. To check the block execution order, right-click the blocks and
select Properties. On the General tab, confirm these Priority settings:

• Simulation 3D Scene Configuration — 0
• Simulation 3D Camera — 1

For more information about execution order, see “How Unreal Engine Simulation for Automated
Driving Works”.

Ports
Output

Image — 3D output camera image
m-by-n-by-3 array of RGB triplet values

3D output camera image, returned as an m-by-n-by-3 array of RGB triplet values. m is the vertical
resolution of the image, and n is the horizontal resolution of the image.
Data Types: int8 | uint8

Depth — Object depth from 0 m to 1000 m
m-by-n array of object depths

Object depth for each pixel in the image, output as an m-by-n array. m is the vertical resolution of the
image, and n is the horizontal resolution of the image. Depth is in the range from 0 to 1000 meters.

Dependencies

To enable this port, on the Ground Truth tab, select Output depth.
Data Types: double

Labels — Label identifiers
m-by-n array of label identifiers

Label identifier for each pixel in the image, output as an m-by-n array. m is the vertical resolution of
the image, and n is the horizontal resolution of the image.

The table shows the object IDs used in the default scenes that are selectable from the Simulation 3D
Scene Configuration block. If you are using a custom scene, in the Unreal Editor, you can assign new
object types to unused IDs. If a scene contains an object that does not have an assigned ID, that
object is assigned an ID of 0. The detection of lane markings is not supported.

ID Type
0 None/default
1 Building
2 Not used
3 Other
4 Not used
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ID Type
5 Pole
6 Not used
7 Road
8 Sidewalk
9 Vegetation
10 Vehicle
11 Not used
12 Generic traffic sign
13 Stop sign
14 Yield sign
15 Speed limit sign
16 Weight limit sign
17-18 Not used
19 Left and right arrow warning sign
20 Left chevron warning sign
21 Right chevron warning sign
22 Not used
23 Right one-way sign
24 Not used
25 School bus only sign
26-38 Not used
39 Crosswalk sign
40 Not used
41 Traffic signal
42 Curve right warning sign
43 Curve left warning sign
44 Up right arrow warning sign
45-47 Not used
48 Railroad crossing sign
49 Street sign
50 Roundabout warning sign
51 Fire hydrant
52 Exit sign
53 Bike lane sign
54-56 Not used
57 Sky
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ID Type
58 Curb
59 Flyover ramp
60 Road guard rail
61-66 Not used
67 Deer
68-70 Not used
71 Barricade
72 Motorcycle
73-255 Not used

Dependencies

To enable this port, on the Ground Truth tab, select Output semantic segmentation.
Data Types: uint8

Location — Sensor location
real-valued 1-by-3 vector

Sensor location along the X-axis, Y-axis, and Z-axis of the scene. The Location values are in the world
coordinates of the scene. In this coordinate system, the Z-axis points up from the ground. Units are in
meters.

Dependencies

To enable this port, on the Ground Truth tab, select Output location (m) and orientation (rad).
Data Types: double

Orientation — Sensor orientation
real-valued 1-by-3 vector

Roll, pitch, and yaw sensor orientation about the X-axis, Y-axis, and Z-axis of the scene. The
Orientation values are in the world coordinates of the scene. These values are positive in the
clockwise direction when looking in the positive directions of these axes. Units are in radians.

Dependencies

To enable this port, on the Ground Truth tab, select Output location (m) and orientation (rad).
Data Types: double

Parameters
Mounting

Sensor identifier — Unique sensor identifier
1 (default) | positive integer

Unique sensor identifier, specified as a positive integer. In a multisensor system, the sensor identifier
distinguishes between sensors. When you add a new sensor block to your model, the Sensor
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identifier of that block is N + 1. N is the highest Sensor identifier value among existing sensor
blocks in the model.
Example: 2

Parent name — Name of parent to which sensor is mounted
Scene Origin (default) | vehicle name

Name of the parent to which the sensor is mounted, specified as Scene Origin or as the name of a
vehicle in your model. The vehicle names that you can select correspond to the Name parameters of
the Simulation 3D Vehicle with Ground Following blocks in your model. If you select Scene Origin,
the block places a sensor at the scene origin.
Example: SimulinkVehicle1

Mounting location — Sensor mounting location
Origin (default) | Front bumper | Rear bumper | Right mirror | Left mirror | Rearview
mirror | Hood center | Roof center

Sensor mounting location.

• When Parent name is Scene Origin, the block mounts the sensor to the origin of the scene.
You can set the Mounting location to Origin only. During simulation, the sensor remains
stationary.

• When Parent name is the name of a vehicle (for example, SimulinkVehicle1) the block mounts
the sensor to one of the predefined mounting locations described in the table. During simulation,
the sensor travels with the vehicle.

Vehicle Mounting Location Description Orientation Relative to
Vehicle Origin [Roll, Pitch,
Yaw] (deg)

Origin Forward-facing sensor mounted
to the vehicle origin, which is on
the ground, at the geometric
center of the vehicle (see
“Coordinate Systems for Unreal
Engine Simulation in Automated
Driving Toolbox”)

[0, 0, 0]
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Vehicle Mounting Location Description Orientation Relative to
Vehicle Origin [Roll, Pitch,
Yaw] (deg)

Front bumper Forward-facing sensor mounted
to the front bumper

[0, 0, 0]

Rear bumper Backward-facing sensor
mounted to the rear bumper

[0, 0, 180]

Right mirror Downward-facing sensor
mounted to the right side-view
mirror

[0, –90, 0]
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Vehicle Mounting Location Description Orientation Relative to
Vehicle Origin [Roll, Pitch,
Yaw] (deg)

Left mirror Downward-facing sensor
mounted to the left side-view
mirror

[0, –90, 0]

Rearview mirror Forward-facing sensor mounted
to the rearview mirror, inside
the vehicle

[0, 0, 0]

Hood center Forward-facing sensor mounted
to the center of the hood

[0, 0, 0]
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Vehicle Mounting Location Description Orientation Relative to
Vehicle Origin [Roll, Pitch,
Yaw] (deg)

Roof center Forward-facing sensor mounted
to the center of the roof

[0, 0, 0]

Roll, pitch, and yaw are clockwise-positive when looking in the positive direction of the X-axis, Y-axis,
and Z-axis, respectively. When looking at a vehicle from the top down, the yaw angle (that is, the
orientation angle) is counterclockwise-positive, because you are looking in the negative direction of
the axis.

The (X, Y, Z) mounting location of the sensor relative to the vehicle depends on the vehicle type. To
specify the vehicle type, use the Type parameter of the Simulation 3D Vehicle with Ground Following
block to which you are mounting the sensor. To obtain the (X, Y, Z) mounting locations for a vehicle
type, see the reference page for that vehicle.

To determine the location of the sensor in world coordinates, open the sensor block. Then, on the
Ground Truth tab, select Output location (m) and orientation (rad) and inspect the data from
the Location output port.

Specify offset — Specify offset from mounting location
off (default) | on

Select this parameter to specify an offset from the mounting location by using the Relative
translation [X, Y, Z] (m) and Relative rotation [Roll, Pitch, Yaw] (deg) parameters.

Relative translation [X, Y, Z] (m) — Translation offset relative to mounting location
[0, 0, 0] (default) | real-valued 1-by-3 vector

Translation offset relative to the mounting location of the sensor, specified as a real-valued 1-by-3
vector of the form [X, Y, Z]. Units are in meters.

If you mount the sensor to a vehicle by setting Parent name to the name of that vehicle, then X, Y,
and Z are in the vehicle coordinate system, where:

• The X-axis points forward from the vehicle.
• The Y-axis points to the left of the vehicle, as viewed when looking in the forward direction of the

vehicle.
• The Z-axis points up.
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The origin is the mounting location specified in the Mounting location parameter. This origin is
different from the vehicle origin, which is the geometric center of the vehicle.

If you mount the sensor to the scene origin by setting Parent name to Scene Origin, then X, Y,
and Z are in the world coordinates of the scene.

For more details about the vehicle and world coordinate systems, see “Coordinate Systems for Unreal
Engine Simulation in Automated Driving Toolbox”.
Example: [0,0,0.01]

Dependencies

To enable this parameter, select Specify offset.

Relative rotation [Roll, Pitch, Yaw] (deg) — Rotational offset relative to mounting
location
[0, 0, 0] (default) | real-valued 1-by-3 vector

Rotational offset relative to the mounting location of the sensor, specified as a real-valued 1-by-3
vector of the form [Roll, Pitch, Yaw] . Roll, pitch, and yaw are the angles of rotation about the X-, Y-,
and Z-axes, respectively. Units are in degrees.

If you mount the sensor to a vehicle by setting Parent name to the name of that vehicle, then X, Y,
and Z are in the vehicle coordinate system, where:

• The X-axis points forward from the vehicle.
• The Y-axis points to the left of the vehicle, as viewed when looking in the forward direction of the

vehicle.
• The Z-axis points up.
• Roll, pitch, and yaw are clockwise-positive when looking in the forward direction of the X-axis, Y-

axis, and Z-axis, respectively. If you view a scene from a 2D top-down perspective, then the yaw
angle (also called the orientation angle) is counterclockwise-positive because you are viewing the
scene in the negative direction of the Z-axis.

The origin is the mounting location specified in the Mounting location parameter. This origin is
different from the vehicle origin, which is the geometric center of the vehicle.

If you mount the sensor to the scene origin by setting Parent name to Scene Origin, then X, Y,
and Z are in the world coordinates of the scene.

For more details about the vehicle and world coordinate systems, see “Coordinate Systems for Unreal
Engine Simulation in Automated Driving Toolbox”.
Example: [0,0,10]

Dependencies

To enable this parameter, select Specify offset.

Sample time — Sample time
-1 (default) | positive scalar

Sample time of the block in seconds, specified as a positive scalar. The 3D simulation environment
frame rate is the inverse of the sample time.
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If you set the sample time to -1, the block inherits its sample time from the Simulation 3D Scene
Configuration block.

Parameters

These intrinsic camera parameters are equivalent to the properties of a cameraIntrinsics object.
To obtain the intrinsic parameters for your camera, use the Camera Calibrator app.

Focal length (pixels) — Focal length of camera
[1109, 1109] (default) | 1-by-2 positive integer vector

Focal length of the camera, specified as a 1-by-2 positive integer vector of the form [fx, fy]. Units are
in pixels.

fx = F × sx
fy = F × sy

where:

• F is the focal length in world units, typically millimeters.
• [sx, sy] are the number of pixels per world unit in the x and y direction, respectively.

This parameter is equivalent to the FocalLength property of a cameraIntrinsics object.

Optical center (pixels) — Optical center of camera
[640, 360] (default) | 1-by-2 positive integer vector

Optical center of the camera, specified as a 1-by-2 positive integer vector of the form [cx,cy]. Units
are in pixels.

This parameter is equivalent to the PrincipalPoint property of a cameraIntrinsics object.

Image size (pixels) — Image size produced by camera
[720, 1280] (default) | 1-by-2 positive integer vector

Image size produced by the camera, specified as a 1-by-2 positive integer vector of the form
[mrows,ncols]. Units are in pixels.

This parameter is equivalent to the ImageSize property of a cameraIntrinsics object.

Radial distortion coefficients — Radial distortion coefficients
[0, 0] (default) | real-valued 1-by-2 nonnegative vector | real-valued 1-by-3 nonnegative vector

Radial distortion coefficients, specified as a real-valued 1-by-2 or 1-by-3 nonnegative vector. Radial
distortion occurs when light rays bend more than the edges of a lens than they do at its optical
center. The distortion is greater when the lens is smaller. The block calculates the radial-distorted
location of a point. Units are dimensionless.

This parameter is equivalent to the RadialDistortion property of a cameraIntrinsics object.

Tangential distortion coefficients — Tangential distortion coefficients
[0, 0] (default) | real-valued 1-by-2 nonnegative vector

Tangential distortion coefficients, specified as a real-valued 1-by-2 nonnegative vector. Tangential
distortion occurs when the lens and the image plane are not parallel. The coordinates are expressed
in world units. Units are dimensionless.
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This parameter is equivalent to the TangentialDistortion property of a cameraIntrinsics
object.

Axis skew — Skew angle of camera axes
0 (default) | nonnegative scalar

Skew angle of the camera axes, specified as a nonnegative scalar. If the X-axis and Y-axis are exactly
perpendicular, then the skew must be 0. Units are dimensionless.

This parameter is equivalent to the Skew property of a cameraIntrinsics object.

Ground Truth

Output depth — Output depth map
off (default) | on

Select this parameter to output a depth map at the Depth port.

Output semantic segmentation — Output semantic segmentation map of label IDs
off (default) | on

Select this parameter to output a semantic segmentation map of label IDs at the Labels port.

Output location (m) and orientation (rad) — Output location and orientation of
sensor
off (default) | on

Select this parameter to output the location and orientation of the sensor at the Location and
Orientation ports, respectively.

Tips
• To visualize the camera images that are output by the Image port, use a Video Viewer or To Video

Display block.

To learn how to visualize the depth and semantic segmentation maps that are output by the Depth
and Labels ports, see the “Depth and Semantic Segmentation Visualization Using Unreal Engine
Simulation” example.

• Because the Unreal Engine can take a long time to start between simulations, consider logging
the signals that the sensors output. You can then use this data to develop perception algorithms in
MATLAB. See “Configure a Signal for Logging” (Simulink).

You can also save image data as a video by using a To Multimedia File block. For an example of
this setup, see “Design Lane Marker Detector Using Unreal Engine Simulation Environment”.

Algorithms
The block uses the camera model proposed by Jean-Yves Bouguet [1]. The model includes:

• The pinhole camera model [2]
• Lens distortion [3]
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The pinhole camera model does not account for lens distortion because an ideal pinhole camera does
not have a lens. To accurately represent a real camera, the full camera model used by the block
includes radial and tangential lens distortion.

For more details, see “What Is Camera Calibration?” (Computer Vision Toolbox)

References
[1] Bouguet, J. Y. Camera Calibration Toolbox for Matlab. http://www.vision.caltech.edu/bouguetj/

calib_doc

[2] Zhang, Z. "A Flexible New Technique for Camera Calibration." IEEE Transactions on Pattern
Analysis and Machine Intelligence. Vol. 22, No. 11, 2000, pp. 1330–1334.

[3] Heikkila, J., and O. Silven. “A Four-step Camera Calibration Procedure with Implicit Image
Correction.” IEEE International Conference on Computer Vision and Pattern Recognition.
1997.
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Simulation 3D Fisheye Camera
Fisheye camera sensor model in 3D simulation environment
Library: Automated Driving Toolbox / Simulation 3D

Description
The Simulation 3D Fisheye Camera block provides an interface to a camera with a fisheye lens in a
3D simulation environment. This environment is rendered using the Unreal Engine from Epic Games.
The sensor is based on the fisheye camera model proposed by Scaramuzza [1] on page 2-117. The
block outputs an image with the specified camera distortion and size. You can also output the location
and orientation of the camera in the world coordinate system of the scene.

If you set Sample time to -1, the block uses the sample time specified in the Simulation 3D Scene
Configuration block. To use this sensor, you must include a Simulation 3D Scene Configuration block
in your model.

Note The Simulation 3D Scene Configuration block must execute before the Simulation 3D Fisheye
Camera block. That way, the Unreal Engine 3D visualization environment prepares the data before
the Simulation 3D Fisheye Camera block receives it. To check the block execution order, right-click
the blocks and select Properties. On the General tab, confirm these Priority settings:

• Simulation 3D Scene Configuration — 0
• Simulation 3D Fisheye Camera — 1

For more information about execution order, see “How Unreal Engine Simulation for Automated
Driving Works”.

Ports
Output

Image — 3D output camera image
m-by-n-by-3 array of RGB triplet values

3D output camera image, returned as an m-by-n-by-3 array of RGB triplet values. m is the vertical
resolution of the image, and n is the horizontal resolution of the image.
Data Types: int8 | uint8

Location — Sensor location
real-valued 1-by-3 vector

Sensor location along the X-axis, Y-axis, and Z-axis of the scene. The Location values are in the world
coordinates of the scene. In this coordinate system, the Z-axis points up from the ground. Units are in
meters.
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Dependencies

To enable this port, on the Ground Truth tab, select Output location (m) and orientation (rad).
Data Types: double

Orientation — Sensor orientation
real-valued 1-by-3 vector

Roll, pitch, and yaw sensor orientation about the X-axis, Y-axis, and Z-axis of the scene. The
Orientation values are in the world coordinates of the scene. These values are positive in the
clockwise direction when looking in the positive directions of these axes. Units are in radians.

Dependencies

To enable this port, on the Ground Truth tab, select Output location (m) and orientation (rad).
Data Types: double

Parameters
Mounting

Sensor identifier — Unique sensor identifier
1 (default) | positive integer

Unique sensor identifier, specified as a positive integer. In a multisensor system, the sensor identifier
distinguishes between sensors. When you add a new sensor block to your model, the Sensor
identifier of that block is N + 1. N is the highest Sensor identifier value among existing sensor
blocks in the model.
Example: 2

Parent name — Name of parent to which sensor is mounted
Scene Origin (default) | vehicle name

Name of the parent to which the sensor is mounted, specified as Scene Origin or as the name of a
vehicle in your model. The vehicle names that you can select correspond to the Name parameters of
the Simulation 3D Vehicle with Ground Following blocks in your model. If you select Scene Origin,
the block places a sensor at the scene origin.
Example: SimulinkVehicle1

Mounting location — Sensor mounting location
Origin (default) | Front bumper | Rear bumper | Right mirror | Left mirror | Rearview
mirror | Hood center | Roof center

Sensor mounting location.

• When Parent name is Scene Origin, the block mounts the sensor to the origin of the scene.
You can set the Mounting location to Origin only. During simulation, the sensor remains
stationary.

• When Parent name is the name of a vehicle (for example, SimulinkVehicle1) the block mounts
the sensor to one of the predefined mounting locations described in the table. During simulation,
the sensor travels with the vehicle.
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Vehicle Mounting Location Description Orientation Relative to
Vehicle Origin [Roll, Pitch,
Yaw] (deg)

Origin Forward-facing sensor mounted
to the vehicle origin, which is on
the ground, at the geometric
center of the vehicle (see
“Coordinate Systems for Unreal
Engine Simulation in Automated
Driving Toolbox”)

[0, 0, 0]

Front bumper Forward-facing sensor mounted
to the front bumper

[0, 0, 0]
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Vehicle Mounting Location Description Orientation Relative to
Vehicle Origin [Roll, Pitch,
Yaw] (deg)

Rear bumper Backward-facing sensor
mounted to the rear bumper

[0, 0, 180]

Right mirror Downward-facing sensor
mounted to the right side-view
mirror

[0, –90, 0]

Left mirror Downward-facing sensor
mounted to the left side-view
mirror

[0, –90, 0]
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Vehicle Mounting Location Description Orientation Relative to
Vehicle Origin [Roll, Pitch,
Yaw] (deg)

Rearview mirror Forward-facing sensor mounted
to the rearview mirror, inside
the vehicle

[0, 0, 0]

Hood center Forward-facing sensor mounted
to the center of the hood

[0, 0, 0]

Roof center Forward-facing sensor mounted
to the center of the roof

[0, 0, 0]

Roll, pitch, and yaw are clockwise-positive when looking in the positive direction of the X-axis, Y-axis,
and Z-axis, respectively. When looking at a vehicle from the top down, the yaw angle (that is, the
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orientation angle) is counterclockwise-positive, because you are looking in the negative direction of
the axis.

The (X, Y, Z) mounting location of the sensor relative to the vehicle depends on the vehicle type. To
specify the vehicle type, use the Type parameter of the Simulation 3D Vehicle with Ground Following
block to which you are mounting the sensor. To obtain the (X, Y, Z) mounting locations for a vehicle
type, see the reference page for that vehicle.

To determine the location of the sensor in world coordinates, open the sensor block. Then, on the
Ground Truth tab, select Output location (m) and orientation (rad) and inspect the data from
the Location output port.

Specify offset — Specify offset from mounting location
off (default) | on

Select this parameter to specify an offset from the mounting location by using the Relative
translation [X, Y, Z] (m) and Relative rotation [Roll, Pitch, Yaw] (deg) parameters.

Relative translation [X, Y, Z] (m) — Translation offset relative to mounting location
[0, 0, 0] (default) | real-valued 1-by-3 vector

Translation offset relative to the mounting location of the sensor, specified as a real-valued 1-by-3
vector of the form [X, Y, Z]. Units are in meters.

If you mount the sensor to a vehicle by setting Parent name to the name of that vehicle, then X, Y,
and Z are in the vehicle coordinate system, where:

• The X-axis points forward from the vehicle.
• The Y-axis points to the left of the vehicle, as viewed when looking in the forward direction of the

vehicle.
• The Z-axis points up.

The origin is the mounting location specified in the Mounting location parameter. This origin is
different from the vehicle origin, which is the geometric center of the vehicle.

If you mount the sensor to the scene origin by setting Parent name to Scene Origin, then X, Y,
and Z are in the world coordinates of the scene.

For more details about the vehicle and world coordinate systems, see “Coordinate Systems for Unreal
Engine Simulation in Automated Driving Toolbox”.
Example: [0,0,0.01]

Dependencies

To enable this parameter, select Specify offset.

Relative rotation [Roll, Pitch, Yaw] (deg) — Rotational offset relative to mounting
location
[0, 0, 0] (default) | real-valued 1-by-3 vector

Rotational offset relative to the mounting location of the sensor, specified as a real-valued 1-by-3
vector of the form [Roll, Pitch, Yaw] . Roll, pitch, and yaw are the angles of rotation about the X-, Y-,
and Z-axes, respectively. Units are in degrees.
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If you mount the sensor to a vehicle by setting Parent name to the name of that vehicle, then X, Y,
and Z are in the vehicle coordinate system, where:

• The X-axis points forward from the vehicle.
• The Y-axis points to the left of the vehicle, as viewed when looking in the forward direction of the

vehicle.
• The Z-axis points up.
• Roll, pitch, and yaw are clockwise-positive when looking in the forward direction of the X-axis, Y-

axis, and Z-axis, respectively. If you view a scene from a 2D top-down perspective, then the yaw
angle (also called the orientation angle) is counterclockwise-positive because you are viewing the
scene in the negative direction of the Z-axis.

The origin is the mounting location specified in the Mounting location parameter. This origin is
different from the vehicle origin, which is the geometric center of the vehicle.

If you mount the sensor to the scene origin by setting Parent name to Scene Origin, then X, Y,
and Z are in the world coordinates of the scene.

For more details about the vehicle and world coordinate systems, see “Coordinate Systems for Unreal
Engine Simulation in Automated Driving Toolbox”.
Example: [0,0,10]

Dependencies

To enable this parameter, select Specify offset.

Sample time — Sample time
-1 (default) | positive scalar

Sample time of the block in seconds, specified as a positive scalar. The 3D simulation environment
frame rate is the inverse of the sample time.

If you set the sample time to -1, the block inherits its sample time from the Simulation 3D Scene
Configuration block.

Parameters

These intrinsic camera parameters are equivalent to the properties of a fisheyeIntrinsics object.
To obtain the intrinsic parameters for your camera, use the Camera Calibrator app.

Distortion center (pixels) — Center of distortion
[640, 360] (default) | real-valued 1-by-2 vector

Center of distortion, specified as real-valued 2-element vector. Units are in pixels.

Image size (pixels) — Image size produced by camera
[720, 1280] (default) | real-valued 1-by-2 vector of positive integers

Image size produced by the camera, specified as a real-valued 1-by-2 vector of positive integers of the
form [mrows,ncols]. Units are in pixels.

Mapping coefficients — Polynomial coefficients for projection function
[320, 0, 0, 0] (default) | real-valued 1-by-4 vector
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Polynomial coefficients for the projection function described by Scaramuzza's Taylor model [1],
specified as a real-valued 1-by-4 vector of the form [a0 a2 a3 a4].
Example: [320, -0.001, 0, 0]

Stretch matrix — Transforms point from sensor plane to camera plane
[1, 0; 0, 1] (default) | real-valued 2-by-2 matrix

Transforms a point from the sensor plane to a pixel in the camera image plane. The misalignment
occurs during the digitization process when the lens is not parallel to sensor.
Example: [0, 1; 0, 1]

Ground Truth

Output location (m) and orientation (rad) — Output location and orientation of
sensor
off (default) | on

Select this parameter to output the location and orientation of the sensor at the Location and
Orientation ports, respectively.

Tips
• To visualize the camera images that are output by the Image port, use a Video Viewer or To Video

Display block.
• Because the Unreal Engine can take a long time to start up between simulations, consider logging

the signals that the sensors output. You can then use this data to develop perception algorithms in
MATLAB. See “Configure a Signal for Logging” (Simulink).

You can also save image data as a video by using a To Multimedia File block. For an example of
this setup, see “Design Lane Marker Detector Using Unreal Engine Simulation Environment”.

References
[1] Scaramuzza, D., A. Martinelli, and R. Siegwart. "A Toolbox for Easy Calibrating Omindirectional

Cameras." Proceedings to IEEE International Conference on Intelligent Robots and Systems
(IROS 2006). Beijing, China, October 7–15, 2006.
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Simulation 3D Lidar
Lidar sensor model in 3D simulation environment
Library: Automated Driving Toolbox / Simulation 3D

Description
The Simulation 3D Lidar block provides an interface to the lidar sensor in a 3D simulation
environment. This environment is rendered using the Unreal Engine from Epic Games. The block
returns a point cloud with the specified field of view and angular resolution. You can also output the
distances from the sensor to object points. In addition, you can output the location and orientation of
the sensor in the world coordinate system of the scene.

If you set Sample time to -1, the block uses the sample time specified in the Simulation 3D Scene
Configuration block. To use this sensor, ensure that the Simulation 3D Scene Configuration block is in
your model.

Note The Simulation 3D Scene Configuration block must execute before the Simulation 3D Lidar
block. That way, the Unreal Engine 3D visualization environment prepares the data before the
Simulation 3D Lidar block receives it. To check the block execution order, right-click the blocks and
select Properties. On the General tab, confirm these Priority settings:

• Simulation 3D Scene Configuration — 0
• Simulation 3D Lidar — 1

For more information about execution order, see “How Unreal Engine Simulation for Automated
Driving Works”.

Ports
Output

Point cloud — Point cloud data
m-by-n-by-3 array of positive real-valued [x, y, z] points

Point cloud data, returned as an m-by-n-by 3 array of positive, real-valued [x, y, z] points. m and n
define the number of points in the point cloud, as shown in this equation:

m × n =
VFOV
VRES

×
HFOV
HRES

where:

• VFOV is the vertical field of view of the lidar, in degrees, as specified by the Vertical field of view
(deg) parameter.
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• VRES is the vertical angular resolution of the lidar, in degrees, as specified by the Vertical
resolution (deg) parameter.

• HFOV is the horizontal field of view of the lidar, in degrees, as specified by the Horizontal field of
view (deg) parameter.

• HRES is the horizontal angular resolution of the lidar, in degrees, as specified by the Horizontal
resolution (deg) parameter.

Each m-by-n entry in the array specifies the x, y, and z coordinates of a detected point in the sensor
coordinate system. If the lidar does not detect a point at a given coordinate, then x, y, and z are
returned as NaN.

You can create a point cloud from these returned points by using point cloud functions in a MATLAB
Function block. For a list of point cloud processing functions, see “Lidar Processing”. For an example
that uses these functions, see “Design Lidar SLAM Algorithm Using Unreal Engine Simulation
Environment”.
Data Types: single

Distance — Distance to object points
m-by-n positive real-valued matrix

Distance to object points measured by the lidar sensor, returned as an m-by-n positive real-valued
matrix. Each m-by-n value in the matrix corresponds to an [x, y, z] coordinate point returned by the
Point cloud output port.

Dependencies

To enable this port, on the Parameters tab, select Distance outport.
Data Types: single

Location — Sensor location
real-valued 1-by-3 vector

Sensor location along the X-axis, Y-axis, and Z-axis of the scene. The Location values are in the world
coordinates of the scene. In this coordinate system, the Z-axis points up from the ground. Units are in
meters.

Dependencies

To enable this port, on the Ground Truth tab, select Output location (m) and orientation (rad).
Data Types: double

Orientation — Sensor orientation
real-valued 1-by-3 vector

Roll, pitch, and yaw sensor orientation about the X-axis, Y-axis, and Z-axis of the scene. The
Orientation values are in the world coordinates of the scene. These values are positive in the
clockwise direction when looking in the positive directions of these axes. Units are in radians.

Dependencies

To enable this port, on the Ground Truth tab, select Output location (m) and orientation (rad).
Data Types: double
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Parameters
Mounting

Sensor identifier — Unique sensor identifier
1 (default) | positive integer

Unique sensor identifier, specified as a positive integer. In a multisensor system, the sensor identifier
distinguishes between sensors. When you add a new sensor block to your model, the Sensor
identifier of that block is N + 1. N is the highest Sensor identifier value among existing sensor
blocks in the model.
Example: 2

Parent name — Name of parent to which sensor is mounted
Scene Origin (default) | vehicle name

Name of the parent to which the sensor is mounted, specified as Scene Origin or as the name of a
vehicle in your model. The vehicle names that you can select correspond to the Name parameters of
the Simulation 3D Vehicle with Ground Following blocks in your model. If you select Scene Origin,
the block places a sensor at the scene origin.
Example: SimulinkVehicle1

Mounting location — Sensor mounting location
Origin (default) | Front bumper | Rear bumper | Right mirror | Left mirror | Rearview
mirror | Hood center | Roof center

Sensor mounting location.

• When Parent name is Scene Origin, the block mounts the sensor to the origin of the scene.
You can set the Mounting location to Origin only. During simulation, the sensor remains
stationary.

• When Parent name is the name of a vehicle (for example, SimulinkVehicle1) the block mounts
the sensor to one of the predefined mounting locations described in the table. During simulation,
the sensor travels with the vehicle.
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Vehicle Mounting Location Description Orientation Relative to
Vehicle Origin [Roll, Pitch,
Yaw] (deg)

Origin Forward-facing sensor mounted
to the vehicle origin, which is on
the ground, at the geometric
center of the vehicle (see
“Coordinate Systems for Unreal
Engine Simulation in Automated
Driving Toolbox”)

[0, 0, 0]

Front bumper Forward-facing sensor mounted
to the front bumper

[0, 0, 0]
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Vehicle Mounting Location Description Orientation Relative to
Vehicle Origin [Roll, Pitch,
Yaw] (deg)

Rear bumper Backward-facing sensor
mounted to the rear bumper

[0, 0, 180]

Right mirror Downward-facing sensor
mounted to the right side-view
mirror

[0, –90, 0]

Left mirror Downward-facing sensor
mounted to the left side-view
mirror

[0, –90, 0]
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Vehicle Mounting Location Description Orientation Relative to
Vehicle Origin [Roll, Pitch,
Yaw] (deg)

Rearview mirror Forward-facing sensor mounted
to the rearview mirror, inside
the vehicle

[0, 0, 0]

Hood center Forward-facing sensor mounted
to the center of the hood

[0, 0, 0]

Roof center Forward-facing sensor mounted
to the center of the roof

[0, 0, 0]

Roll, pitch, and yaw are clockwise-positive when looking in the positive direction of the X-axis, Y-axis,
and Z-axis, respectively. When looking at a vehicle from the top down, the yaw angle (that is, the
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orientation angle) is counterclockwise-positive, because you are looking in the negative direction of
the axis.

The (X, Y, Z) mounting location of the sensor relative to the vehicle depends on the vehicle type. To
specify the vehicle type, use the Type parameter of the Simulation 3D Vehicle with Ground Following
block to which you are mounting the sensor. To obtain the (X, Y, Z) mounting locations for a vehicle
type, see the reference page for that vehicle.

To determine the location of the sensor in world coordinates, open the sensor block. Then, on the
Ground Truth tab, select Output location (m) and orientation (rad) and inspect the data from
the Location output port.

Specify offset — Specify offset from mounting location
off (default) | on

Select this parameter to specify an offset from the mounting location by using the Relative
translation [X, Y, Z] (m) and Relative rotation [Roll, Pitch, Yaw] (deg) parameters.

Relative translation [X, Y, Z] (m) — Translation offset relative to mounting location
[0, 0, 0] (default) | real-valued 1-by-3 vector

Translation offset relative to the mounting location of the sensor, specified as a real-valued 1-by-3
vector of the form [X, Y, Z]. Units are in meters.

If you mount the sensor to a vehicle by setting Parent name to the name of that vehicle, then X, Y,
and Z are in the vehicle coordinate system, where:

• The X-axis points forward from the vehicle.
• The Y-axis points to the left of the vehicle, as viewed when looking in the forward direction of the

vehicle.
• The Z-axis points up.

The origin is the mounting location specified in the Mounting location parameter. This origin is
different from the vehicle origin, which is the geometric center of the vehicle.

If you mount the sensor to the scene origin by setting Parent name to Scene Origin, then X, Y,
and Z are in the world coordinates of the scene.

For more details about the vehicle and world coordinate systems, see “Coordinate Systems for Unreal
Engine Simulation in Automated Driving Toolbox”.
Example: [0,0,0.01]

Dependencies

To enable this parameter, select Specify offset.

Relative rotation [Roll, Pitch, Yaw] (deg) — Rotational offset relative to mounting
location
[0, 0, 0] (default) | real-valued 1-by-3 vector

Rotational offset relative to the mounting location of the sensor, specified as a real-valued 1-by-3
vector of the form [Roll, Pitch, Yaw] . Roll, pitch, and yaw are the angles of rotation about the X-, Y-,
and Z-axes, respectively. Units are in degrees.
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If you mount the sensor to a vehicle by setting Parent name to the name of that vehicle, then X, Y,
and Z are in the vehicle coordinate system, where:

• The X-axis points forward from the vehicle.
• The Y-axis points to the left of the vehicle, as viewed when looking in the forward direction of the

vehicle.
• The Z-axis points up.
• Roll, pitch, and yaw are clockwise-positive when looking in the forward direction of the X-axis, Y-

axis, and Z-axis, respectively. If you view a scene from a 2D top-down perspective, then the yaw
angle (also called the orientation angle) is counterclockwise-positive because you are viewing the
scene in the negative direction of the Z-axis.

The origin is the mounting location specified in the Mounting location parameter. This origin is
different from the vehicle origin, which is the geometric center of the vehicle.

If you mount the sensor to the scene origin by setting Parent name to Scene Origin, then X, Y,
and Z are in the world coordinates of the scene.

For more details about the vehicle and world coordinate systems, see “Coordinate Systems for Unreal
Engine Simulation in Automated Driving Toolbox”.
Example: [0,0,10]

Dependencies

To enable this parameter, select Specify offset.

Sample time — Sample time
-1 (default) | positive scalar

Sample time of the block in seconds, specified as a positive scalar. The 3D simulation environment
frame rate is the inverse of the sample time.

If you set the sample time to -1, the block inherits its sample time from the Simulation 3D Scene
Configuration block.

Parameters

Detection range (m) — Maximum distance measured by lidar sensor
120 (default) | positive scalar

Maximum distance measured by the lidar sensor, specified as a positive scalar. Points outside this
range are ignored. Units are in meters.

Range resolution (m) — Resolution of lidar sensor range
0.002 (default) | positive real scalar

Resolution of the lidar sensor range, in meters, specified as a positive real scalar. The range
resolution is also known as the quantization factor. The minimal value of this factor is Drange / 224,
where Drange is the maximum distance measured by the lidar sensor, as specified in the Detection
range (m) parameter.

Vertical field of view (deg) — Vertical field of view
40 (default) | positive scalar
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Vertical field of view of the lidar sensor, specified as a positive scalar. Units are in degrees.

Vertical resolution (deg) — Vertical angular resolution
1.25 (default) | positive scalar

Vertical angular resolution of the lidar sensor, specified as a positive scalar. Units are in degrees.

Horizontal field of view (deg) — Horizontal field of view
360 (default) | positive scalar

Horizontal field of view of the lidar sensor, specified as a positive scalar. Units are in degrees.

Horizontal resolution (deg) — Horizontal angular (azimuth) resolution
0.16 (default) | positive scalar

Horizontal angular (azimuth) resolution of the lidar sensor, specified as a positive scalar. Units are in
degrees.

Distance outport — Output distance to measured object points
off (default) | on

Select this parameter to output the distance to measured object points at the Distance port.

Ground Truth

Output location (m) and orientation (rad) — Output location and orientation of
sensor
off (default) | on

Select this parameter to output the location and orientation of the sensor at the Location and
Orientation ports, respectively.

Tips
• To visualize point clouds that are output by the Point cloud port, you can either:

• Use a pcplayer object in a MATLAB Function block. For an example of this visualization
setup, see “Design Lidar SLAM Algorithm Using Unreal Engine Simulation Environment”.

• Use the Bird's-Eye Scope. For more details, see “Visualize Sensor Data from Unreal Engine
Simulation Environment”.

• The Unreal Engine can take a long time to start up between simulations, consider logging the
signals that the sensors output. You can then use this data to develop perception algorithms in
MATLAB. See “Configure a Signal for Logging” (Simulink).

See Also
Apps
Bird's-Eye Scope

Objects
pcplayer | pointCloud

Topics
“Unreal Engine Simulation for Automated Driving”
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“Coordinate Systems for Unreal Engine Simulation in Automated Driving Toolbox”
“Choose a Sensor for Unreal Engine Simulation”
“Lidar Processing”

Introduced in R2019b
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Simulation 3D Probabilistic Radar
Probabilistic radar sensor model in 3D simulation environment
Library: Automated Driving Toolbox / Simulation 3D

Description
The Simulation 3D Probabilistic Radar block provides an interface to the probabilistic radar sensor in
a 3D simulation environment. This environment is rendered using the Unreal Engine from Epic
Games. You can specify the radar model and accuracy, bias, and detection parameters. The block uses
the sample time to capture the radar detections and outputs a list of object detection reports. To
configure the probabilistic radar signatures of actors in the 3D environment across all radars in your
model, use a Simulation 3D Probabilistic Radar Configuration block.

If you set Sample time to -1, the block uses the sample time specified in the Simulation 3D Scene
Configuration block. To use this sensor, you must include a Simulation 3D Scene Configuration block
in your model.

Note The Simulation 3D Scene Configuration block must execute before the Simulation 3D
Probabilistic Radar block. That way, the Unreal Engine 3D visualization environment prepares the
data before the Simulation 3D Probabilistic Radar block receives it. To check the block execution
order, right-click the blocks and select Properties. On the General tab, confirm these Priority
settings:

• Simulation 3D Scene Configuration — 0
• Simulation 3D Probabilistic Radar — 1

For more information about execution order, see “How Unreal Engine Simulation for Automated
Driving Works”.

Ports
Output

Detections — Object detections
Simulink bus containing MATLAB structure

Object detections, returned as a Simulink bus containing a MATLAB structure. For more details about
buses, “Create Nonvirtual Buses” (Simulink). The structure has this form.

Field Description Type
NumDetections Number of detections integer
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Field Description Type
IsValidTime False when updates are

requested at times that are
between block invocation
intervals

Boolean

Detections Object detections Array of object detection
structures of length set by the
Maximum reported parameter.
Only NumDetections of these
detections are actual detections.

Each object detection structure contains these properties.

Property Definition
Time Measurement time
Measurement Object measurements
MeasurementNoise Measurement noise covariance matrix
SensorIndex Unique ID of the sensor
ObjectClassID Object classification
ObjectAttributes Additional information passed to tracker
MeasurementParameters Parameters used by initialization functions of

nonlinear Kalman tracking filters

• For Cartesian coordinates, Measurement and MeasurementNoise are reported in the coordinate
system specified by the Coordinate system parameter.

• For spherical coordinates, Measurement and MeasurementNoise are reported in the spherical
coordinate system based on the sensor Cartesian coordinate system. MeasurementParameters
is reported in sensor Cartesian coordinates.
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Measurement and MeasurementNoise

Coordinate System Used to Report
Detections

Measurement and MeasurementNoise
Coordinates

'Ego Cartesian' This table shows the coordinate dependence
when you enable or disable range rate
measurements using the Enable range rate
measurements parameter.

Range rate
measurements

Coordinates

Enabled [x;y;z;vx;vy;vz]
Disabled [x;y;z]

'Sensor Cartesian'

'Sensor spherical' This table shows the coordinate dependence
when you enable or disable the range rate and
elevation angle measurements, by using the
Enable range rate measurements and Enable
elevation angle measurements parameters,
respectively.

Range rate
measurement
s

Elevation
angle
measurement
s

Coordinates

Enabled Enabled [az;el;rng;
rr]

Enabled Disabled [az;rng;rr]
Disabled Enabled [az;el;rng]
Disabled Disabled [az;rng]
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Measurement Parameters

Parameter Definition
Frame Enumerated type that indicates the frame used to

report measurements. When Frame is set to
'rectangular', detections are reported in
Cartesian coordinates. When Frame is set to
'spherical', detections are reported in
spherical coordinates.

OriginPosition 3D vector offset of the sensor origin from the ego
vehicle origin. The vector is derived from the
location and height of the sensor, as specified by
the Mounting location parameter and the Z
value of the Relative translation [X, Y, Z] (m)
parameter, respectively.

Orientation Orientation of the radar sensor coordinate system
with respect to the ego vehicle coordinate
system. The orientation is derived from the roll,
pitch, and yaw values specified in the Relative
rotation [Roll, Pitch, Yaw] (deg) parameter.

HasVelocity Indicates whether measurements contain velocity
or range rate components.

HasElevation Indicates whether measurements contain
elevation components.

The ObjectAttributes property of each detection is a structure with these fields.

Field Definition
TargetIndex Identifier of the actor, ActorID, that generated

the detection. For false alarms, this value is
negative.

SNR Signal-to-noise ratio of the detection. Units are in
decibels.

The ObjectClassID property of each detection has a value that corresponds to an object ID. The
table shows the object IDs used in the default scenes that are selectable from the Simulation 3D
Scene Configuration block. If you are using a custom scene, in the Unreal Editor, you can assign new
object types to unused IDs. If a scene contains an object that does not have an assigned ID, that
object is assigned an ID of 0. The detection of lane markings is not supported.

ID Type
0 None/default
1 Building
2 Not used
3 Other
4 Not used
5 Pole
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ID Type
6 Not used
7 Road
8 Sidewalk
9 Vegetation
10 Vehicle
11 Not used
12 Generic traffic sign
13 Stop sign
14 Yield sign
15 Speed limit sign
16 Weight limit sign
17-18 Not used
19 Left and right arrow warning sign
20 Left chevron warning sign
21 Right chevron warning sign
22 Not used
23 Right one-way sign
24 Not used
25 School bus only sign
26-38 Not used
39 Crosswalk sign
40 Not used
41 Traffic signal
42 Curve right warning sign
43 Curve left warning sign
44 Up right arrow warning sign
45-47 Not used
48 Railroad crossing sign
49 Street sign
50 Roundabout warning sign
51 Fire hydrant
52 Exit sign
53 Bike lane sign
54-56 Not used
57 Sky
58 Curb
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ID Type
59 Flyover ramp
60 Road guard rail
61-66 Not used
67 Deer
68-70 Not used
71 Barricade
72 Motorcycle
73-255 Not used

Parameters
Mounting

Sensor identifier — Unique sensor identifier
1 (default) | positive integer

Unique sensor identifier, specified as a positive integer. In a multisensor system, the sensor identifier
distinguishes between sensors. When you add a new sensor block to your model, the Sensor
identifier of that block is N + 1. N is the highest Sensor identifier value among existing sensor
blocks in the model.
Example: 2

Parent name — Name of parent to which sensor is mounted
Scene Origin (default) | vehicle name

Name of the parent to which the sensor is mounted, specified as Scene Origin or as the name of a
vehicle in your model. The vehicle names that you can select correspond to the Name parameters of
the Simulation 3D Vehicle with Ground Following blocks in your model. If you select Scene Origin,
the block places a sensor at the scene origin.
Example: SimulinkVehicle1

Mounting location — Sensor mounting location
Origin (default) | Front bumper | Rear bumper | Right mirror | Left mirror | Rearview
mirror | Hood center | Roof center

Sensor mounting location.

• When Parent name is Scene Origin, the block mounts the sensor to the origin of the scene.
You can set the Mounting location to Origin only. During simulation, the sensor remains
stationary.

• When Parent name is the name of a vehicle (for example, SimulinkVehicle1) the block mounts
the sensor to one of the predefined mounting locations described in the table. During simulation,
the sensor travels with the vehicle.
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Vehicle Mounting Location Description Orientation Relative to
Vehicle Origin [Roll, Pitch,
Yaw] (deg)

Origin Forward-facing sensor mounted
to the vehicle origin, which is on
the ground, at the geometric
center of the vehicle (see
“Coordinate Systems for Unreal
Engine Simulation in Automated
Driving Toolbox”)

[0, 0, 0]

Front bumper Forward-facing sensor mounted
to the front bumper

[0, 0, 0]
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Vehicle Mounting Location Description Orientation Relative to
Vehicle Origin [Roll, Pitch,
Yaw] (deg)

Rear bumper Backward-facing sensor
mounted to the rear bumper

[0, 0, 180]

Right mirror Downward-facing sensor
mounted to the right side-view
mirror

[0, –90, 0]

Left mirror Downward-facing sensor
mounted to the left side-view
mirror

[0, –90, 0]
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Vehicle Mounting Location Description Orientation Relative to
Vehicle Origin [Roll, Pitch,
Yaw] (deg)

Rearview mirror Forward-facing sensor mounted
to the rearview mirror, inside
the vehicle

[0, 0, 0]

Hood center Forward-facing sensor mounted
to the center of the hood

[0, 0, 0]

Roof center Forward-facing sensor mounted
to the center of the roof

[0, 0, 0]

Roll, pitch, and yaw are clockwise-positive when looking in the positive direction of the X-axis, Y-axis,
and Z-axis, respectively. When looking at a vehicle from the top down, the yaw angle (that is, the
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orientation angle) is counterclockwise-positive, because you are looking in the negative direction of
the axis.

The (X, Y, Z) mounting location of the sensor relative to the vehicle depends on the vehicle type. To
specify the vehicle type, use the Type parameter of the Simulation 3D Vehicle with Ground Following
block to which you are mounting the sensor. To obtain the (X, Y, Z) mounting locations for a vehicle
type, see the reference page for that vehicle.

To determine the location of the sensor in world coordinates, open the sensor block. Then, on the
Ground Truth tab, select Output location (m) and orientation (rad) and inspect the data from
the Location output port.

Specify offset — Specify offset from mounting location
off (default) | on

Select this parameter to specify an offset from the mounting location by using the Relative
translation [X, Y, Z] (m) and Relative rotation [Roll, Pitch, Yaw] (deg) parameters.

Relative translation [X, Y, Z] (m) — Translation offset relative to mounting location
[0, 0, 0] (default) | real-valued 1-by-3 vector

Translation offset relative to the mounting location of the sensor, specified as a real-valued 1-by-3
vector of the form [X, Y, Z]. Units are in meters.

If you mount the sensor to a vehicle by setting Parent name to the name of that vehicle, then X, Y,
and Z are in the vehicle coordinate system, where:

• The X-axis points forward from the vehicle.
• The Y-axis points to the left of the vehicle, as viewed when looking in the forward direction of the

vehicle.
• The Z-axis points up.

The origin is the mounting location specified in the Mounting location parameter. This origin is
different from the vehicle origin, which is the geometric center of the vehicle.

If you mount the sensor to the scene origin by setting Parent name to Scene Origin, then X, Y,
and Z are in the world coordinates of the scene.

For more details about the vehicle and world coordinate systems, see “Coordinate Systems for Unreal
Engine Simulation in Automated Driving Toolbox”.
Example: [0,0,0.01]

Dependencies

To enable this parameter, select Specify offset.

Relative rotation [Roll, Pitch, Yaw] (deg) — Rotational offset relative to mounting
location
[0, 0, 0] (default) | real-valued 1-by-3 vector

Rotational offset relative to the mounting location of the sensor, specified as a real-valued 1-by-3
vector of the form [Roll, Pitch, Yaw] . Roll, pitch, and yaw are the angles of rotation about the X-, Y-,
and Z-axes, respectively. Units are in degrees.
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If you mount the sensor to a vehicle by setting Parent name to the name of that vehicle, then X, Y,
and Z are in the vehicle coordinate system, where:

• The X-axis points forward from the vehicle.
• The Y-axis points to the left of the vehicle, as viewed when looking in the forward direction of the

vehicle.
• The Z-axis points up.
• Roll, pitch, and yaw are clockwise-positive when looking in the forward direction of the X-axis, Y-

axis, and Z-axis, respectively. If you view a scene from a 2D top-down perspective, then the yaw
angle (also called the orientation angle) is counterclockwise-positive because you are viewing the
scene in the negative direction of the Z-axis.

The origin is the mounting location specified in the Mounting location parameter. This origin is
different from the vehicle origin, which is the geometric center of the vehicle.

If you mount the sensor to the scene origin by setting Parent name to Scene Origin, then X, Y,
and Z are in the world coordinates of the scene.

For more details about the vehicle and world coordinate systems, see “Coordinate Systems for Unreal
Engine Simulation in Automated Driving Toolbox”.
Example: [0,0,10]

Dependencies

To enable this parameter, select Specify offset.

Sample time — Sample time
-1 (default) | positive scalar

Sample time of the block in seconds, specified as a positive scalar. The 3D simulation environment
frame rate is the inverse of the sample time.

If you set the sample time to -1, the block inherits its sample time from the Simulation 3D Scene
Configuration block.

Parameters

Accuracy Settings

Azimuthal resolution of radar (deg) — Azimuth resolution of radar
4 (default) | positive real scalar

Azimuth resolution of the radar, specified as a positive real scalar. The azimuth resolution defines the
minimum separation in azimuth angle at which the radar can distinguish between two targets. The
azimuth resolution is typically the 3dB-downpoint in azimuth angle beamwidth of the radar. Units are
in degrees.
Example: 6.5

Elevation resolution of radar (deg) — Elevation resolution of radar
10 (default) | positive real scalar

Elevation resolution of the radar, specified as a positive real scalar. The elevation resolution defines
the minimum separation in elevation angle at which the radar can distinguish between two targets.
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The elevation resolution is typically the 3dB-downpoint in elevation angle beamwidth of the radar.
Units are in degrees.
Example: 3.5

Dependencies

To enable this parameter, on the Parameters tab, in the Radar model section, select Enable
elevation angle measurements.

Range resolution of radar (m) — Range resolution of radar
2.5 (default) | positive real scalar

Range resolution of the radar, specified as a positive real scalar. The range resolution defines the
minimum separation in range at which the radar can distinguish between two targets. Units are in
meters.
Example: 5.0

Range rate resolution of radar (m/s) — Range rate resolution of the radar
0.5 (default) | positive real scalar

Range rate resolution of the radar, specified as a positive real scalar. The range rate resolution
defines the minimum separation in range rate at which the radar can distinguish between two
targets. Units are in meters per second.
Example: 0.75

Dependencies

To enable this parameter, on the Parameters tab, in the Radar model section, select Enable range
rate measurements.

Bias Settings

Fractional azimuthal bias component — Azimuth bias fraction
0.1 (default) | nonnegative real scalar

Azimuth bias fraction of the radar, specified as a nonnegative real scalar. The azimuth bias is
expressed as a fraction of the azimuth resolution specified in the Azimuthal resolution of radar
(deg) parameter. Units are dimensionless.
Example: 0.3

Fractional elevation bias component — Elevation bias fraction
0.1 (default) | nonnegative real scalar

Elevation bias fraction of the radar, specified as a nonnegative real scalar. The elevation bias is
expressed as a fraction of the elevation resolution specified in the Elevation resolution of radar
(deg) parameter. Units are dimensionless.
Example: 0.2

Dependencies

To enable this parameter, on the Parameters tab, in the Radar model section, select Enable
elevation angle measurements.
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Fractional range bias component — Range bias fraction
0.05 (default) | nonnegative real scalar

Range bias fraction of the radar, specified as a nonnegative real scalar. Range bias is expressed as a
fraction of the range resolution specified in the Range resolution of radar (m) parameter. Units are
dimensionless.
Example: 0.15

Fractional range rate bias component — Range rate bias fraction
0.05 (default) | nonnegative real scalar

Range rate bias fraction of the radar, specified as a nonnegative real scalar. Range rate bias is
expressed as a fraction of the range rate resolution specified in the Range rate resolution of radar
(m/s) parameter. Units are dimensionless.
Example: 0.2

Dependencies

To enable this parameter, on the Parameters tab, in the Radar model section, select Enable range
rate measurements.

Detector Settings

Field of view (deg) — Field of view
[20, 5] (default) | positive real-valued 1-by-2 vector

Field of view of the radar, specified as a positive real-valued 1-by-2 vector of the form [azfov,
elfov]. azfov is the azimuth angle field of view. elfov is the elevation angle field of view. The field
of view defines the angular extent spanned by the sensor. Each component must lie in the interval
(0,180]. Targets outside of the field of view of the radar are not detected. Units are in degrees.
Example: [14 7]

Detection ranges (m) — Detection range
[1, 150] (default) | positive real-valued 1-by-2 vector

Detection range, in meters, at which the radar can detect a target.

• To set only a maximum detection range, specify this parameter as a positive real scalar. By default,
the minimum detection range is 0.

• To set both a minimum and maximum detection range, specify this parameter as a positive real-
valued 1-by-2 vector of the form [min, max].

Example: 250

Range rates (m/s) — Minimum and maximum detection range rates
[-100, 100] (default) | real-valued 1-by-2 vector

Minimum and maximum detection range rates, specified as a real-valued 1-by-2 vector. The radar can
detect targets only within this range rate interval. Units are in meters per second.
Example: [-200 200]
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Dependencies

To enable this parameter, on the Parameters tab, in the Radar model section, select Enable range
rate measurements.

Detection probability — Probability that radar detects a target
0.9 (default) | real scalar in the range (0, 1]

Probability that the radar detects a target, specified as a real scalar in the range (0, 1]. This quantity
defines the probability of detecting a target that has a radar cross section specified by the Reference
radar cross section (dBsm) parameter, at the reference detection range specified by the Detection
ranges (m) parameter.
Example: 0.95

False alarm rate — False alarm rate
1e-6 (default) | positive real scalar in range [10–7, 10–3]

False alarm rate within a radar resolution cell, specified as a positive real scalar in the range [10–7,
10–3]. Units are dimensionless.
Example: 1e-5

Detection probability range (m): — Reference range for given probability of detection
100 (default) | positive real scalar

Reference range for a given probability of detection, specified as a positive real scalar. The reference
range is the range at which the radar detects targets that have a radar cross section specified by
Reference radar cross section (dBsm), given a detection probability specified by Detection
probability. Units are in meters.
Example: 150

Reference radar cross section (dBsm) — Reference radar cross section for given
probability of detection
0 (default) | nonnegative real scalar

Reference radar cross section (RCS) for a given probability of detection, specified as a nonnegative
real scalar. A radar with the detection probability specified by Detection probability detects targets
at this reference RCS value. Units are in decibels per square meter.
Example: 2.0

Radar Model

Enable elevation angle measurements — Enable radar to measure elevation
on (default) | off

Select this parameter to model a radar that can measure target elevation angles. This parameter
enables the Elevation resolution of radar (deg) and Fractional elevation bias component
parameters.

Enable range rate measurements — Enable radar to measure range rate
on (default) | off
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Select this parameter to model a radar that can measure target range rates. This parameter enables
the Range rate resolution of radar (m/s), Fractional range bias component, and Range rates
(m/s) parameters.

Enable measurement noise — Enable adding noise to radar sensor measurements
on (default) | off

Select this parameter to add noise to radar sensor measurements. Otherwise, the measurements are
noise-free. The MeasurementNoise property of each detection is always computed and is not
affected by the value you specify for the Measurement noise parameter. By not selecting this
parameter, you can pass the sensor ground truth measurements into a Multi-Object Tracker block.

Enable false detections — Enable reporting false alarm radar detections
on (default) | off

Select this parameter to enable reporting false alarm radar measurements. Otherwise, only actual
detections are reported.

Random number generator method — Method to set random number generator seed
Repeatable (default) | Specify seed | Not repeatable

Method to set the random number generator seed, specified as one of the options in the table.

Option Description
Repeatable The block generates a random initial seed for the

first simulation and reuses this seed for all
subsequent simulations. Select this parameter to
generate repeatable results from the statistical
sensor model. To change this initial seed, at the
MATLAB command prompt, enter clear all.

Specify seed Specify your own random initial seed for
reproducible results by using the Specify seed
parameter.

Not repeatable The block generates a new random initial seed
after each simulation run. Select this parameter
to generate nonrepeatable results from the
statistical sensor model.

Initial seed — Random number generator seed
0 (default) | scalar in range [0, 232)

Random number generator seed, specified as a scalar in the range [0, 232)
Example: 2001

Dependencies

To enable this parameter, set the Random number generator method parameter to Specify
seed.

Detection Reporting

Maximum reported — Maximum number of reported detections
50 (default) | positive integer
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Maximum number of reported detections, specified as a positive integer. Units are dimensionless.
Example: 35

Coordinate system — Coordinate system of reported detections
Ego Cartesian (default) | Sensor Cartesian | Sensor spherical

Coordinate system of reported detections, specified as one of these values:

• Ego Cartesian — The radar reports detections in the ego vehicle Cartesian coordinate system.
• Sensor Cartesian— The radar reports detections in the sensor Cartesian coordinate system.
• Sensor spherical — The radar reports detections in the spherical coordinate system. This

coordinate system is centered at the radar and aligned with the orientation of the radar on the ego
vehicle.

Specify output bus name — Specify name of output bus
off (default) | on

Select this parameter to specify the name of the bus that the block outputs to the base workspace.
Specify this name in the Output bus name parameter.

Output bus name — Name of output bus
BusSimulation3DRadarTruthSensor (default) | valid bus name

Name of the bus that the block outputs to the base workspace.
Dependencies

To enable this parameter, select the Specify output bus name parameter.

Tips
• To visualize detections and sensor coverage areas, use the Bird's-Eye Scope. For more details,

see “Visualize Sensor Data from Unreal Engine Simulation Environment”.
• Because the Unreal Engine can take a long time to start between simulations, consider logging

the signals that the sensors output. For more details, see “Configure a Signal for Logging”
(Simulink).

References
[1] Blacksmith, P., R. E. Hiatt, and R. B. Mack. "Introduction to radar cross-section measurements."

Proceedings of the IEEE. Volume 53, No. 8, August 1965, pp. 901–920. doi: 10.1109/
PROC.1965.4069.

See Also
Apps
Bird's-Eye Scope

Blocks
Detection Concatenation | Multi-Object Tracker | Simulation 3D Probabilistic Radar Configuration |
Simulation 3D Scene Configuration | Simulation 3D Vehicle with Ground Following | Simulation 3D
Vision Detection Generator
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Topics
“Unreal Engine Simulation for Automated Driving”
“Coordinate Systems for Unreal Engine Simulation in Automated Driving Toolbox”
“Choose a Sensor for Unreal Engine Simulation”
“Visualize Sensor Data and Tracks in Bird's-Eye Scope”

Introduced in R2019b
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Simulation 3D Probabilistic Radar Configuration
Configure probabilistic radar signatures in 3D simulation environment
Library: Automated Driving Toolbox / Simulation 3D

Description
The Simulation 3D Probabilistic Radar Configuration block configures the probabilistic radar
signatures for actors in a 3D simulation environment. This environment is rendered using the Unreal
Engine from Epic Games. To model the probabilistic radars, use Simulation 3D Probabilistic Radar
blocks. The configured radar signatures apply to all Simulation 3D Probabilistic Radar blocks in your
model.

Parameters
Radar targets — Identifiers corresponding to radar targets
[] (default) | positive integer | L-length vector of unique positive integers

Identifiers that correspond to radar targets, specified as a positive integer or L-length vector of
unique positive integers. L equals the number of radar targets for which you want to specify a
nondefault radar cross section (RCS).

This table provides the identifiers and corresponding object types that radars can detect in the
default scenes that you can select from the Simulation 3D Scene Configuration block. For example, to
specify a nondefault RCS for a building and a road, set Radar targets to [1,7]. If you are using a
custom scene, in the Unreal Editor, you can assign new object types to unused IDs. If a scene
contains an object that does not have an assigned ID, that object is assigned an ID of 0. The detection
of lane markings is not supported.

ID Type
0 None/default
1 Building
2 Not used
3 Other
4 Not used
5 Pole
6 Not used
7 Road
8 Sidewalk
9 Vegetation
10 Vehicle
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ID Type
11 Not used
12 Generic traffic sign
13 Stop sign
14 Yield sign
15 Speed limit sign
16 Weight limit sign
17-18 Not used
19 Left and right arrow warning sign
20 Left chevron warning sign
21 Right chevron warning sign
22 Not used
23 Right one-way sign
24 Not used
25 School bus only sign
26-38 Not used
39 Crosswalk sign
40 Not used
41 Traffic signal
42 Curve right warning sign
43 Curve left warning sign
44 Up right arrow warning sign
45-47 Not used
48 Railroad crossing sign
49 Street sign
50 Roundabout warning sign
51 Fire hydrant
52 Exit sign
53 Bike lane sign
54-56 Not used
57 Sky
58 Curb
59 Flyover ramp
60 Road guard rail
61-66 Not used
67 Deer
68-70 Not used
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ID Type
71 Barricade
72 Motorcycle
73-255 Not used

Radar cross sections (dBsm) — Radar cross sections
{} (default) | real-valued Q-by-P matrix | L-length cell array of real-valued Q1-by-P1, …, QL-by-PL
matrices

Radar cross sections of target actors, in decibels per square meter, specified as a matrix or cell array
of matrices. Each matrix defines the RCS for the corresponding target actor specified by Radar
targets.

If Radar targets is a scalar (that is, a single target actor), then specify Radar cross sections
(dBsm) as a real-valued Q-by-P matrix, where:

• Q is the number of elevation angle samples for the actor.
• P is the number of azimuth angle samples for the actor.

If Radar targets is a vector (that is, multiple target actors), then specify Radar cross sections
(dBsm) as a L-length cell array of real-valued Q1-by-P1, …, QL-by-PL matrices, where:

• L is the number of actors.
• Q1, …, QL are the number of elevation angle samples per actor.
• P1, …, PL are the number of azimuth angle samples per actor.

Q and P can vary for each actor. For each RCS matrix:

• The rows correspond to uniformly sampled elevation angles over the interval [0, 180].
• The columns correspond to uniformly sampled azimuth angles over the interval [0, 360].

For example, the number of elevation and azimuth samples for RCS matrix RCS are as follows:

el = linspace(0,180,size(RCS,1));
az = linspace(0,360,size(RCS,2));

Default radar cross section (dBsm) — Default radar cross section
-20 (default) | real scalar

Default radar cross section, in decibels per square meter, specified as a real scalar. The block uses
this RCS value for actors whose RCS is not specified by Radar cross sections (dBsm).
Example: -10

See Also
Simulation 3D Probabilistic Radar

Introduced in R2019b
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Simulation 3D Vision Detection Generator
Detect objects and lanes from measurements in 3D simulation environment
Library: Automated Driving Toolbox / Simulation 3D

Description
The Simulation 3D Vision Detection Generator block generates detections from camera
measurements taken by a vision sensor mounted on an ego vehicle in a 3D simulation environment.
This environment is rendered using the Unreal Engine from Epic Games. The block derives detections
from simulated actor poses that are based on cuboid (box-shaped) representations of the actors in the
scenario. For more details, see “Algorithms” on page 2-167.

The block generates detections at intervals equal to the sensor update interval. Detections are
referenced to the coordinate system of the sensor. The block can simulate real detections that have
added random noise and also generate false positive detections. A statistical model generates the
measurement noise, true detections, and false positives. To control the random numbers that the
statistical model generates, use the random number generator settings on the Measurements tab of
the block.

If you set Sample time to -1, the block uses the sample time specified in the Simulation 3D Scene
Configuration block. To use this sensor, you must include a Simulation 3D Scene Configuration block
in your model.

Note The Simulation 3D Scene Configuration block must execute before the Simulation 3D Vision
Detection Generator block. That way, the Unreal Engine 3D visualization environment prepares the
data before the Simulation 3D Vision Detection Generator block receives it. To check the block
execution order, right-click the blocks and select Properties. On the General tab, confirm these
Priority settings:

• Simulation 3D Scene Configuration — 0
• Simulation 3D Vision Detection Generator — 1

For more information about execution order, see “How Unreal Engine Simulation for Automated
Driving Works”.

Ports
Output

Object Detections — Object detections
Simulink bus containing MATLAB structure

Object detections, returned as a Simulink bus containing a MATLAB structure. For more details about
buses, see “Create Nonvirtual Buses” (Simulink). The structure has the form shown in this table.
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Field Description Type
NumDetections Number of detections Integer
IsValidTime False when updates are

requested at times that are
between block invocation
intervals

Boolean

Detections Object detections Array of object detection
structures of length set by the
Maximum number of
reported detections
parameter. Only
NumDetections of these
detections are actual detections.

The object detection structure contains these properties.

Property Definition
Time Measurement time
Measurement Object measurements
MeasurementNoise Measurement noise covariance matrix
SensorIndex Unique ID of the sensor
ObjectClassID Object classification
ObjectAttributes Additional information passed to tracker
MeasurementParameters Parameters used by initialization functions of

nonlinear Kalman tracking filters

The Measurement field reports the position and velocity of a measurement in the coordinate system
of the sensor. This field is a real-valued column vector of the form [x; y; z; vx; vy; vz]. The
MeasurementNoise field is a 6-by-6 matrix that reports the measurement noise covariance for each
coordinate in the Measurement field.

The MeasurementParameters field is a structure that has these fields.

Parameter Definition
Frame Enumerated type indicating the frame used to

report measurements. The Simulation 3D Vision
Detection Generator block reports detections in
sensor Cartesian coordinates, which is a
rectangular coordinate frame. Therefore, for this
block, Frame is always set to 'rectangular'.

OriginPosition Offset of the sensor origin from the ego vehicle
origin, returned as a vector of the form [x, y, z].
The block derives these values from the x, y, and
z mounting position of the sensor. For more
details, see the Mounting parameters of this
block.
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Parameter Definition
Orientation Orientation of the sensor coordinate frame with

respect to the ego vehicle coordinate frame,
returned as a 3-by-3 real-valued orthonormal
matrix. The block derives these values from the
yaw, pitch, and roll mounting orientation of the
sensor. For more details, see the Mounting
parameters of this block.

HasVelocity Indicates whether measurements contain velocity.

The ObjectClassID property of each detection has a value that corresponds to an object ID. The
table shows the object IDs used in the default scenes that you can select from the Simulation 3D
Scene Configuration block. If you are using a custom scene, in the Unreal Editor, you can assign new
object types to unused IDs. If a scene contains an object that does not have an assigned ID, that
object is assigned an ID of 0. The block detects objects only of class Vehicle, such as vehicles
created by using Simulation 3D Vehicle with Ground Following blocks, or of class Road.

ID Type
0 None/default
1 Building
2 Not used
3 Other
4 Not used
5 Pole
6 Not used
7 Road
8 Sidewalk
9 Vegetation
10 Vehicle
11 Not used
12 Generic traffic sign
13 Stop sign
14 Yield sign
15 Speed limit sign
16 Weight limit sign
17-18 Not used
19 Left and right arrow warning sign
20 Left chevron warning sign
21 Right chevron warning sign
22 Not used
23 Right one-way sign
24 Not used

 Simulation 3D Vision Detection Generator

2-151



ID Type
25 School bus only sign
26-38 Not used
39 Crosswalk sign
40 Not used
41 Traffic signal
42 Curve right warning sign
43 Curve left warning sign
44 Up right arrow warning sign
45-47 Not used
48 Railroad crossing sign
49 Street sign
50 Roundabout warning sign
51 Fire hydrant
52 Exit sign
53 Bike lane sign
54-56 Not used
57 Sky
58 Curb
59 Flyover ramp
60 Road guard rail
61-66 Not used
67 Deer
68-70 Not used
71 Barricade
72 Motorcycle
73-255 Not used

The ObjectAttributes property of each detection is a structure that has these fields.

Field Definition
TargetIndex Identifier of the actor, ActorID, that generated

the detection. For false alarms, this value is
negative.

Dependencies

To enable this output port, on the Parameters tab, set the Types of detections generated by
sensor parameter to Lanes and objects, Objects only, or Lanes with occlusion.

Lane Detections — Lane boundary detections
Simulink bus containing MATLAB structure
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Lane boundary detections, returned as a Simulink bus containing a MATLAB structure. The structure
has these fields.

Field Description Type
Time Lane detection time Real scalar
IsValidTime False when updates are

requested at times that are
between block invocation
intervals

Boolean

SensorIndex Unique identifier of sensor Positive integer
NumLaneBoundaries Number of lane boundary

detections
Nonnegative integer

LaneBoundaries Lane boundary detections Array of
clothoidLaneBoundary
objects

Dependencies

To enable this output port, on the Parameters tab, set the Types of detections generated by
sensor parameter to Lanes and objects, Lanes only, or Lanes with occlusion.

Actor Truth — Ground truth of actor poses
Simulink bus containing MATLAB structure

Ground truth of actor poses in the simulation environment, returned as a Simulink bus containing a
MATLAB structure.

The structure has these fields.

Field Description Type
NumActors Number of actors Nonnegative integer
Time Current simulation time Real-valued scalar
Actors Actor poses NumActors-length array of

actor pose structures

Each actor pose structure in Actors has these fields.

Field Description
ActorID Scenario-defined actor identifier, specified as a

positive integer.
Position Position of actor, specified as a real-valued vector

of the form [x, y, z]. Units are in meters.
Velocity Velocity (v) of actor in the x-, y-, and z-direction,

specified as a real-valued vector of the form [vx,
vy, vz]. Units are in meters per second.

Roll Roll angle of actor, specified as a real-valued
scalar. Units are in degrees.
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Field Description
Pitch Pitch angle of actor, specified as a real-valued

scalar. Units are in degrees.
Yaw Yaw angle of actor, specified as a real-valued

scalar. Units are in degrees.
AngularVelocity Angular velocity (ω) of actor in the x-, y-, and z-

direction, specified as a real-valued vector of the
form [ωx, ωy, ωz]. Units are in degrees per second.

The pose of the ego vehicle is excluded from the Actors array.

Dependencies

To enable this output port, on the Ground Truth tab, select the Output actor truth parameter.

Lane Truth — Ground truth of lane boundaries
Simulink bus containing MATLAB structure

Ground truth of lane boundaries in the simulation environment, returned as a Simulink bus
containing a MATLAB structure.

The structure has these fields.

Field Description Type
NumLaneBoundaries Number of lane boundaries Nonnegative integer
Time Current simulation time Real scalar
LaneBoundaries Lane boundaries NumLaneBoundaries-length

array of lane boundary
structures

Each lane boundary structure in LaneBoundaries has these fields.

Field Description
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Coordinates Lane boundary coordinates, specified as a real-
valued N-by-3 matrix, where N is the number of
lane boundary coordinates. Lane boundary
coordinates define the position of points on the
boundary at specified longitudinal distances away
from the ego vehicle, along the center of the
road.

• In MATLAB, specify these distances by using
the 'XDistance' name-value pair argument
of the laneBoundaries function.

• In Simulink, specify these distances by using
the Distances from ego vehicle for
computing boundaries (m) parameter of
the Scenario Reader block or the Distance
from parent for computing lane
boundaries parameter of the Simulation 3D
Vision Detection Generator block.

This matrix also includes the boundary
coordinates at zero distance from the ego vehicle.
These coordinates are to the left and right of the
ego-vehicle origin, which is located under the
center of the rear axle. Units are in meters.

Curvature Lane boundary curvature at each row of the
Coordinates matrix, specified as a real-valued
N-by-1 vector. N is the number of lane boundary
coordinates. Units are in radians per meter.

CurvatureDerivative Derivative of lane boundary curvature at each
row of the Coordinates matrix, specified as a
real-valued N-by-1 vector. N is the number of lane
boundary coordinates. Units are in radians per
square meter.

HeadingAngle Initial lane boundary heading angle, specified as
a real scalar. The heading angle of the lane
boundary is relative to the ego vehicle heading.
Units are in degrees.

LateralOffset Distance of the lane boundary from the ego
vehicle position, specified as a real scalar. An
offset to a lane boundary to the left of the ego
vehicle is positive. An offset to the right of the
ego vehicle is negative. Units are in meters.
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BoundaryType Type of lane boundary marking, specified as one
of these values:

• 'Unmarked' — No physical lane marker
exists

• 'Solid' — Single unbroken line
• 'Dashed' — Single line of dashed lane

markers
• 'DoubleSolid' — Two unbroken lines
• 'DoubleDashed' — Two dashed lines
• 'SolidDashed' — Solid line on the left and a

dashed line on the right
• 'DashedSolid' — Dashed line on the left

and a solid line on the right
Strength Saturation strength of the lane boundary

marking, specified as a real scalar from 0 to 1. A
value of 0 corresponds to a marking whose color
is fully unsaturated. The marking is gray. A value
of 1 corresponds to a marking whose color is fully
saturated.

Width Lane boundary width, specified as a positive real
scalar. In a double-line lane marker, the same
width is used for both lines and for the space
between lines. Units are in meters.

Length Length of dash in dashed lines, specified as a
positive real scalar. In a double-line lane marker,
the same length is used for both lines.

Space Length of space between dashes in dashed lines,
specified as a positive real scalar. In a dashed
double-line lane marker, the same space is used
for both lines.

The number of returned lane boundary structures depends on the Maximum number of reported
lanes parameter value.
Dependencies

To enable this output port, on the Ground Truth tab, select the Output lane truth parameter.

Parameters
Mounting

Sensor identifier — Unique sensor identifier
1 (default) | positive integer

Unique sensor identifier, specified as a positive integer. In a multisensor system, the sensor identifier
distinguishes between sensors. When you add a new sensor block to your model, the Sensor
identifier of that block is N + 1. N is the highest Sensor identifier value among existing sensor
blocks in the model.
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Example: 2

Parent name — Name of parent to which sensor is mounted
Scene Origin (default) | vehicle name

Name of the parent to which the sensor is mounted, specified as Scene Origin or as the name of a
vehicle in your model. The vehicle names that you can select correspond to the Name parameters of
the Simulation 3D Vehicle with Ground Following blocks in your model. If you select Scene Origin,
the block places a sensor at the scene origin.
Example: SimulinkVehicle1

Mounting location — Sensor mounting location
Origin (default) | Front bumper | Rear bumper | Right mirror | Left mirror | Rearview
mirror | Hood center | Roof center

Sensor mounting location.

• When Parent name is Scene Origin, the block mounts the sensor to the origin of the scene.
You can set the Mounting location to Origin only. During simulation, the sensor remains
stationary.

• When Parent name is the name of a vehicle (for example, SimulinkVehicle1) the block mounts
the sensor to one of the predefined mounting locations described in the table. During simulation,
the sensor travels with the vehicle.

Vehicle Mounting Location Description Orientation Relative to
Vehicle Origin [Roll, Pitch,
Yaw] (deg)

Origin Forward-facing sensor mounted
to the vehicle origin, which is on
the ground, at the geometric
center of the vehicle (see
“Coordinate Systems for Unreal
Engine Simulation in Automated
Driving Toolbox”)

[0, 0, 0]
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Vehicle Mounting Location Description Orientation Relative to
Vehicle Origin [Roll, Pitch,
Yaw] (deg)

Front bumper Forward-facing sensor mounted
to the front bumper

[0, 0, 0]

Rear bumper Backward-facing sensor
mounted to the rear bumper

[0, 0, 180]

Right mirror Downward-facing sensor
mounted to the right side-view
mirror

[0, –90, 0]
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Vehicle Mounting Location Description Orientation Relative to
Vehicle Origin [Roll, Pitch,
Yaw] (deg)

Left mirror Downward-facing sensor
mounted to the left side-view
mirror

[0, –90, 0]

Rearview mirror Forward-facing sensor mounted
to the rearview mirror, inside
the vehicle

[0, 0, 0]

Hood center Forward-facing sensor mounted
to the center of the hood

[0, 0, 0]
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Vehicle Mounting Location Description Orientation Relative to
Vehicle Origin [Roll, Pitch,
Yaw] (deg)

Roof center Forward-facing sensor mounted
to the center of the roof

[0, 0, 0]

Roll, pitch, and yaw are clockwise-positive when looking in the positive direction of the X-axis, Y-axis,
and Z-axis, respectively. When looking at a vehicle from the top down, the yaw angle (that is, the
orientation angle) is counterclockwise-positive, because you are looking in the negative direction of
the axis.

The (X, Y, Z) mounting location of the sensor relative to the vehicle depends on the vehicle type. To
specify the vehicle type, use the Type parameter of the Simulation 3D Vehicle with Ground Following
block to which you are mounting the sensor. To obtain the (X, Y, Z) mounting locations for a vehicle
type, see the reference page for that vehicle.

To determine the location of the sensor in world coordinates, open the sensor block. Then, on the
Ground Truth tab, select Output location (m) and orientation (rad) and inspect the data from
the Location output port.

Specify offset — Specify offset from mounting location
off (default) | on

Select this parameter to specify an offset from the mounting location by using the Relative
translation [X, Y, Z] (m) and Relative rotation [Roll, Pitch, Yaw] (deg) parameters.

Relative translation [X, Y, Z] (m) — Translation offset relative to mounting location
[0, 0, 0] (default) | real-valued 1-by-3 vector

Translation offset relative to the mounting location of the sensor, specified as a real-valued 1-by-3
vector of the form [X, Y, Z]. Units are in meters.

If you mount the sensor to a vehicle by setting Parent name to the name of that vehicle, then X, Y,
and Z are in the vehicle coordinate system, where:

• The X-axis points forward from the vehicle.
• The Y-axis points to the left of the vehicle, as viewed when looking in the forward direction of the

vehicle.
• The Z-axis points up.
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The origin is the mounting location specified in the Mounting location parameter. This origin is
different from the vehicle origin, which is the geometric center of the vehicle.

If you mount the sensor to the scene origin by setting Parent name to Scene Origin, then X, Y,
and Z are in the world coordinates of the scene.

For more details about the vehicle and world coordinate systems, see “Coordinate Systems for Unreal
Engine Simulation in Automated Driving Toolbox”.
Example: [0,0,0.01]

Dependencies

To enable this parameter, select Specify offset.

Relative rotation [Roll, Pitch, Yaw] (deg) — Rotational offset relative to mounting
location
[0, 0, 0] (default) | real-valued 1-by-3 vector

Rotational offset relative to the mounting location of the sensor, specified as a real-valued 1-by-3
vector of the form [Roll, Pitch, Yaw] . Roll, pitch, and yaw are the angles of rotation about the X-, Y-,
and Z-axes, respectively. Units are in degrees.

If you mount the sensor to a vehicle by setting Parent name to the name of that vehicle, then X, Y,
and Z are in the vehicle coordinate system, where:

• The X-axis points forward from the vehicle.
• The Y-axis points to the left of the vehicle, as viewed when looking in the forward direction of the

vehicle.
• The Z-axis points up.
• Roll, pitch, and yaw are clockwise-positive when looking in the forward direction of the X-axis, Y-

axis, and Z-axis, respectively. If you view a scene from a 2D top-down perspective, then the yaw
angle (also called the orientation angle) is counterclockwise-positive because you are viewing the
scene in the negative direction of the Z-axis.

The origin is the mounting location specified in the Mounting location parameter. This origin is
different from the vehicle origin, which is the geometric center of the vehicle.

If you mount the sensor to the scene origin by setting Parent name to Scene Origin, then X, Y,
and Z are in the world coordinates of the scene.

For more details about the vehicle and world coordinate systems, see “Coordinate Systems for Unreal
Engine Simulation in Automated Driving Toolbox”.
Example: [0,0,10]

Dependencies

To enable this parameter, select Specify offset.

Sample time — Sample time
-1 (default) | positive scalar

Sample time of the block in seconds, specified as a positive scalar. The 3D simulation environment
frame rate is the inverse of the sample time.
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If you set the sample time to -1, the block inherits its sample time from the Simulation 3D Scene
Configuration block.

Parameters

Detection Reporting

Types of detections generated by sensor — Types of detections generated by sensor
Lanes and objects (default) | Objects only | Lanes only | Lanes with occlusion

Types of detections generated by the sensor, specified as one of these options:

• Lanes and objects — Detect lanes and objects. No road information is used to occlude actors.
• Objects only — Detect objects only.
• Lanes only — Detection lanes only.
• Lanes with occlusion — Detect lane and objects. Objects in the camera field of view can

impair the ability of the sensor to detect lanes.

Maximum number of reported detections — Maximum number of reported detections
50 (default) | positive integer

Maximum number of detections reported by the sensor, specified as a positive integer. Detections are
reported in order of increasing distance from the sensor until the maximum number is reached.
Example: 100

Maximum number of reported lanes — Maximum number of reported lanes
30 (default) | positive integer

Maximum number of reported lanes, specified as a positive integer.
Example: 100

Distance from parent for computing lane boundaries — Distances from parent frame
at which to compute lane boundaries
0:0.5:9.5 (default) | N-element real-valued vector

Distances from the parent frame at which to compute the lane boundaries, specified as an N-element
real-valued vector. N is the number of distance values. Units are in meters.

The parent is the frame to which the sensor is mounted, such as the ego vehicle. The Parent name
parameter determines the parent frame. Distances are relative to the origin of the parent frame.

When detecting lanes from rear-facing cameras, specify negative distances. When detecting lanes
from front-facing cameras, specify positive distances.

By default, the block computes a lane boundary every 0.5 meters over the range from 0 to 9.5 meters
ahead of the parent.
Example: 1:0.1:10 computes a lane boundary every 0.1 meters over the range from 1 to 10 meters
ahead of the parent.

Output Port Settings

Source of object bus name — Source of object bus name
Auto (default) | Property
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Source of object bus name, specified as Auto or Property. If you select Auto, the block creates a
bus name. If you select Property, specify the bus name by using the Object bus name parameter.

Object bus name — Object bus name
BusObjectDetections | valid bus name

Object bus name, specified as a valid bus name.

Dependencies

To enable this parameter, set the Source of object bus name parameter to Property.

Source of output lane bus name — Source of output lane bus name
Auto (default) | Property

Source of output lane bus name, specified as Auto or Property. If you select Auto, the block creates
a bus name. If you select Property, specify the bus name by using the Specify an output lane bus
name parameter.

Specify an output lane bus name — Lane bus name
BusLaneDetections (default) | valid bus name

Lane bus name, specified as a valid bus name.

Dependencies

To enable this parameter, set the Source of output lane bus name parameter to Property.

Measurements

Maximum detection range (m) — Maximum detection range
150 (default) | positive real scalar

Maximum detection range, specified as a positive real scalar. The vision sensor cannot detect objects
beyond this range. Units are in meters.
Example: 250

Object Detector Settings

Bounding box accuracy (pixels) — Bounding box accuracy
5 (default) | positive real scalar

Bounding box accuracy, specified as a positive real scalar. This quantity defines the accuracy with
which the detector can match a bounding box to a target. Units are in pixels.
Example: 9

Smoothing filter noise intensity (m/s^2) — Noise intensity used for filtering position
and velocity measurements
5 (default) | positive real scalar

Noise intensity used for filtering position and velocity measurements, specified as a positive real
scalar. Noise intensity defines the standard deviation of the process noise of the internal constant-
velocity Kalman filter used in a vision sensor. The filter models the process noise by using a
piecewise-constant white noise acceleration model. Noise intensity is typically of the order of the
maximum acceleration magnitude expected for a target. Units are in meters per second squared.
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Example: 2

Maximum detectable object speed (m/s) — Maximum detectable object speed
50 (default) | nonnegative real scalar

Maximum detectable object speed, specified as a nonnegative real scalar. Units are in meters per
second.
Example: 20

Maximum allowed occlusion for detector — Maximum allowed occlusion of an object
0.5 (default) | real scalar in the range [0 1)

Maximum allowed occlusion of an object, specified as a real scalar in the range [0 1). Occlusion is the
fraction of the total surface area of an object that is not visible to the sensor. A value of 1 indicates
that the object is fully occluded. Units are dimensionless.
Example: 0.2

Minimum detectable image size of an object (pixels) — Minimum height and width
of an object
[15,15] (default) | 1-by-2 vector of positive values

Minimum height and width of an object that the vision sensor detects within an image, specified as a
[minHeight,minWidth] vector of positive values. The 2-D projected height of an object must be
greater than or equal to minHeight. The projected width of an object must be greater than or equal
to minWidth. Units are in pixels.
Example: [25 20]

Probability of detecting a target — Probability of detection
0.9 (default) | positive real scalar less than or equal to 1

Probability of detecting a target, specified as a positive real scalar less than or equal to 1. This
quantity defines the probability that the sensor detects a detectable object. A detectable object is an
object that satisfies the minimum detectable size, maximum range, maximum speed, and maximum
allowed occlusion constraints.
Example: 0.95

Number of false positives per image — Number of false detections generated by vision
sensor per image
0.1 (default) | nonnegative real scalar

Number of false detections generated by the vision sensor per image, specified as a nonnegative real
scalar.
Example: 1.0

Lane Detector Settings

Minimum lane size in image (pixels) — Maximum size of lane
[20,3] (default) | 1-by-2 real-valued vector

Minimum size of a projected lane marking in the camera image that the sensor can detect after
accounting for curvature, specified as a 1-by-2 real-valued vector of the form [minHeight,
minWidth]. Lane markings must exceed both of these values to be detected. Units are in pixels.
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Accuracy of lane boundary (pixels) — Accuracy of lane boundary
3 (default) | positive real scalar

Accuracy of lane boundaries, specified as a positive real scalar. This parameter defines the accuracy
with which the lane sensor can place a lane boundary. Units are in pixels.
Example: 2.5

Random Number Generator Settings

Add noise to measurements — Enable adding noise to vision sensor measurements
on (default) | off

Select this parameter to add noise to vision sensor measurements. Otherwise, the measurements are
noise-free. The MeasurementNoise property of each detection is always computed and is not
affected by the value you specify for the Add noise to measurements parameter.

Select method to specify initial seed — Method to specify random number generator
seed
Repeatable (default) | Specify seed | Not repeatable

Method to set the random number generator seed, specified as one of the options in the table.

Option Description
Repeatable The block generates a random initial seed for the

first simulation and reuses this seed for all
subsequent simulations. Select this parameter to
generate repeatable results from the statistical
sensor model. To change this initial seed, at the
MATLAB command prompt, enter: clear all.

Specify seed Specify your own random initial seed for
reproducible results by using the Initial seed
parameter.

Not repeatable The block generates a new random initial seed
after each simulation run. Select this parameter
to generate nonrepeatable results from the
statistical sensor model.

Initial seed — Random number generator seed
1 (default) | nonnegative integer less than 232

Random number generator seed, specified as a nonnegative integer less than 232.
Example: 2001

Dependencies

To enable this parameter, set the Select method to specify initial seed parameter to Specify
seed.

Camera Intrinsics

Focal length (pixels) — Camera focal length
[800,800] (default) | two-element real-valued vector
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Camera focal length, in pixels, specified as a two-element real-valued vector. See also the
FocalLength property of cameraIntrinsics.
Example: [480,320]

Optical center (pixels) — Optical center of camera
[320,240] (default) | two-element real-valued vector

Optical center of the camera, in pixels, specified as a two-element real-valued vector. See also the
PrincipalPoint property of cameraIntrinsics.
Example: [480,320]

Image size (pixels) — Image size produced by camera
[480,640] (default) | two-element vector of positive integers

Image size produced by the camera, in pixels, specified as a two-element vector of positive integers.
See also the ImageSize property of cameraIntrinsics.
Example: [240,320]

Radial distortion coefficients — Radial distortion coefficients
[0,0] (default) | two-element real-valued vector | three-element real-valued vector

Radial distortion coefficients, specified as a two-element or three-element real-valued vector. For
details on setting these coefficients, see the RadialDistortion property of cameraIntrinsics.
Example: [1,1]

Tangential distortion coefficients — Tangential distortion coefficients
[0,0] (default) | two-element real-valued vector

Tangential distortion coefficients, specified as a two-element real-valued vector. For details on setting
these coefficients, see the TangentialDistortion property of cameraIntrinsics.
Example: [1,1]

Skew of the camera axes — Skew angle of camera axes
0 (default) | real scalar

Skew angle of the camera axes, specified as a real scalar. See also the Skew property of
cameraIntrinsics.
Example: 0.1

Ground Truth

Output actor truth — Output ground truth of actors
off (default) | on

Select this parameter to output the ground truth of actors on the Actor Truth output port.

Output lane truth — Output ground truth of lane boundaries
off (default) | on

Select this parameter to output the ground truth of lane boundaries on the Lane Truth output port.
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Tips
• The sensor is unable to detect lanes and objects from vantage points too close to the ground. After

mounting the sensor block to a vehicle by using the Parent name parameter, set the Mounting
location parameter to one of the predefined mounting locations on the vehicle.

If you leave Mounting location set to Origin, which mounts the sensor on the ground below the
vehicle center, then specify an offset that is at least 0.1 meter above the ground. Select Specify
offset, and in the Relative translation [X, Y, Z] (m) parameter, set a Z value of at least 0.1.

• To visualize detections and sensor coverage areas, use the Bird's-Eye Scope. See “Visualize
Sensor Data from Unreal Engine Simulation Environment”.

• Because the Unreal Engine can take a long time to start between simulations, consider logging
the signals that the sensors output. See “Configure a Signal for Logging” (Simulink).

Algorithms
To generate detections, the Simulation 3D Vision Detection Generator block feeds the actor and lane
ground truth data that is read from the Unreal Engine simulation environment to a Vision Detection
Generator block. This block returns detections that are based on cuboid, or box-shaped,
representations of the actors. The physical dimensions of detected actors are not based on their
dimensions in the Unreal Engine environment. Instead, they are based on the default values set in the
Actor Profiles parameter tab of the Vision Detection Generator block, where all actors are
approximately the size of a sedan. If you return detections that have occlusions, then the occlusions
are based on all actors being of this one size.

See Also
Apps
Bird's-Eye Scope

Blocks
Detection Concatenation | Multi-Object Tracker | Scenario Reader | Simulation 3D Probabilistic Radar
| Simulation 3D Scene Configuration | Simulation 3D Vehicle with Ground Following | Vision Detection
Generator

Objects
cameraIntrinsics | visionDetectionGenerator

Topics
“Unreal Engine Simulation for Automated Driving”
“Coordinate Systems for Unreal Engine Simulation in Automated Driving Toolbox”
“Choose a Sensor for Unreal Engine Simulation”
“Visualize Sensor Data and Tracks in Bird's-Eye Scope”

Introduced in R2020b
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Vehicle To World
Convert actors from ego vehicle coordinates to world coordinates
Library: Automated Driving Toolbox / Driving Scenario and Sensor

Modeling

Description
The Vehicle To World block converts actor poses from the vehicle coordinates of the input ego vehicle
to world coordinates. Use this block to convert non-ego actor poses output by the Scenario Reader
block into world coordinates for use with the 3D simulation environment. Before using these output
poses to specify vehicle positions in the 3D environment, first convert them from the cuboid to the 3D
simulation world coordinate system by using a Cuboid To 3D Simulation block. For an example of this
workflow, see the “Visualize Sensor Data from Unreal Engine Simulation Environment” example.

Ports
Input

Actors — Actor poses in vehicle coordinates
Simulink bus containing MATLAB structure

Actor poses in vehicle coordinates, specified as a Simulink bus containing a MATLAB structure.

The structure must contain these fields.

Field Description Type
NumActors Number of actors Nonnegative integer
Time Current simulation time Real-valued scalar
Actors Actor poses NumActors-length array of

actor pose structures

Each actor pose structure in Actors must contain these fields.

Field Description
ActorID Scenario-defined actor identifier, specified as a

positive integer.
Position Position of actor, specified as a real-valued vector

of the form [x, y, z]. Units are in meters.
Velocity Velocity (v) of actor in the x-, y-, and z-direction,

specified as a real-valued vector of the form [vx,
vy, vz]. Units are in meters per second.
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Field Description
Roll Roll angle of actor, specified as a real-valued

scalar. Units are in degrees.
Pitch Pitch angle of actor, specified as a real-valued

scalar. Units are in degrees.
Yaw Yaw angle of actor, specified as a real-valued

scalar. Units are in degrees.
AngularVelocity Angular velocity (ω) of actor in the x-, y-, and z-

direction, specified as a real-valued vector of the
form [ωx, ωy, ωz]. Units are in degrees per second.

Ego Vehicle — Ego vehicle pose
Simulink bus containing MATLAB structure

Ego vehicle pose, specified as a Simulink bus containing a MATLAB structure.

The structure must contain these fields.

Field Description
ActorID Scenario-defined actor identifier, specified as a

positive integer.
Position Position of actor, specified as a real-valued vector

of the form [x, y, z]. Units are in meters.
Velocity Velocity (v) of actor in the x-, y-, and z-direction,

specified as a real-valued vector of the form [vx,
vy, vz]. Units are in meters per second.

Roll Roll angle of actor, specified as a real-valued
scalar. Units are in degrees.

Pitch Pitch angle of actor, specified as a real-valued
scalar. Units are in degrees.

Yaw Yaw angle of actor, specified as a real-valued
scalar. Units are in degrees.

AngularVelocity Angular velocity (ω) of actor in the x-, y-, and z-
direction, specified as a real-valued vector of the
form [ωx, ωy, ωz]. Units are in degrees per second.

Output

Actors — Actor poses in world coordinates
Simulink bus containing MATLAB structure

Actor poses in world coordinates, returned as a Simulink bus containing a MATLAB structure.

The structure has these fields.

Field Description Type
NumActors Number of actors Nonnegative integer
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Field Description Type
Time Current simulation time Real-valued scalar
Actors Actor poses NumActors-length array of

actor pose structures

Each actor pose structure in Actors has these fields.

Field Description
ActorID Scenario-defined actor identifier, specified as a

positive integer.
Position Position of actor, specified as a real-valued vector

of the form [x, y, z]. Units are in meters.
Velocity Velocity (v) of actor in the x-, y-, and z-direction,

specified as a real-valued vector of the form [vx,
vy, vz]. Units are in meters per second.

Roll Roll angle of actor, specified as a real-valued
scalar. Units are in degrees.

Pitch Pitch angle of actor, specified as a real-valued
scalar. Units are in degrees.

Yaw Yaw angle of actor, specified as a real-valued
scalar. Units are in degrees.

AngularVelocity Angular velocity (ω) of actor in the x-, y-, and z-
direction, specified as a real-valued vector of the
form [ωx, ωy, ωz]. Units are in degrees per second.

Parameters
Source of actors bus name — Source of name for actor poses bus
Auto (default) | Property

Source of the name for the actor poses bus returned in the Actors output port, specified as one of
these options:

• Auto — The block automatically creates an actor poses bus name.
• Property — Specify the actor poses bus name by using the Actors bus name parameter.

Actors bus name — Name of actor poses bus
valid bus name

Name of the actor poses bus returned in the Actors output port, specified as a valid bus name.

Dependencies

To enable this parameter, set Source of actors bus name to Property.

Simulate using — Type of simulation to run
Interpreted execution (default) | Code generation
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• Interpreted execution — Simulate the model using the MATLAB interpreter. This option
shortens startup time. In Interpreted execution mode, you can debug the source code of the
block.

• Code generation — Simulate the model using generated C/C++ code. The first time you run a
simulation, Simulink generates C/C++ code for the block. The C code is reused for subsequent
simulations as long as the model does not change. This option requires additional startup time.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Cuboid To 3D Simulation | Scenario Reader | World To Vehicle

Topics
“Coordinate Systems in Automated Driving Toolbox”
“Coordinate Systems for Unreal Engine Simulation in Automated Driving Toolbox”

Introduced in R2020a
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Velocity Profiler
Generate velocity profile of vehicle path given kinematic constraints
Library: Automated Driving Toolbox

Description
The Velocity Profiler block generates a velocity profile of a driving path that satisfies this set of
specified kinematic constraints:

• The maximum allowable speed of the vehicle
• The maximum longitudinal acceleration and deceleration of the vehicle
• The maximum longitudinal jerk on page 2-175 of the vehicle
• The maximum lateral acceleration on page 2-175 of the vehicle

Specify the cumulative lengths along the path and the driving directions and curvatures at each point
along the path. You can obtain these values from the output of a Path Smoother Spline block. Also
specify the longitudinal velocity of the vehicle at the start and end of the path.

Use the generated velocity profile as the input reference velocities of a longitudinal controller, as
shown in the “Automated Parking Valet in Simulink” example.

Ports
Input

Directions — Driving directions along path
M-by-1 vector of 1s (forward motion) and –1s (reverse motion)

Driving directions of the vehicle along the length of the path, specified as an M-by-1 vector of 1s
(forward motion) and –1s (reverse motion). Each vector element represents the driving direction of
the vehicle at the corresponding cumulative path length specified by the CumLengths input port. M
is the number of driving directions and must be equal to the lengths of the CumLengths and
Curvatures inputs.

You can obtain Directions from the output of a Path Smoother Spline block.

CumLengths — Cumulative path lengths
M-by-1 vector of monotonically increasing real-valued elements

Cumulative path lengths, in meters, specified as an M-by-1 vector of monotonically increasing real-
valued elements. Each vector element represents a point along the path. M is the number of
cumulative path lengths and must be equal to the lengths of the Directions and Curvatures inputs.
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You can obtain CumLengths from the output of a Path Smoother Spline block.

Curvatures — Signed path curvatures along path
M-by-1 real-valued vector

Signed path curvatures along the length of the path, in radians per meter, specified as an M-by-1 real-
valued vector. Each vector element represents the curvature of the path at the corresponding
cumulative path length specified by the CumLengths input port. M is the number of curvatures and
must be equal to the lengths of the Directions and CumLengths inputs.

You can obtain Curvatures from the output of a Path Smoother Spline block.

StartVelocity — Longitudinal velocity of vehicle at start of path
real scalar

Longitudinal velocity of the vehicle at the start of the path, in meters per second, specified as a real
scalar.

EndVelocity — Longitudinal velocity of vehicle at end of path
real scalar

Longitudinal velocity of the vehicle at the end of the path, in meters per second, specified as a real
scalar.

Output

Velocities — Velocity profile along path
M-by-1 real-valued vector

Velocity profile along the length of the path, in meters per second, returned as an M-by-1 real-valued
column vector. Each vector element represents a reference longitudinal velocity for the vehicle at the
corresponding cumulative path length specified by the CumLengths input port. M is the number of
velocities and is equal to the length of CumLengths.

The output velocity values satisfy the speed, acceleration, and jerk constraints specified in the
parameters of the Velocity Profiler block. You can use this output as the reference velocity for a
vehicle controller.

Velocities is a variable-size output with the limitations described in “Variable-Size Signal
Limitations” (Simulink).

Times — Vehicle times of arrival for velocity profile
M-by-1 real-valued vector

Vehicle times of arrival for the velocity profile specified in Velocities, returned as an M-by-1 real-
valued vector. M is the number of vehicle times of arrival and is equal to the length of Velocities.
Units are in seconds.

Each vector element represents the time that a vehicle traveling at velocity v arrives at cumulative
path length p, where:

• v is the corresponding velocity returned by the Velocities output port.
• p is the corresponding cumulative path length specified by the CumLengths input port.
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Use Times to visualize the velocity profile over time, as shown in the “Velocity Profile of Straight
Path” and “Velocity Profile of Path with Curve and Direction Change” examples.

Times is a variable-size output with the limitations described in “Variable-Size Signal Limitations”
(Simulink).
Dependencies

To enable this port, select the Show Times output port parameter.

Parameters
Maximum longitudinal acceleration (m/s^2) — Maximum longitudinal acceleration of
vehicle
3 (default) | positive real scalar

Maximum longitudinal acceleration of the vehicle, in meters per second squared, specified as a
positive real scalar.

When developing a longitudinal controller, this parameter must be equal to the corresponding
parameter in the Longitudinal Controller Stanley block. Otherwise, the vehicle is unable to run the
generated velocity profile.

Maximum longitudinal deceleration (m/s^2) — Maximum longitudinal deceleration of
vehicle
6 (default) | positive real scalar

Maximum longitudinal deceleration of the vehicle, in meters per second squared, specified as a
positive real scalar.

When developing a longitudinal controller, this parameter must be equal to the corresponding
parameter in the Longitudinal Controller Stanley block. Otherwise, the vehicle is unable to run the
generated velocity profile.

Maximum allowable speed (m/s) — Maximum allowable speed along path
10 (default) | positive real scalar

Maximum allowable speed of the vehicle along the path, in meters per second, specified as a positive
real scalar. Use this parameter to constrain the speed of the vehicle based on passenger comfort or
speed limit requirements.

When the path length is too short for the vehicle to reach this maximum speed, the block calculates a
smaller maximum speed that satisfies the path length constraint.

In the output velocity profile, the speed of the vehicle is constrained to [–Vmax, Vmax], where Vmax is the
value of this parameter.

Maximum longitudinal jerk (m/s^3) — Maximum longitudinal jerk
1 (default) | positive real scalar

Maximum longitudinal jerk of the vehicle along the path, in meters per second cubed, specified as a
positive real scalar.

In the output velocity profile, the longitudinal jerk of the vehicle is constrained to [–Jmax, Jmax], where
Jmax is the value of this parameter.
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Maximum lateral acceleration (m/s^2) — Maximum lateral acceleration
1 (default) | positive real scalar

Maximum lateral acceleration of the vehicle along the path, in meters per second squared, specified
as a positive real scalar.

In the output velocity profile, the lateral acceleration of the vehicle is constrained to [–Amax, Amax],
where Amax is the value of this parameter.

Show Times output port — Output times of arrival for velocity profile
off (default) | on

Select this parameter to enable the Times output port.

Sample time — Sample time of block
-1 (default) | positive real scalar

Sample time of the block, in seconds, specified as -1 or as a positive real scalar. The default of -1
means that the block inherits its sample time from upstream blocks.

Because the Velocity Profiler block outputs variable-size signals, the sample time of the block must be
discrete (nonzero). If the block inherits its sample time from upstream blocks, those blocks must also
have discrete sample times.

Simulate using — Type of simulation to run
Code Generation (default) | Interpreted Execution

• Code generation — Simulate the model using generated C/C++ code. The first time you run a
simulation, Simulink generates C/C++ code for the block. The C code is reused for subsequent
simulations as long as the model does not change. This option requires additional startup time.

• Interpreted execution — Simulate the model using the MATLAB interpreter. This option
shortens startup time. In Interpreted execution mode, you can debug the source code of the
block.

More About
Jerk

Jerk is the rate of change of acceleration in a vehicle. Jerk minimization is a key comfort requirement
for vehicle passengers. Rapid changes in acceleration or deceleration result in a "jerky" ride for
passengers. Jerk is measured in units of meters per second cubed.

Lateral Acceleration

Lateral acceleration is defined as alat = v2κ, where:

• v is the longitudinal velocity of the vehicle.
• κ is the curvature of the path. Units are in radians per meter.

Lateral acceleration is measured in units of meters per second squared.

Algorithms
To generate the velocity profile for a reference path, the Velocity Profiler block performs these steps:
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1 Generate a continuous velocity profile that satisfies all kinematic constraints (speed,
acceleration, and jerk) specified by the block parameters.

2 Discretize the velocity profile by mapping poses in the reference path to velocity values, based on
how far away the poses are from the starting pose. The cumulative path lengths specified in the
CumLengths input port contain these distances. The Path Smoother Spline block returns these
cumulative path lengths, along with the smooth path.

The generated velocity profile is a seven-interval curve. At each time interval within the curve, the
jerk, acceleration, and velocity of the vehicle change to satisfy the specified constraints. The figure
and table show how these values change for a vehicle traveling in forward motion along a path. For
simplicity, the starting and ending velocity of the vehicle, as specified by the StartVelocity and
EndVelocity input ports, are both 0.

Time Interval Jerk Acceleration Velocity Notes
1 Set to MaxJerk Increases from 0

to MaxAccel
Increases from
starting velocity

-

2 Set to 0 Held constant at
MaxAccel

Keeps increasing During the
previous interval,
if the vehicle
cannot reach
MaxAccel given
the MaxSpeed
constraint, then
interval 2 does not
occur.

3 Set to -MaxJerk Decreases from
MaxAccel to 0

Increases to
MaxSpeed

-

4 Set to 0 Held constant at 0 Held constant at
MaxSpeed

-

5 Set to -MaxJerk Decreases from 0
to -MaxDecel

Starts decreasing -
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Time Interval Jerk Acceleration Velocity Notes
6 Set to 0 Held constant at -

MaxDecel
Keeps decreasing During the

previous interval,
if the vehicle
cannot reach -
MaxDecel given
the MaxSpeed
constraint, then
interval 6 does not
occur.

7 Set to MaxJerk Increases from -
MaxDecel to 0

Decreases to
ending velocity

-

In the figure and table:

• MaxJerk and -MaxJerk are set by the Maximum longitudinal jerk (m/s^3) parameter.
• MaxAccel and -MaxDecel are set by the Maximum longitudinal acceleration (m/s^2) and

Maximum longitudinal deceleration (m/s^2) parameters, respectively. You can specify
asymmetric values for these parameters.

• MaxSpeed is set by the Maximum allowable speed (m/s) parameter.

For a vehicle in reverse motion, the curves in the figure are reversed. The signs of the parameter
values shown in the figure and table are also reversed.

If the vehicle includes multiple changes in direction, the block generates separate velocity profiles for
each driving direction. Then the block concatenates these profiles in the final Velocities output. For
an example, see “Velocity Profile of Path with Curve and Direction Change”.

References
[1] Villagra, Jorge, Vicente Milanés, Joshué Pérez, and Jorge Godoy. "Smooth path and speed planning

for an automated public transport vehicle." Robotics and Autonomous Systems. Vol. 60,
Number 2, February 2012, pp. 252–265.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Lateral Controller Stanley | Longitudinal Controller Stanley | Path Smoother Spline

Introduced in R2019b
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Vision Detection Generator
Detect objects and lanes from visual measurements
Library: Automated Driving Toolbox / Driving Scenario and Sensor

Modeling

Description
The Vision Detection Generator block generates detections from camera measurements taken by a
vision sensor mounted on an ego vehicle.

The block derives detections from simulated actor poses and generates these detections at intervals
equal to the sensor update interval. By default, detections are referenced to the coordinate system of
the ego vehicle. The block can simulate real detections with added random noise and also generate
false positive detections. A statistical model generates the measurement noise, true detections, and
false positives. To control the random numbers that the statistical model generates, use the random
number generator settings on the Measurements tab of the block.

You can use the Vision Detection Generator to create input to a Multi-Object Tracker block. When
building scenarios and sensor models using the Driving Scenario Designer app, the camera sensors
exported to Simulink are output as Vision Detection Generator blocks.

Ports
Input

Actors — Scenario actor poses
Simulink bus containing MATLAB structure

Scenario actor poses in ego vehicle coordinates, specified as a Simulink bus containing a MATLAB
structure.

The structure must contain these fields.

Field Description Type
NumActors Number of actors Nonnegative integer
Time Current simulation time Real-valued scalar
Actors Actor poses NumActors-length array of

actor pose structures

Each actor pose structure in Actors must have these fields.
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Field Description
ActorID Scenario-defined actor identifier, specified as a

positive integer.
Position Position of actor, specified as a real-valued vector

of the form [x, y, z]. Units are in meters.
Velocity Velocity (v) of actor in the x-, y-, and z-direction,

specified as a real-valued vector of the form [vx,
vy, vz]. Units are in meters per second.

Roll Roll angle of actor, specified as a real-valued
scalar. Units are in degrees.

Pitch Pitch angle of actor, specified as a real-valued
scalar. Units are in degrees.

Yaw Yaw angle of actor, specified as a real-valued
scalar. Units are in degrees.

AngularVelocity Angular velocity (ω) of actor in the x-, y-, and z-
direction, specified as a real-valued vector of the
form [ωx, ωy, ωz]. Units are in degrees per second.

Dependencies

To enable this input port, set the Types of detections generated by sensor parameter to Objects
only, Lanes with occlusion, or Lanes and objects.

Lane Boundaries — Lane boundaries
Simulink bus containing MATLAB structure

Lane boundaries in ego vehicle coordinates, specified as a Simulink bus containing a MATLAB
structure.

The structure must contain these fields.

Field Description Type
NumLaneBoundaries Number of lane boundaries Nonnegative integer
Time Current simulation time Real scalar
LaneBoundaries Lane boundaries NumLaneBoundaries-length

array of lane boundary
structures

Each lane boundary structure in LaneBoundaries must have these fields.

Field Description
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Coordinates Lane boundary coordinates, specified as a real-
valued N-by-3 matrix, where N is the number of
lane boundary coordinates. Lane boundary
coordinates define the position of points on the
boundary at specified longitudinal distances away
from the ego vehicle, along the center of the
road.

• In MATLAB, specify these distances by using
the 'XDistance' name-value pair argument
of the laneBoundaries function.

• In Simulink, specify these distances by using
the Distances from ego vehicle for
computing boundaries (m) parameter of
the Scenario Reader block or the Distance
from parent for computing lane
boundaries parameter of the Simulation 3D
Vision Detection Generator block.

This matrix also includes the boundary
coordinates at zero distance from the ego vehicle.
These coordinates are to the left and right of the
ego-vehicle origin, which is located under the
center of the rear axle. Units are in meters.

Curvature Lane boundary curvature at each row of the
Coordinates matrix, specified as a real-valued
N-by-1 vector. N is the number of lane boundary
coordinates. Units are in radians per meter.

CurvatureDerivative Derivative of lane boundary curvature at each
row of the Coordinates matrix, specified as a
real-valued N-by-1 vector. N is the number of lane
boundary coordinates. Units are in radians per
square meter.

HeadingAngle Initial lane boundary heading angle, specified as
a real scalar. The heading angle of the lane
boundary is relative to the ego vehicle heading.
Units are in degrees.

LateralOffset Distance of the lane boundary from the ego
vehicle position, specified as a real scalar. An
offset to a lane boundary to the left of the ego
vehicle is positive. An offset to the right of the
ego vehicle is negative. Units are in meters.
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BoundaryType Type of lane boundary marking, specified as one
of these values:

• 'Unmarked' — No physical lane marker
exists

• 'Solid' — Single unbroken line
• 'Dashed' — Single line of dashed lane

markers
• 'DoubleSolid' — Two unbroken lines
• 'DoubleDashed' — Two dashed lines
• 'SolidDashed' — Solid line on the left and a

dashed line on the right
• 'DashedSolid' — Dashed line on the left

and a solid line on the right
Strength Saturation strength of the lane boundary

marking, specified as a real scalar from 0 to 1. A
value of 0 corresponds to a marking whose color
is fully unsaturated. The marking is gray. A value
of 1 corresponds to a marking whose color is fully
saturated.

Width Lane boundary width, specified as a positive real
scalar. In a double-line lane marker, the same
width is used for both lines and for the space
between lines. Units are in meters.

Length Length of dash in dashed lines, specified as a
positive real scalar. In a double-line lane marker,
the same length is used for both lines.

Space Length of space between dashes in dashed lines,
specified as a positive real scalar. In a dashed
double-line lane marker, the same space is used
for both lines.

Dependencies

To enable this input port, set the Types of detections generated by sensor parameter to Lanes
only, Lanes only, Lanes with occlusion, or Lanes and objects.

Output

Object Detections — Object detections
Simulink bus containing MATLAB structure

Object detections, returned as a Simulink bus containing a MATLAB structure. For more details about
buses, see “Create Nonvirtual Buses” (Simulink).

You can pass object detections from these sensors and other sensors to a tracker, such as a Multi-
Object Tracker block, and generate tracks.

The detections structure has this form:
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Field Description Type
NumDetections Number of detections Integer
IsValidTime False when updates are

requested at times that are
between block invocation
intervals

Boolean

Detections Object detections Array of object detection
structures of length set by the
Maximum number of
reported detections
parameter. Only
NumDetections of these
detections are actual detections.

The object detection structure contains these properties.

Property Definition
Time Measurement time
Measurement Object measurements
MeasurementNoise Measurement noise covariance matrix
SensorIndex Unique ID of the sensor
ObjectClassID Object classification
ObjectAttributes Additional information passed to tracker
MeasurementParameters Parameters used by initialization functions of

nonlinear Kalman tracking filters

The Measurement field reports the position and velocity of a measurement in the coordinate system
specified by Coordinate system used to report detections. This field is a real-valued column
vector of the form [x; y; z; vx; vy; vz]. Units are in meters per second.

The MeasurementNoise field is a 6-by-6 matrix that reports the measurement noise covariance for
each coordinate in the Measurement field.

The MeasurementParameters field is a structure with these fields.

Parameter Definition
Frame Enumerated type indicating the frame used to

report measurements. The Vision Detection
Generator block reports detections in either ego
and sensor Cartesian coordinates, which are both
rectangular coordinate frames. Therefore, for this
block, Frame is always set to 'rectangular'.

OriginPosition 3-D vector offset of the sensor origin from the ego
vehicle origin. The vector is derived from the
Sensor's (x,y) position (m) and Sensor's
height (m) parameters of the block.
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Parameter Definition
Orientation Orientation of the vision sensor coordinate

system with respect to the ego vehicle coordinate
system. The orientation is derived from the Yaw
angle of sensor mounted on ego vehicle
(deg), Pitch angle of sensor mounted on ego
vehicle (deg), and Roll angle of sensor
mounted on ego vehicle (deg) parameters of
the block.

HasVelocity Indicates whether measurements contain velocity.

The ObjectAttributes property of each detection is a structure with these fields.

Field Definition
TargetIndex Identifier of the actor, ActorID, that generated

the detection. For false alarms, this value is
negative.

Dependencies

To enable this output port, set the Types of detections generated by sensor parameter to Objects
only, Lanes with occlusion, or Lanes and objects.

Lane Detections — Lane boundary detections
Simulink bus containing MATLAB structure

Lane boundary detections, returned as a Simulink bus containing a MATLAB structure. The structure
had these fields:

Field Description Type
Time Lane detection time Real scalar
IsValidTime False when updates are

requested at times that are
between block invocation
intervals

Boolean

SensorIndex Unique identifier of sensor Positive integer
NumLaneBoundaries Number of lane boundary

detections
Nonnegative integer

LaneBoundaries Lane boundary detections Array of
clothoidLaneBoundary
objects

Dependencies

To enable this output port, set the Types of detections generated by sensor parameter to Lanes
only, Lanes with occlusion, or Lanes and objects.
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Parameters
Parameters

Sensor Identification

Unique identifier of sensor — Unique sensor identifier
1 (default) | positive integer

Unique sensor identifier, specified as a positive integer. The sensor identifier distinguishes detections
that come from different sensors in a multisensor system. If a model contains multiple sensor blocks
with the same sensor identifier, the Bird's-Eye Scope displays an error.
Example: 5

Types of detections generated by sensor — Select the types of detections
Objects only (default) | Lanes only | Lanes with occlusion | Lanes and objects

Types of detections generated by the sensor, specified as Objects only, Lanes only, Lanes with
occlusion, or Lanes and objects.

• When set to Objects only, no road information is used to occlude actors.
• When set to Lanes only, no actor information is used to detect lanes.
• When set to Lanes with occlusion, actors in the camera field of view can impair the sensor

ability to detect lanes.
• When set to Lanes and objects, the sensor generates object both object detections and

occluded lane detections.

Required interval between sensor updates (s) — Required time interval
0.1 (default) | positive real scalar

Required time interval between sensor updates, specified as a positive real scalar. The value of this
parameter must be an integer multiple of the Actors input port data interval. Updates requested
from the sensor between update intervals contain no detections. Units are in seconds.

Required interval between lane detections updates (s) — Time interval between
lane detection updates
0.1 (default) | positive real scalar

Required time interval between lane detection updates, specified as a positive real scalar. The vision
detection generator is called at regular time intervals. The vision detector generates new lane
detections at intervals defined by this parameter which must be an integer multiple of the simulation
time interval. Updates requested from the sensor between update intervals contain no lane
detections. Units are in seconds.

Sensor Extrinsics

Sensor's (x,y) position (m) — Location of the vision sensor center
[3.4 0] (default) | real-valued 1-by-2 vector

Location of the vision sensor center, specified as a real-valued 1-by-2 vector. The Sensor's (x,y)
position (m) and Sensor's height (m) parameters define the coordinates of the vision sensor with
respect to the ego vehicle coordinate system. The default value corresponds to a forward-facing
vision sensor mounted to a sedan dashboard. Units are in meters.
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Sensor's height (m) — Vision sensor height above the ground plane
0.2 (default) | positive real scalar

Vision sensor height above the ground plane, specified as a positive real scalar. The height is defined
with respect to the vehicle ground plane. The Sensor's (x,y) position (m) and Sensor's height (m)
parameters define the coordinates of the vision sensor with respect to the ego vehicle coordinate
system. The default value corresponds to a forward-facing vision sensor mounted a sedan dashboard.
Units are in meters.
Example: 0.25

Yaw angle of sensor mounted on ego vehicle (deg) — Yaw angle of sensor
0 (default) | real scalar

Yaw angle of vision sensor, specified as a real scalar. Yaw angle is the angle between the center line of
the ego vehicle and the optical axis of the camera. A positive yaw angle corresponds to a clockwise
rotation when looking in the positive direction of the z-axis of the ego vehicle coordinate system.
Units are in degrees.
Example: -4.0

Pitch angle of sensor mounted on ego vehicle (deg) — Pitch angle of sensor
0 (default) | real scalar

Pitch angle of sensor, specified as a real scalar. The pitch angle is the angle between the optical axis
of the camera and the x-y plane of the ego vehicle coordinate system. A positive pitch angle
corresponds to a clockwise rotation when looking in the positive direction of the y-axis of the ego
vehicle coordinate system. Units are in degrees.
Example: 3.0

Roll angle of sensor mounted on ego vehicle (deg) — Roll angle of sensor
0 (default) | real scalar

Roll angle of the vision sensor, specified as a real scalar. The roll angle is the angle of rotation of the
optical axis of the camera around the x-axis of the ego vehicle coordinate system. A positive roll angle
corresponds to a clockwise rotation when looking in the positive direction of the x-axis of the
coordinate system. Units are in degrees.

Output Port Settings

Source of object bus name — Source of object bus name
Auto (default) | Property

Source of object bus name, specified as Auto or Property. If you select Auto, the block
automatically creates a bus name. If you select Property, specify the bus name using the Specify
an object bus name parameter.
Example: Property

Source of output lane bus name — Source of lane bus name
Auto (default) | Property

Source of output lane bus name, specified as Auto or Property. If you choose Auto, the block will
automatically create a bus name. If you choose Property, specify the bus name using the Specify
an object bus name parameter.
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Example: Property

Object bus name — Name of object bus
valid bus name

Name of object bus, specified as a valid bus name.
Example: objectbus

Dependencies

To enable this parameter, set the Source of object bus name parameter to Property.

Specify an output lane bus name — Name of output lane bus
valid bus name

Namer of output lane bus, specified as a valid bus name.
Example: lanebus

Dependencies

To enable this parameter, set the Source of output lane bus name parameter to Property.

Detection Reporting

Maximum number of reported detections — Maximum number of reported detections
50 (default) | positive integer

Maximum number of detections reported by the sensor, specified as a positive integer. Detections are
reported in order of increasing distance from the sensor until the maximum number is reached.
Example: 100

Dependencies

To enable this parameter, set the Types of detections generated by sensor parameter to Objects
only or Lanes and objects.

Maximum number of reported lanes — Maximum number of reported lanes
30 (default) | positive integer

Maximum number of reported lanes, specified as a positive integer.
Example: 100

Dependencies

To enable this parameter, set the Types of detections generated by sensor parameter to Lanes
only, Lanes with occlusion, or Lanes and objects.

Coordinate system used to report detections — Coordinate system of reported
detections
Ego Cartesian (default) | Sensor Cartesian

Coordinate system of reported detections, specified as one of these values:

• Ego Cartesian — Detections are reported in the ego vehicle Cartesian coordinate system.
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• Sensor Cartesian— Detections are reported in the sensor Cartesian coordinate system.

Simulation

Simulate using — Type of simulation to run
Interpreted execution (default) | Code generation

• Interpreted execution — Simulate the model using the MATLAB interpreter. This option
shortens startup time. In Interpreted execution mode, you can debug the source code of the
block.

• Code generation — Simulate the model using generated C/C++ code. The first time you run a
simulation, Simulink generates C/C++ code for the block. The C code is reused for subsequent
simulations as long as the model does not change. This option requires additional startup time.

Measurements
Settings

Maximum detection range (m) — Maximum detection range
150 (default) | positive real scalar

Maximum detection range, specified as a positive real scalar. The vision sensor cannot detect objects
beyond this range. Units are in meters.
Example: 250

Object Detector Settings

Bounding box accuracy (pixels) — Bounding box accuracy
5 (default) | positive real scalar

Bounding box accuracy, specified as a positive real scalar. This quantity defines the accuracy with
which the detector can match a bounding box to a target. Units are in pixels.
Example: 9

Smoothing filter noise intensity (m/s^2) — Noise intensity used for filtering position
and velocity measurements
5 (default) | positive real scalar

Noise intensity used for filtering position and velocity measurements, specified as a positive real
scalar. Noise intensity defines the standard deviation of the process noise of the internal constant-
velocity Kalman filter used in a vision sensor. The filter models the process noise using a piecewise-
constant white noise acceleration model. Noise intensity is typically of the order of the maximum
acceleration magnitude expected for a target. Units are in meters per second squared.
Example: 2

Maximum detectable object speed (m/s) — Maximum detectable object speed
100 (default) | nonnegative real scalar

Maximum detectable object speed, specified as a nonnegative real scalar. Units are in meters per
second.
Example: 20

Maximum allowed occlusion for detector — Maximum allowed occlusion for detector
0.5 (default) | real scalar in the range [0 1)
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Maximum allowed occlusion of an object, specified as a real scalar in the range [0 1). Occlusion is the
fraction of the total surface area of an object that is not visible to the sensor. A value of 1 indicates
that the object is fully occluded. Units are dimensionless.
Example: 0.2

Minimum detectable image size of an object — Minimum height and width of an object
[15,15] (default) | 1-by-2 vector of positive values

Minimum height and width of an object that the vision sensor detects within an image, specified as a
[minHeight,minWidth] vector of positive values. The 2-D projected height of an object must be
greater than or equal to minHeight. The projected width of an object must be greater than or equal
to minWidth. Units are in pixels.
Example: [25 20]

Probability of detecting a target — Probability of detection
0.9 (default) | positive real scalar less than or equal to 1

Probability of detecting a target, specified as a positive real scalar less than or equal to 1. This
quantity defines the probability that the sensor detects a detectable object. A detectable object is an
object that satisfies the minimum detectable size, maximum range, maximum speed, and maximum
allowed occlusion constraints.
Example: 0.95

Number of false positives per image — Number of false detections generated by vision
sensor per image
0.1 (default) | nonnegative real scalar

Number of false detections generated by the vision sensor per image, specified as a nonnegative real
scalar.
Example: 1.0

Lane Detector Settings

Minimum lane size in image (pixels) — Maximum size of lane
[20,3] (default) | 1-by-2 real-valued vector

Minimum size of a projected lane marking in the camera image that can be detected by the sensor
after accounting for curvature, specified as a 1-by-2 real-valued vector, [minHeight minWidth].
Lane markings must exceed both of these values to be detected. Units are in pixels.

Dependencies

To enable this parameter, set the Types of detections generated by sensor parameter to Lanes
only, Lanes only, or Lanes and objects.

Accuracy of lane boundary (pixels) — Accuracy of lane boundary
3 (default) | positive real scalar

Accuracy of lane boundaries, specified as a positive real scalar. This parameter defines the accuracy
with which the lane sensor can place a lane boundary. Units are in pixels.
Example: 2.5
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Dependencies

To enable this parameter, set the Types of detections generated by sensor parameter to Lanes
only, Lanes only, or Lanes and objects.

Random Number Generator Settings

Add noise to measurements — Enable adding noise to vision sensor measurements
on (default) | off

Select this parameter to add noise to vision sensor measurements. Otherwise, the measurements are
noise-free. The MeasurementNoise property of each detection is always computed and is not
affected by the value you specify for the Add noise to measurements parameter.

Select method to specify initial seed — Method to specify random number generator
seed
Repeatable (default) | Specify seed | Not repeatable

Method to set the random number generator seed, specified as one of the options in the table.

Option Description
Repeatable The block generates a random initial seed for the

first simulation and reuses this seed for all
subsequent simulations. Select this parameter to
generate repeatable results from the statistical
sensor model. To change this initial seed, at the
MATLAB command prompt, enter: clear all.

Specify seed Specify your own random initial seed for
reproducible results by using the Specify seed
parameter.

Not repeatable The block generates a new random initial seed
after each simulation run. Select this parameter
to generate nonrepeatable results from the
statistical sensor model.

Initial seed — Random number generator seed
0 (default) | nonnegative integer less than 232

Random number generator seed, specified as a nonnegative integer less than 232.
Example: 2001

Dependencies

To enable this parameter, set the Random Number Generator Settings parameter to Specify
seed.

Actor Profiles

Select method to specify actor profiles — Method to specify actor profiles
Parameters (default) | MATLAB expression

Method to specify actor profiles, specified as Parameters or MATLAB expression. When you select
Parameters, set the actor profiles using the parameters in the Actor Profiles tab. When you select
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MATLAB expression, set the actor profiles using the MATLAB expression for actor profiles
parameter.

MATLAB expression for actor profiles — MATLAB expression for actor profiles
struct('ClassID',0,'Length',4.7,'Width',1.8,'Height',1.4,'OriginOffset',
[-1.35,0,0]) (default) | MATLAB structure | MATLAB structure array | valid MATLAB expression

MATLAB expression for actor profiles, specified as a MATLAB structure, a MATLAB structure array,
or a valid MATLAB expression that produces such a structure or structure array.

If your Scenario Reader block reads data from a drivingScenario object, to obtain the actor
profiles directly from this object, set this expression to call the actorProfiles function on the
object. For example: actorProfiles(scenario).
Example: struct('ClassID',5,'Length',5.0,'Width',2,'Height',2,'OriginOffset',
[-1.55,0,0])

Dependencies

To enable this parameter, set the Select method to specify actor profiles parameter to MATLAB
expression.

Unique identifier for actors — Scenario-defined actor identifier
[] (default) | positive integer | length-L vector of unique positive integers

Scenario-defined actor identifier, specified as a positive integer or length-L vector of unique positive
integers. L must equal the number of actors input into the Actors input port. The vector elements
must match ActorID values of the actors. You can specify Unique identifier for actors as []. In
this case, the same actor profile parameters apply to all actors.
Example: [1,2]
Dependencies

To enable this parameter, set the Select method to specify actor profiles parameter to
Parameters.

User-defined integer to classify actors — User-defined classification identifier
0 (default) | integer | length-L vector of integers

User-defined classification identifier, specified as an integer or length-L vector of integers. When
Unique identifier for actors is a vector, this parameter is a vector of the same length with elements
in one-to-one correspondence to the actors in Unique identifier for actors. When Unique
identifier for actors is empty, [], you must specify this parameter as a single integer whose value
applies to all actors.
Example: 2
Dependencies

To enable this parameter, set the Select method to specify actor profiles parameter to
Parameters.

Length of actors cuboids (m) — Length of cuboid
4.7 (default) | positive real scalar | length-L vector of positive values

Length of cuboid, specified as a positive real scalar or length-L vector of positive values. When
Unique identifier for actors is a vector, this parameter is a vector of the same length with elements
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in one-to-one correspondence to the actors in Unique identifier for actors. When Unique
identifier for actors is empty, [], you must specify this parameter as a positive real scalar whose
value applies to all actors. Units are in meters.
Example: 6.3

Dependencies

To enable this parameter, set the Select method to specify actor profiles parameter to
Parameters.

Width of actors cuboids (m) — Width of cuboid
4.7 (default) | positive real scalar | length-L vector of positive values

Width of cuboid, specified as a positive real scalar or length-L vector of positive values. When Unique
identifier for actors is a vector, this parameter is a vector of the same length with elements in one-
to-one correspondence to the actors in Unique identifier for actors. When Unique identifier for
actors is empty, [], you must specify this parameter as a positive real scalar whose value applies to
all actors. Units are in meters.
Example: 4.7

Dependencies

To enable this parameter, set the Select method to specify actor profiles parameter to
Parameters.

Height of actors cuboids (m) — Height of cuboid
4.7 (default) | positive real scalar | length-L vector of positive values

Height of cuboid, specified as a positive real scalar or length-L vector of positive values. When
Unique identifier for actors is a vector, this parameter is a vector of the same length with elements
in one-to-one correspondence to the actors in Unique identifier for actors. When Unique
identifier for actors is empty, [], you must specify this parameter as a positive real scalar whose
value applies to all actors. Units are in meters.
Example: 2.0

Dependencies

To enable this parameter, set the Select method to specify actor profiles parameter to
Parameters.

Rotational center of actors from bottom center (m) — Rotational center of the actor
{ [ -1.35, 0, 0 ] } (default) | length-L cell array of real-valued 1-by-3 vectors

Rotational center of the actor, specified as a length-L cell array of real-valued 1-by-3 vectors. Each
vector represents the offset of the rotational center of the actor from the bottom-center of the actor.
For vehicles, the offset corresponds to the point on the ground beneath the center of the rear axle.
When Unique identifier for actors is a vector, this parameter is a cell array of vectors with cells in
one-to-one correspondence to the actors in Unique identifier for actors. When Unique identifier
for actors is empty, [], you must specify this parameter as a cell array of one element containing the
offset vector whose values apply to all actors. Units are in meters.
Example: [ -1.35, .2, .3 ]
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Dependencies

To enable this parameter, set the Select method to specify actor profiles parameter to
Parameters.

Camera Intrinsics

Focal length (pixels) — Camera focal length
[800,800] (default) | two-element real-valued vector

Camera focal length, in pixels, specified as a two-element real-valued vector. See also the
FocalLength property of cameraIntrinsics.
Example: [480,320]

Optical center of the camera (pixels) — Optical center of camera
[320,240] (default) | two-element real-valued vector

Optical center of the camera, in pixels, specified as a two-element real-valued vector. See also the
PrincipalPoint property of cameraIntrinsics.
Example: [480,320]

Image size produced by the camera (pixels) — Image size produced by camera
[480,640] (default) | two-element vector of positive integers

Image size produced by the camera, in pixels, specified as a two-element vector of positive integers.
See also the ImageSize property of cameraIntrinsics.
Example: [240,320]

Radial distortion coefficients — Radial distortion coefficients
[0,0] (default) | two-element real-valued vector | three-element real-valued vector

Radial distortion coefficients, specified as a two-element or three-element real-valued vector. For
details on setting these coefficients, see the RadialDistortion property of cameraIntrinsics.
Example: [1,1]

Tangential distortion coefficients — Tangential distortion coefficients
[0,0] (default) | two-element real-valued vector

Tangential distortion coefficients, specified as a two-element real-valued vector. For details on setting
these coefficients, see the TangentialDistortion property of cameraIntrinsics.
Example: [1,1]

Skew of the camera axes — Skew angle of camera axes
0 (default) | real scalar

Skew angle of the camera axes, specified as a real scalar. See also the Skew property of
cameraIntrinsics.
Example: 0.1
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Apps
Bird's-Eye Scope

Blocks
Detection Concatenation | Lidar Point Cloud Generator | Multi-Object Tracker | Radar Detection
Generator | Scenario Reader | Simulation 3D Vision Detection Generator

Objects
cameraIntrinsics | visionDetectionGenerator

Topics
“Create Nonvirtual Buses” (Simulink)

Introduced in R2017b
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World To Vehicle
Convert actors from world coordinates to ego vehicle coordinates
Library: Automated Driving Toolbox / Driving Scenario and Sensor

Modeling

Description
The World To Vehicle block converts actor poses from world coordinates to the vehicle coordinates of
the input ego vehicle.

Ports
Input

Actors — Actor poses in world coordinates
Simulink bus containing MATLAB structure

Actor poses in world coordinates, specified as a Simulink bus containing a MATLAB structure.

The structure must contain these fields.

Field Description Type
NumActors Number of actors Nonnegative integer
Time Current simulation time Real-valued scalar
Actors Actor poses NumActors-length array of

actor pose structures

Each actor pose structure in Actors must contain these fields.

Field Description
ActorID Scenario-defined actor identifier, specified as a

positive integer.
Position Position of actor, specified as a real-valued vector

of the form [x, y, z]. Units are in meters.
Velocity Velocity (v) of actor in the x-, y-, and z-direction,

specified as a real-valued vector of the form [vx,
vy, vz]. Units are in meters per second.

Roll Roll angle of actor, specified as a real-valued
scalar. Units are in degrees.

Pitch Pitch angle of actor, specified as a real-valued
scalar. Units are in degrees.
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Field Description
Yaw Yaw angle of actor, specified as a real-valued

scalar. Units are in degrees.
AngularVelocity Angular velocity (ω) of actor in the x-, y-, and z-

direction, specified as a real-valued vector of the
form [ωx, ωy, ωz]. Units are in degrees per second.

Ego Vehicle — Ego vehicle pose
Simulink bus containing MATLAB structure

Ego vehicle pose, specified as a Simulink bus containing a MATLAB structure.

The structure must contain these fields.

Field Description
ActorID Scenario-defined actor identifier, specified as a

positive integer.
Position Position of actor, specified as a real-valued vector

of the form [x, y, z]. Units are in meters.
Velocity Velocity (v) of actor in the x-, y-, and z-direction,

specified as a real-valued vector of the form [vx,
vy, vz]. Units are in meters per second.

Roll Roll angle of actor, specified as a real-valued
scalar. Units are in degrees.

Pitch Pitch angle of actor, specified as a real-valued
scalar. Units are in degrees.

Yaw Yaw angle of actor, specified as a real-valued
scalar. Units are in degrees.

AngularVelocity Angular velocity (ω) of actor in the x-, y-, and z-
direction, specified as a real-valued vector of the
form [ωx, ωy, ωz]. Units are in degrees per second.

Output

Actors — Actor poses in vehicle coordinates
Simulink bus containing MATLAB structure

Actor poses in vehicle coordinates, returned as a Simulink bus containing a MATLAB structure.

The structure has these fields.

Field Description Type
NumActors Number of actors Nonnegative integer
Time Current simulation time Real-valued scalar
Actors Actor poses NumActors-length array of

actor pose structures

Each actor pose structure in Actors has these fields.
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Field Description
ActorID Scenario-defined actor identifier, specified as a

positive integer.
Position Position of actor, specified as a real-valued vector

of the form [x, y, z]. Units are in meters.
Velocity Velocity (v) of actor in the x-, y-, and z-direction,

specified as a real-valued vector of the form [vx,
vy, vz]. Units are in meters per second.

Roll Roll angle of actor, specified as a real-valued
scalar. Units are in degrees.

Pitch Pitch angle of actor, specified as a real-valued
scalar. Units are in degrees.

Yaw Yaw angle of actor, specified as a real-valued
scalar. Units are in degrees.

AngularVelocity Angular velocity (ω) of actor in the x-, y-, and z-
direction, specified as a real-valued vector of the
form [ωx, ωy, ωz]. Units are in degrees per second.

Parameters
Source of actors bus name — Source of name for actor poses bus
Auto (default) | Property

Source of the name for the actor poses bus returned in the Actors output port, specified as one of
these options:

• Auto — The block automatically creates an actor poses bus name.
• Property — Specify the actor poses bus name by using the Actors bus name parameter.

Actors bus name — Name of actor poses bus
valid bus name

Name of the actor poses bus returned in the Actors output port, specified as a valid bus name.

Dependencies

To enable this parameter, set Source of actors bus name to Property.

Simulate using — Type of simulation to run
Interpreted execution (default) | Code generation

• Interpreted execution — Simulate the model using the MATLAB interpreter. This option
shortens startup time. In Interpreted execution mode, you can debug the source code of the
block.

• Code generation — Simulate the model using generated C/C++ code. The first time you run a
simulation, Simulink generates C/C++ code for the block. The C code is reused for subsequent
simulations as long as the model does not change. This option requires additional startup time.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Cuboid To 3D Simulation | Scenario Reader | Vehicle To World

Topics
“Coordinate Systems in Automated Driving Toolbox”
“Coordinate Systems for Unreal Engine Simulation in Automated Driving Toolbox”

Introduced in R2020a
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addCustomBasemap
Add custom basemap

Syntax
addCustomBasemap(basemapName,URL)
addCustomBasemap( ___ ,Name,Value)

Description
addCustomBasemap(basemapName,URL) adds the custom basemap specified by URL to the list of
basemaps available for use with mapping functions. basemapName is the name you choose to call the
custom basemap. Added basemaps remain available for use in future MATLAB sessions.

You can use the custom basemap with the geoplayer object and with MATLAB geographic axes and
charts.

addCustomBasemap( ___ ,Name,Value) specifies name-value pairs that set additional parameters
of the basemap.

Examples

Display Data on OpenStreetMap Basemap

This example shows how to display a driving route and vehicle positions on an OpenStreetMap®
basemap.

Add the OpenStreetMap basemap to the list of basemaps available for use with the geoplayer
object. After you add the basemap, you do not need to add it again in future sessions.

name = 'openstreetmap';
url = 'https://a.tile.openstreetmap.org/${z}/${x}/${y}.png';
copyright = char(uint8(169));
attribution = copyright + "OpenStreetMap contributors";
addCustomBasemap(name,url,'Attribution',attribution)

Load a sequence of latitude and longitude coordinates.

data = load('geoRoute.mat');

Create a geographic player. Center the geographic player on the first position of the driving route and
set the zoom level to 12.

zoomLevel = 12;
player = geoplayer(data.latitude(1),data.longitude(1),zoomLevel);
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Display the full route.

plotRoute(player,data.latitude,data.longitude);
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By default, the geographic player uses the World Street Map basemap ('streets') provided by
Esri®. Update the geographic player to use the added OpenStreetMap basemap instead.

player.Basemap = 'openstreetmap';
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Display the route again.

plotRoute(player,data.latitude,data.longitude);
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Display the positions of the vehicle in a sequence.

for i = 1:length(data.latitude)
   plotPosition(player,data.latitude(i),data.longitude(i))
end
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Display Map Data on HERE Basemap

Display a driving route on a basemap provided by HERE Technologies. To use this example, you must
have a valid license from HERE Technologies.

Specify the basemap name and map URL.

name = 'herestreets';
url  = ['https://2.base.maps.cit.api.here.com/maptile/2.1/maptile/', ...
        'newest/normal.day/${z}/${x}/${y}/256/png?app_id=%s&app_code=%s'];

Maps from HERE Technologies require a valid license. Create a dialog box. In the dialog box, enter
the App ID and App Code corresponding to your HERE license.

prompt = {'HERE App ID:','HERE App Code:'};
title = 'HERE Tokens';
dims = [1 40]; % Text edit field height and width
hereTokens = inputdlg(prompt,title,dims);
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If the license is valid, specify the HERE credentials and a custom attribution, load coordinate data,
and display the coordinates on the HERE basemap using a geoplayer object. If the license is not
valid, display an error message.

if ~isempty(hereTokens)
        
    % Add HERE basemap with custom attribution.
    url = sprintf(url,hereTokens{1},hereTokens{2});
    copyrightSymbol = char(169); % Alt code
    attribution = [copyrightSymbol,' ',datestr(now,'yyyy'),' HERE'];
    addCustomBasemap(name,url,'Attribution',attribution);

    % Load sample lat,lon coordinates.
    data = load('geoSequence.mat');

    % Create geoplayer with HERE basemap.
    player = geoplayer(data.latitude(1),data.longitude(1), ...
        'Basemap','herestreets','HistoryDepth',Inf);
 
    % Display the coordinates in a sequence.
    for i = 1:length(data.latitude)
        plotPosition(player,data.latitude(i),data.longitude(i));
    end

else
    error('You must enter valid credentials to access maps from HERE Technologies');
end
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Input Arguments
basemapName — Name used to identify basemap programmatically
string scalar | character vector

Name used to identify basemap programmatically, specified as a string scalar or character vector.
Example: 'openstreetmap'
Data Types: string | char

URL — Parameterized map URL
string scalar | character vector

Parameterized map URL, specified as a string scalar or character vector. A parameterized URL is an
index of the map tiles, formatted as ${z}/${x}/${y}.png or {z}/{x}/{y}.png, where:

• ${z} or {z} is the tile zoom level.
• ${x} or {x} is the tile column index.
• ${y} or {y} is the tile row index.

Example: 'https://hostname/${z}/${x}/${y}.png'
Data Types: string | char
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Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: addCustomBasemap(basemapName,URL,'Attribution',attribution)

Attribution — Attribution of custom basemap
'Tiles courtesy of DOMAIN_NAME_OF_URL' (default) | string scalar | string array | character
vector | cell array of character vectors

Attribution of custom basemap, specified as the comma-separated pair consisting of 'Attribution'
and a string scalar, string array, character vector, or cell array of character vectors. If the host is
'localhost', or if URL contains only IP numbers, specify an empty value (''). To create a multiline
attribution, specify a string array or nonscalar cell array of character vectors.

If you do not specify an attribution, the default attribution is 'Tiles courtesy of
DOMAIN_NAME_OF_URL', where the addCustomBasemap function obtains the domain name from the
URL input argument.
Example: 'Credit: U.S. Geological Survey'
Data Types: string | char | cell

DisplayName — Display name of custom basemap
string scalar | character vector

Display name of the custom basemap, specified as the comma-separated pair consisting of
'DisplayName' and a string scalar or character vector.
Example: 'OpenStreetMap'
Data Types: string | char

MaxZoomLevel — Maximum zoom level of basemap
18 (default) | integer in the range [0, 25]

Maximum zoom level of the basemap, specified as the comma-separated pair consisting of
'MaxZoomLevel' and an integer in the range [0, 25].
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

IsDeployable — Map is deployable using MATLAB Compiler™
false (default) | true

Map is deployable using MATLAB Compiler, specified as the comma-separated pair consisting of
'IsDeployable' and false or true.

If you are deploying a map application and want users to have access to the added basemap, set
'IsDeployable' to true. Maps in the geoplayer object are not deployable. If you are using a
geoplayer object, leave 'IsDeployable' set to false.
Data Types: logical
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Tips
• You can find tiled web maps from various vendors, such as OpenStreetMap, the USGS National

Map, Mapbox, DigitalGlobe, Esri® ArcGIS Online, the Geospatial Information Authority of Japan
(GSI), and HERE Technologies. Abide by the map vendors terms-of-service agreement and include
accurate attribution with the maps you use.

• To access a list of available basemaps, press Tab before specifying the basemap in your plotting
function.

See Also
geoaxes | geobasemap | geobubble | geoplayer | removeCustomBasemap

Introduced in R2019a
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cameas
Measurement function for constant-acceleration motion

Syntax
measurement = cameas(state)
measurement = cameas(state,frame)
measurement = cameas(state,frame,sensorpos)
measurement = cameas(state,frame,sensorpos,sensorvel)
measurement = cameas(state,frame,sensorpos,sensorvel,laxes)
measurement = cameas(state,measurementParameters)

Description
measurement = cameas(state) returns the measurement, for the constant-acceleration Kalman
filter motion model in rectangular coordinates. The state argument specifies the current state of the
filter.

measurement = cameas(state,frame) also specifies the measurement coordinate system,
frame.

measurement = cameas(state,frame,sensorpos) also specifies the sensor position,
sensorpos.

measurement = cameas(state,frame,sensorpos,sensorvel) also specifies the sensor
velocity, sensorvel.

measurement = cameas(state,frame,sensorpos,sensorvel,laxes) also specifies the local
sensor axes orientation, laxes.

measurement = cameas(state,measurementParameters) specifies the measurement
parameters, measurementParameters.

Examples

Create Measurement from Accelerating Object in Rectangular Frame

Define the state of an object in 2-D constant-acceleration motion. The state is the position, velocity,
and acceleration in both dimensions. The measurements are in rectangular coordinates.

state = [1,10,3,2,20,0.5].';
measurement = cameas(state)

measurement = 3×1

     1
     2
     0
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The measurement is returned in three-dimensions with the z-component set to zero.

Create Measurement from Accelerating Object in Spherical Frame

Define the state of an object in 2-D constant-acceleration motion. The state is the position, velocity,
and acceleration in both dimensions. The measurements are in spherical coordinates.

state = [1,10,3,2,20,5].';
measurement = cameas(state,'spherical')

measurement = 4×1

   63.4349
         0
    2.2361
   22.3607

The elevation of the measurement is zero and the range rate is positive. These results indicate that
the object is moving away from the sensor.

Create Measurement from Accelerating Object in Translated Spherical Frame

Define the state of an object moving in 2-D constant-acceleration motion. The state consists of
position, velocity, and acceleration in each dimension. The measurements are in spherical coordinates
with respect to a frame located at (20;40;0) meters from the origin.

state = [1,10,3,2,20,5].';
measurement = cameas(state,'spherical',[20;40;0])

measurement = 4×1

 -116.5651
         0
   42.4853
  -22.3607

The elevation of the measurement is zero and the range rate is negative indicating that the object is
moving toward the sensor.

Create Measurement from Constant-Accelerating Object Using Measurement Parameters

Define the state of an object moving in 2-D constant-acceleration motion. The state consists of
position, velocity, and acceleration in each dimension. The measurements are in spherical coordinates
with respect to a frame located at (20;40;0) meters from the origin.

state2d = [1,10,3,2,20,5].';
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The elevation of the measurement is zero and the range rate is negative indicating that the object is
moving toward the sensor.

frame = 'spherical';
sensorpos = [20;40;0];
sensorvel = [0;5;0];
laxes = eye(3);
measurement = cameas(state2d,'spherical',sensorpos,sensorvel,laxes)

measurement = 4×1

 -116.5651
         0
   42.4853
  -17.8885

The elevation of the measurement is zero and the range rate is negative. These results indicate that
the object is moving toward the sensor.

Put the measurement parameters in a structure and use the alternative syntax.

measparm = struct('Frame',frame,'OriginPosition',sensorpos,'OriginVelocity',sensorvel, ...
    'Orientation',laxes);
measurement = cameas(state2d,measparm)

measurement = 4×1

 -116.5651
         0
   42.4853
  -17.8885

Input Arguments
state — Kalman filter state vector
real-valued 3N-element vector

Kalman filter state vector for constant-acceleration motion, specified as a real-valued 3N-element
vector. N is the number of spatial degrees of freedom of motion. For each spatial degree of motion,
the state vector takes the form shown in this table.

Spatial Dimensions State Vector Structure
1-D [x;vx;ax]
2-D [x;vx;ax;y;vy;ay]
3-D [x;vx;ax;y;vy;ay;z;vz;az]

For example, x represents the x-coordinate, vx represents the velocity in the x-direction, and ax
represents the acceleration in the x-direction. If the motion model is in one-dimensional space, the y-
and z-axes are assumed to be zero. If the motion model is in two-dimensional space, values along the
z-axis are assumed to be zero. Position coordinates are in meters. Velocity coordinates are in meters/
second. Acceleration coordinates are in meters/second2.
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Example: [5;0.1;0.01;0;-0.2;-0.01;-3;0.05;0]
Data Types: double

frame — Measurement output frame
'rectangular' (default) | 'spherical'

Measurement output frame, specified as 'rectangular' or 'spherical'. When the frame is
'rectangular', a measurement consists of x, y, and z Cartesian coordinates. When specified as
'spherical', a measurement consists of azimuth, elevation, range, and range rate.
Data Types: char

sensorpos — Sensor position
[0;0;0] (default) | real-valued 3-by-1 column vector

Sensor position with respect to the navigation frame, specified as a real-valued 3-by-1 column vector.
Units are in meters.
Data Types: double

sensorvel — Sensor velocity
[0;0;0] (default) | real-valued 3-by-1 column vector

Sensor velocity with respect to the navigation frame, specified as a real-valued 3-by-1 column vector.
Units are in m/s.
Data Types: double

laxes — Local sensor coordinate axes
[1,0,0;0,1,0;0,0,1] (default) | 3-by-3 orthogonal matrix

Local sensor coordinate axes, specified as a 3-by-3 orthogonal matrix. Each column specifies the
direction of the local x-, y-, and z-axes, respectively, with respect to the navigation frame. That is, the
matrix is the rotation matrix from the global frame to the sensor frame.
Data Types: double

measurementParameters — Measurement parameters
structure | array of structure

Measurement parameters, specified as a structure or an array of structures. The fields of the
structure are:

Field Description Example
Frame Frame used to report

measurements, specified as one
of these values:

• 'rectangular' —
Detections are reported in
rectangular coordinates.

• 'spherical' — Detections
are reported in spherical
coordinates.

'spherical'
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Field Description Example
OriginPosition Position offset of the origin of

the frame relative to the parent
frame, specified as an [x y z]
real-valued vector.

[0 0 0]

OriginVelocity Velocity offset of the origin of
the frame relative to the parent
frame, specified as a [vx vy
vz] real-valued vector.

[0 0 0]

Orientation Frame rotation matrix, specified
as a 3-by-3 real-valued
orthonormal matrix.

[1 0 0; 0 1 0; 0 0 1]

HasAzimuth Logical scalar indicating if
azimuth is included in the
measurement.

1

HasElevation Logical scalar indicating if
elevation is included in the
measurement. For
measurements reported in a
rectangular frame, and if
HasElevation is false, the
reported measurements assume
0 degrees of elevation.

1

HasRange Logical scalar indicating if
range is included in the
measurement.

1

HasVelocity Logical scalar indicating if the
reported detections include
velocity measurements. For
measurements reported in the
rectangular frame, if
HasVelocity is false, the
measurements are reported as
[x y z]. If HasVelocity is
true, measurements are
reported as [x y z vx vy
vz].

1

IsParentToChild Logical scalar indicating if
Orientation performs a frame
rotation from the parent
coordinate frame to the child
coordinate frame. When
IsParentToChild is false,
then Orientation performs a
frame rotation from the child
coordinate frame to the parent
coordinate frame.

0

Data Types: struct
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Output Arguments
measurement — Measurement vector
N-by-1 column vector

Measurement vector, returned as an N-by-1 column vector. The form of the measurement depends
upon which syntax you use.

• When the syntax does not use the measurementParameters argument, the measurement vector
is [x,y,z] when the frame input argument is set to 'rectangular' and [az;el;r;rr] when
the frame is set to 'spherical'.

• When the syntax uses the measurementParameters argument, the size of the measurement
vector depends on the values of the frame, HasVelocity, and HasElevation fields in the
measurementParameters structure.

frame measurement
'spherical' Specifies the azimuth angle, az, elevation

angle, el, range, r, and range rate, rr, of the
object with respect to the local ego vehicle
coordinate system. Positive values for range
rate indicate that an object is moving away
from the sensor.

Spherical measurements

  HasElevation
  false true
HasVeloc
ity

false [az;r] [az;el;r
]

true [az;r;rr
]

[az;el;r
;rr]

Angle units are in degrees, range units are in
meters, and range rate units are in m/s.

'rectangular Specifies the Cartesian position and velocity
coordinates of the tracked object with respect
to the ego vehicle coordinate system.

Rectangular measurements

HasVelocity false [x;y;y]
true [x;y;z;vx;v

y;vz]

Position units are in meters and velocity units
are in m/s.

Data Types: double
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More About
Azimuth and Elevation Angle Definitions

Define the azimuth and elevation angles used in Automated Driving Toolbox.

The azimuth angle of a vector is the angle between the x-axis and its orthogonal projection onto the
xy plane. The angle is positive in going from the x axis toward the y axis. Azimuth angles lie between
–180 and 180 degrees. The elevation angle is the angle between the vector and its orthogonal
projection onto the xy-plane. The angle is positive when going toward the positive z-axis from the xy
plane.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
cameasjac | constacc | constaccjac | constturn | constturnjac | constvel | constveljac |
ctmeas | ctmeasjac | cvmeas | cvmeasjac

Objects
trackingEKF | trackingKF | trackingUKF

Introduced in R2017a

 cameas

3-19



cameasjac
Jacobian of measurement function for constant-acceleration motion

Syntax
measurementjac = cameasjac(state)
measurementjac = cameasjac(state,frame)
measurementjac = cameasjac(state,frame,sensorpos)
measurementjac = cameasjac(state,frame,sensorpos,sensorvel)
measurementjac = cameasjac(state,frame,sensorpos,sensorvel,laxes)
measurementjac = cameasjac(state,measurementParameters)

Description
measurementjac = cameasjac(state) returns the measurement Jacobian, for constant-
acceleration Kalman filter motion model in rectangular coordinates. The state argument specifies
the current state of the filter.

measurementjac = cameasjac(state,frame) also specifies the measurement coordinate
system, frame.

measurementjac = cameasjac(state,frame,sensorpos) also specifies the sensor position,
sensorpos.

measurementjac = cameasjac(state,frame,sensorpos,sensorvel) also specifies the
sensor velocity, sensorvel.

measurementjac = cameasjac(state,frame,sensorpos,sensorvel,laxes) also specifies
the local sensor axes orientation, laxes.

measurementjac = cameasjac(state,measurementParameters) specifies the measurement
parameters, measurementParameters.

Examples

Measurement Jacobian of Accelerating Object in Rectangular Frame

Define the state of an object in 2-D constant-acceleration motion. The state is the position, velocity,
and acceleration in both dimensions. Construct the measurement Jacobian in rectangular
coordinates.

state = [1,10,3,2,20,5].';
jacobian = cameasjac(state)

jacobian = 3×6

     1     0     0     0     0     0
     0     0     0     1     0     0
     0     0     0     0     0     0
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Measurement Jacobian of Accelerating Object in Spherical Frame

Define the state of an object in 2-D constant-acceleration motion. The state is the position, velocity,
and acceleration in both dimensions. Compute the measurement Jacobian in spherical coordinates.

state = [1;10;3;2;20;5];
measurementjac = cameasjac(state,'spherical')

measurementjac = 4×6

  -22.9183         0         0   11.4592         0         0
         0         0         0         0         0         0
    0.4472         0         0    0.8944         0         0
    0.0000    0.4472         0    0.0000    0.8944         0

Measurement Jacobian of Accelerating Object in Translated Spherical Frame

Define the state of an object in 2-D constant-acceleration motion. The state is the position, velocity,
and acceleration in both dimensions. Compute the measurement Jacobian in spherical coordinates
with respect to an origin at (5;-20;0) meters.

state = [1,10,3,2,20,5].';
sensorpos = [5,-20,0].';
measurementjac = cameasjac(state,'spherical',sensorpos)

measurementjac = 4×6

   -2.5210         0         0   -0.4584         0         0
         0         0         0         0         0         0
   -0.1789         0         0    0.9839         0         0
    0.5903   -0.1789         0    0.1073    0.9839         0

Create Measurement Jacobian of Accelerating Object Using Measurement Parameters

Define the state of an object in 2-D constant-acceleration motion. The state is the position, velocity,
and acceleration in both dimensions. Compute the measurement Jacobian in spherical coordinates
with respect to an origin at (5;-20;0) meters.

state2d = [1,10,3,2,20,5].';
sensorpos = [5,-20,0].';
frame = 'spherical';
sensorvel = [0;8;0];
laxes = eye(3);
measurementjac = cameasjac(state2d,frame,sensorpos,sensorvel,laxes)

measurementjac = 4×6

   -2.5210         0         0   -0.4584         0         0
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         0         0         0         0         0         0
   -0.1789         0         0    0.9839         0         0
    0.5274   -0.1789         0    0.0959    0.9839         0

Put the measurement parameters in a structure and use the alternative syntax.

measparm = struct('Frame',frame,'OriginPosition',sensorpos,'OriginVelocity',sensorvel, ...
    'Orientation',laxes);
measurementjac = cameasjac(state2d,measparm)

measurementjac = 4×6

   -2.5210         0         0   -0.4584         0         0
         0         0         0         0         0         0
   -0.1789         0         0    0.9839         0         0
    0.5274   -0.1789         0    0.0959    0.9839         0

Input Arguments
state — Kalman filter state vector
real-valued 3N-element vector

Kalman filter state vector for constant-acceleration motion, specified as a real-valued 3N-element
vector. N is the number of spatial degrees of freedom of motion. For each spatial degree of motion,
the state vector takes the form shown in this table.

Spatial Dimensions State Vector Structure
1-D [x;vx;ax]
2-D [x;vx;ax;y;vy;ay]
3-D [x;vx;ax;y;vy;ay;z;vz;az]

For example, x represents the x-coordinate, vx represents the velocity in the x-direction, and ax
represents the acceleration in the x-direction. If the motion model is in one-dimensional space, the y-
and z-axes are assumed to be zero. If the motion model is in two-dimensional space, values along the
z-axis are assumed to be zero. Position coordinates are in meters. Velocity coordinates are in meters/
second. Acceleration coordinates are in meters/second2.
Example: [5;0.1;0.01;0;-0.2;-0.01;-3;0.05;0]
Data Types: double

frame — Measurement output frame
'rectangular' (default) | 'spherical'

Measurement output frame, specified as 'rectangular' or 'spherical'. When the frame is
'rectangular', a measurement consists of x, y, and z Cartesian coordinates. When specified as
'spherical', a measurement consists of azimuth, elevation, range, and range rate.
Data Types: char

sensorpos — Sensor position
[0;0;0] (default) | real-valued 3-by-1 column vector
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Sensor position with respect to the navigation frame, specified as a real-valued 3-by-1 column vector.
Units are in meters.
Data Types: double

sensorvel — Sensor velocity
[0;0;0] (default) | real-valued 3-by-1 column vector

Sensor velocity with respect to the navigation frame, specified as a real-valued 3-by-1 column vector.
Units are in m/s.
Data Types: double

laxes — Local sensor coordinate axes
[1,0,0;0,1,0;0,0,1] (default) | 3-by-3 orthogonal matrix

Local sensor coordinate axes, specified as a 3-by-3 orthogonal matrix. Each column specifies the
direction of the local x-, y-, and z-axes, respectively, with respect to the navigation frame. That is, the
matrix is the rotation matrix from the global frame to the sensor frame.
Data Types: double

measurementParameters — Measurement parameters
structure | array of structure

Measurement parameters, specified as a structure or an array of structures. The fields of the
structure are:

Field Description Example
Frame Frame used to report

measurements, specified as one
of these values:

• 'rectangular' —
Detections are reported in
rectangular coordinates.

• 'spherical' — Detections
are reported in spherical
coordinates.

'spherical'

OriginPosition Position offset of the origin of
the frame relative to the parent
frame, specified as an [x y z]
real-valued vector.

[0 0 0]

OriginVelocity Velocity offset of the origin of
the frame relative to the parent
frame, specified as a [vx vy
vz] real-valued vector.

[0 0 0]

Orientation Frame rotation matrix, specified
as a 3-by-3 real-valued
orthonormal matrix.

[1 0 0; 0 1 0; 0 0 1]
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Field Description Example
HasAzimuth Logical scalar indicating if

azimuth is included in the
measurement.

1

HasElevation Logical scalar indicating if
elevation is included in the
measurement. For
measurements reported in a
rectangular frame, and if
HasElevation is false, the
reported measurements assume
0 degrees of elevation.

1

HasRange Logical scalar indicating if
range is included in the
measurement.

1

HasVelocity Logical scalar indicating if the
reported detections include
velocity measurements. For
measurements reported in the
rectangular frame, if
HasVelocity is false, the
measurements are reported as
[x y z]. If HasVelocity is
true, measurements are
reported as [x y z vx vy
vz].

1

IsParentToChild Logical scalar indicating if
Orientation performs a frame
rotation from the parent
coordinate frame to the child
coordinate frame. When
IsParentToChild is false,
then Orientation performs a
frame rotation from the child
coordinate frame to the parent
coordinate frame.

0

Data Types: struct

Output Arguments
measurementjac — Measurement Jacobian
real-valued 3-by-N matrix | real-valued 4-by-N matrix

Measurement Jacobian, specified as a real-valued 3-by-N or 4-by-N matrix. N is the dimension of the
state vector. The interpretation of the rows and columns depends on the frame argument, as
described in this table.
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Frame Measurement Jacobian
'rectangular' Jacobian of the measurements [x;y;z] with

respect to the state vector. The measurement
vector is with respect to the local coordinate
system. Coordinates are in meters.

'spherical' Jacobian of the measurement vector
[az;el;r;rr] with respect to the state vector.
Measurement vector components specify the
azimuth angle, elevation angle, range, and range
rate of the object with respect to the local sensor
coordinate system. Angle units are in degrees.
Range units are in meters and range rate units
are in meters/second.

More About
Azimuth and Elevation Angle Definitions

Define the azimuth and elevation angles used in Automated Driving Toolbox.

The azimuth angle of a vector is the angle between the x-axis and its orthogonal projection onto the
xy plane. The angle is positive in going from the x axis toward the y axis. Azimuth angles lie between
–180 and 180 degrees. The elevation angle is the angle between the vector and its orthogonal
projection onto the xy-plane. The angle is positive when going toward the positive z-axis from the xy
plane.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
cameas | constacc | constaccjac | constturn | constturnjac | constvel | constveljac |
ctmeas | ctmeasjac | cvmeas | cvmeasjac

Objects
trackingEKF | trackingKF | trackingUKF
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Introduced in R2017a
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checkPathValidity
Check validity of planned vehicle path

Syntax
isValid = checkPathValidity(refPath,costmap)
isValid = checkPathValidity(refPoses,costmap)

Description
isValid = checkPathValidity(refPath,costmap) checks the validity of a planned vehicle
path, refPath, against the vehicle costmap. Use this function to test if a path is valid within a
changing environment.

A path is valid if the following conditions are true:

• The path has at least one pose.
• The path is collision-free and within the limits of costmap.

isValid = checkPathValidity(refPoses,costmap) checks the validity of a sequence of
vehicle poses, refPoses, against the vehicle costmap.

Examples

Plan Path and Check Its Validity

Plan a vehicle path through a parking lot by using the optimal rapidly exploring random tree (RRT*)
algorithm. Check that the path is valid, and then plot the transition poses along the path.

Load a costmap of a parking lot. Plot the costmap to see the parking lot and inflated areas for the
vehicle to avoid.

data = load('parkingLotCostmap.mat');
costmap = data.parkingLotCostmap;
plot(costmap)
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Define start and goal poses for the vehicle as [x, y, Θ] vectors. World units for the (x,y) locations are
in meters. World units for the Θ orientation angles are in degrees.

startPose = [4, 4, 90]; % [meters, meters, degrees]
goalPose = [30, 13, 0];

Use a pathPlannerRRT object to plan a path from the start pose to the goal pose.

planner = pathPlannerRRT(costmap);
refPath = plan(planner,startPose,goalPose);

Check that the path is valid.

isPathValid = checkPathValidity(refPath,costmap)

isPathValid = logical
   1

Interpolate the transition poses along the path.

transitionPoses = interpolate(refPath);

Plot the planned path and the transition poses on the costmap.

hold on
plot(refPath,'DisplayName','Planned Path')
scatter(transitionPoses(:,1),transitionPoses(:,2),[],'filled', ...
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    'DisplayName','Transition Poses')
hold off

Input Arguments
refPath — Planned vehicle path
driving.Path object

Planned vehicle path, specified as a driving.Path object.

costmap — Costmap used for collision checking
vehicleCostmap object

Costmap used for collision checking, specified as a vehicleCostmap object.

refPoses — Sequence of vehicle poses
m-by-3 matrix of [x, y, Θ] vectors

Sequence of vehicle poses, specified as an m-by-3 matrix of [x, y, Θ] vectors. m is the number of
specified poses.

x and y specify the location of the vehicle. These values must be in the same world units used by
costmap.

Θ specifies the orientation angle of the vehicle in degrees.
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Output Arguments
isValid — Indicates validity of path or poses
1 | 0

Indicates validity of the planned vehicle path, refPath, or the sequence of vehicle poses, refPoses,
returned as a logical value of 1 or 0.

A path or sequence of poses is valid (1) if the following conditions are true:

• The path or pose sequence has at least one pose.
• The path or pose sequence is collision-free and within the limits of costmap.

Algorithms
To check if a vehicle path is valid, the checkPathValidity function discretizes the path. Then, the
function checks that the poses at the discretized points are collision-free. The threshold for a
collision-free pose depends on the resolution at which checkPathValidity discretizes.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
plan | plot

Objects
driving.Path | pathPlannerRRT | vehicleCostmap

Topics
“Automated Parking Valet”

Introduced in R2018a
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configureDetectorMonoCamera
Configure object detector for using calibrated monocular camera

Syntax
configuredDetector = configureDetectorMonoCamera(detector,sensor,objectSize)

Description
configuredDetector = configureDetectorMonoCamera(detector,sensor,objectSize)
configures any of these object detectors

• ACF (aggregate channel features)
• Faster R-CNN (regions with convolutional neural networks)
• Fast R-CNN
• YOLO v2 (you only look once v2)
• SSD (single shot detector),

to detect objects of a known size on a ground plane. Specify your trained object detector, detector,
a camera configuration for transforming image coordinates to world coordinates, sensor, and the
range of the object widths and lengths, objectSize.

Examples

Detect Vehicles Using Monocular Camera and ACF

Configure an ACF object detector for use with a monocular camera mounted on an ego vehicle. Use
this detector to detect vehicles within video frames captured by the camera.

Load an acfObjectDetector object pretrained to detect vehicles.

detector = vehicleDetectorACF;

Model a monocular camera sensor by creating a monoCamera object. This object contains the camera
intrinsics and the location of the camera on the ego vehicle.

focalLength = [309.4362 344.2161];    % [fx fy]
principalPoint = [318.9034 257.5352]; % [cx cy]
imageSize = [480 640];                % [mrows ncols]
height = 2.1798;                      % height of camera above ground, in meters
pitch = 14;                           % pitch of camera, in degrees
intrinsics = cameraIntrinsics(focalLength,principalPoint,imageSize);

monCam = monoCamera(intrinsics,height,'Pitch',pitch);

Configure the detector for use with the camera. Limit the width of detected objects to a typical range
for vehicle widths: 1.5–2.5 meters. The configured detector is an acfObjectDetectorMonoCamera
object.
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vehicleWidth = [1.5 2.5];
detectorMonoCam = configureDetectorMonoCamera(detector,monCam,vehicleWidth);

Load a video captured from the camera, and create a video reader and player.

videoFile = fullfile(toolboxdir('driving'),'drivingdata','caltech_washington1.avi');
reader = VideoReader(videoFile);
videoPlayer = vision.VideoPlayer('Position',[29 597 643 386]);

Run the detector in a loop over the video. Annotate the video with the bounding boxes for the
detections and the detection confidence scores.

cont = hasFrame(reader);
while cont
   I = readFrame(reader);

   % Run the detector.
   [bboxes,scores] = detect(detectorMonoCam,I);
   if ~isempty(bboxes)
       I = insertObjectAnnotation(I, ...
                           'rectangle',bboxes, ...
                           scores, ...
                           'Color','g');
   end
   videoPlayer(I)
   % Exit the loop if the video player figure is closed.
   cont = hasFrame(reader) && isOpen(videoPlayer);
end

release(videoPlayer);
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Input Arguments
detector — Object detector to configure
acfObjectDetector object | fastRCNNObjectDetector object | fasterRCNNObjectDetector
object | yolov2ObjectDetector object | ssdObjectDetector object

Object detector to configure, specified as one of these object detector objects:

• acfObjectDetector
• fastRCNNObjectDetector
• fasterRCNNObjectDetector
• yolov2ObjectDetector
• ssdObjectDetector

Train the object detector before configuring them by using:

• trainACFObjectDetector
• trainFastRCNNObjectDetector
• trainFasterRCNNObjectDetector
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• trainYOLOv2ObjectDetector
• trainSSDObjectDetector

sensor — Camera configuration
monoCamera object

Camera configuration, specified as a monoCamera object. The object contains the camera intrinsics,
the location, the pitch, yaw, and roll placement, and the world units for the parameters. Use the
intrinsics to transform the object points in the image to world coordinates, which you can then
compare to the WorldObjectSize property for detector.

objectSize — Range of object widths and lengths
[minWidth maxWidth] vector | [minWidth maxWidth; minLength maxLength] vector

Range of object widths and lengths in world units, specified as a [minWidth maxWidth] vector or
[minWidth maxWidth; minLength maxLength] vector. Specifying the range of object lengths is
optional.

Output Arguments
configuredDetector — Configured object detector
acfObjectDetectorMonoCamera object | fastRCNNObjectDetectorMonoCamera object |
fasterRCNNObjectDetectorMonoCamera object | yolov2ObjectDetectorMonoCamera |
ssdObjectDetectorMonoCamera

Configured object detector, returned as one of these object detector objects:

• acfObjectDetectorMonoCamera
• fastRCNNObjectDetectorMonoCamera
• fasterRCNNObjectDetectorMonoCamera
• yolov2ObjectDetectorMonoCamera
• ssdObjectDetectorMonoCamera

See Also
acfObjectDetector | acfObjectDetectorMonoCamera | fastRCNNObjectDetector |
fastRCNNObjectDetectorMonoCamera | fasterRCNNObjectDetector |
fasterRCNNObjectDetectorMonoCamera | monoCamera | ssdObjectDetectorMonoCamera |
yolov2ObjectDetectorMonoCamera

Introduced in R2017a
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constacc
Constant-acceleration motion model

Syntax
updatedstate = constacc(state)
updatedstate = constacc(state,dt)
updatedstate = constacc(state,w,dt)

Description
updatedstate = constacc(state) returns the updated state, state, of a constant acceleration
Kalman filter motion model for a step time of one second.

updatedstate = constacc(state,dt) specifies the time step, dt.

updatedstate = constacc(state,w,dt) also specifies the state noise, w.

Examples

Predict State for Constant-Acceleration Motion

Define an initial state for 2-D constant-acceleration motion.

state = [1;1;1;2;1;0];

Predict the state 1 second later.

state = constacc(state)

state = 6×1

    2.5000
    2.0000
    1.0000
    3.0000
    1.0000
         0

Predict State for Constant-Acceleration Motion With Specified Time Step

Define an initial state for 2-D constant-acceleration motion.

state = [1;1;1;2;1;0];

Predict the state 0.5 s later.

state = constacc(state,0.5)
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state = 6×1

    1.6250
    1.5000
    1.0000
    2.5000
    1.0000
         0

Input Arguments
state — Kalman filter state vector
real-valued 3N-element vector

Kalman filter state vector for constant-acceleration motion, specified as a real-valued 3N-element
vector. N is the number of spatial degrees of freedom of motion. For each spatial degree of motion,
the state vector takes the form shown in this table.

Spatial Dimensions State Vector Structure
1-D [x;vx;ax]
2-D [x;vx;ax;y;vy;ay]
3-D [x;vx;ax;y;vy;ay;z;vz;az]

For example, x represents the x-coordinate, vx represents the velocity in the x-direction, and ax
represents the acceleration in the x-direction. If the motion model is in one-dimensional space, the y-
and z-axes are assumed to be zero. If the motion model is in two-dimensional space, values along the
z-axis are assumed to be zero. Position coordinates are in meters. Velocity coordinates are in meters/
second. Acceleration coordinates are in meters/second2.
Example: [5;0.1;0.01;0;-0.2;-0.01;-3;0.05;0]
Data Types: double

dt — Time step interval of filter
1.0 (default) | positive scalar

Time step interval of filter, specified as a positive scalar. Time units are in seconds.
Example: 0.5
Data Types: single | double

w — State noise
scalar | real-valued D-by-N matrix

State noise, specified as a scalar or real-valued D-by-N matrix. D is the number of motion dimensions
and N is the number of state vectors. If specified as a scalar, the scalar value is expanded to a D-by-N
matrix.
Data Types: single | double
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Output Arguments
updatedstate — Updated state vector
real-valued column or row vector | real-valued matrix

Updated state vector, returned as a real-valued vector or real-valued matrix with same number of
elements and dimensions as the input state vector.

Algorithms
For a two-dimensional constant-acceleration process, the state transition matrix after a time step, T,
is block diagonal:

xk + 1
vxk + 1
axk + 1
yk + 1

vyk + 1
ayk + 1

=

1 T 1
2T2 0 0 0

0 1 T 0 0 0
0 0 1 0 0 0

0 0 0 1 T 1
2T2

0 0 0 0 1 T
0 0 0 0 0 1

xk
vxk
axk
yk

vyk
ayk

The block for each spatial dimension has this form:

1 T 1
2T2

0 1 T
0 0 1

For each additional spatial dimension, add an identical block.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
cameas | cameasjac | constaccjac | constturn | constturnjac | constvel | constveljac |
ctmeas | ctmeasjac | cvmeas | cvmeasjac

Objects
trackingEKF | trackingKF | trackingUKF

Introduced in R2017a
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constaccjac
Jacobian for constant-acceleration motion

Syntax
jacobian = constaccjac(state)
jacobian = constaccjac(state,dt)
[jacobian,noisejacobian] = constaccjac(state,w,dt)

Description
jacobian = constaccjac(state) returns the updated Jacobian , jacobian, for a constant-
acceleration Kalman filter motion model. The step time is one second. The state argument specifies
the current state of the filter.

jacobian = constaccjac(state,dt) also specifies the time step, dt.

[jacobian,noisejacobian] = constaccjac(state,w,dt) specifies the state noise, w, and
returns the Jacobian, noisejacobian, of the state with respect to the noise.

Examples

Compute State Jacobian for Constant-Acceleration Motion

Compute the state Jacobian for two-dimensional constant-acceleration motion.

Define an initial state and compute the state Jacobian for a one second update time.

state = [1,1,1,2,1,0];
jacobian = constaccjac(state)

jacobian = 6×6

    1.0000    1.0000    0.5000         0         0         0
         0    1.0000    1.0000         0         0         0
         0         0    1.0000         0         0         0
         0         0         0    1.0000    1.0000    0.5000
         0         0         0         0    1.0000    1.0000
         0         0         0         0         0    1.0000

Compute State Jacobian for Constant-Acceleration Motion with Specified Time Step

Compute the state Jacobian for two-dimensional constant-acceleration motion. Set the step time to
0.5 seconds.

state = [1,1,1,2,1,0].';
jacobian = constaccjac(state,0.5)
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jacobian = 6×6

    1.0000    0.5000    0.1250         0         0         0
         0    1.0000    0.5000         0         0         0
         0         0    1.0000         0         0         0
         0         0         0    1.0000    0.5000    0.1250
         0         0         0         0    1.0000    0.5000
         0         0         0         0         0    1.0000

Input Arguments
state — Kalman filter state vector
real-valued 3N-element vector

Kalman filter state vector for constant-acceleration motion, specified as a real-valued 3N-element
vector. N is the number of spatial degrees of freedom of motion. For each spatial degree of motion,
the state vector takes the form shown in this table.

Spatial Dimensions State Vector Structure
1-D [x;vx;ax]
2-D [x;vx;ax;y;vy;ay]
3-D [x;vx;ax;y;vy;ay;z;vz;az]

For example, x represents the x-coordinate, vx represents the velocity in the x-direction, and ax
represents the acceleration in the x-direction. If the motion model is in one-dimensional space, the y-
and z-axes are assumed to be zero. If the motion model is in two-dimensional space, values along the
z-axis are assumed to be zero. Position coordinates are in meters. Velocity coordinates are in meters/
second. Acceleration coordinates are in meters/second2.
Example: [5;0.1;0.01;0;-0.2;-0.01;-3;0.05;0]
Data Types: double

dt — Time step interval of filter
1.0 (default) | positive scalar

Time step interval of filter, specified as a positive scalar. Time units are in seconds.
Example: 0.5
Data Types: single | double

w — State noise
scalar | real-valued N-by-1 vector

State noise, specified as a scalar or real-valued real valued N-by-1 vector. N is the number of motion
dimensions. For example, N = 2 for the 2-D motion. If specified as a scalar, the scalar value is
expanded to a N-by-1 vector.
Data Types: single | double
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Output Arguments
jacobian — Constant-acceleration motion Jacobian
real-valued 3N-by-3N matrix

Constant-acceleration motion Jacobian, returned as a real-valued 3N-by-3N matrix.

noisejacobian — Constant acceleration motion noise Jacobian
real-valued 3N-by-N matrix

Constant acceleration motion noise Jacobian, returned as a real-valued 3N-by-N matrix. N is the
number of spatial degrees of motion. For example, N = 2 for the 2-D motion. The Jacobian is
constructed from the partial derivatives of the state at the updated time step with respect to the noise
components.

Algorithms
For a two-dimensional constant-acceleration process, the Jacobian matrix after a time step, T, is block
diagonal:

1 T 1
2T2 0 0 0

0 1 T 0 0 0
0 0 1 0 0 0

0 0 0 1 T 1
2T2

0 0 0 0 1 T
0 0 0 0 0 1

The block for each spatial dimension has this form:

1 T 1
2T2

0 1 T
0 0 1

For each additional spatial dimension, add an identical block.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
cameas | cameasjac | constacc | constturn | constturnjac | constvel | constveljac |
ctmeas | ctmeasjac | cvmeas | cvmeasjac

Objects
trackingEKF | trackingKF | trackingUKF
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Introduced in R2017a
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constturn
Constant turn-rate motion model

Syntax
updatedstate = constturn(state)
updatedstate = constturn(state,dt)
updatedstate = constturn(state,w,dt)

Description
updatedstate = constturn(state) returns the updated state, updatedstate, obtained from
the previous state, state, after a one-second step time for motion modelled as constant turn rate.
Constant turn rate means that motion in the x-y plane follows a constant angular velocity and motion
in the vertical z directions follows a constant velocity model.

updatedstate = constturn(state,dt) also specifies the time step, dt.

updatedstate = constturn(state,w,dt) also specifies noise, w.

Examples

Update State for Constant Turn-Rate Motion

Define an initial state for 2-D constant turn-rate motion. The turn rate is 12 degrees per second.
Update the state to one second later.

state = [500,0,0,100,12].';
state = constturn(state)

state = 5×1

  489.5662
  -20.7912
   99.2705
   97.8148
   12.0000

Update State for Constant Turn-Rate Motion with Specified Time Step

Define an initial state for 2-D constant turn-rate motion. The turn rate is 12 degrees per second.
Update the state to 0.1 seconds later.

state = [500,0,0,100,12].';
state = constturn(state,0.1)

state = 5×1
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  499.8953
   -2.0942
    9.9993
   99.9781
   12.0000

Input Arguments
state — State vector
real-valued 5-element vector | real-valued 7-element vector | 5-by-N real-valued matrix | 7-by-N real-
valued matrix

State vector for a constant turn-rate motion model in two or three spatial dimensions, specified as a
real-valued vector or matrix.

• When specified as a 5-element vector, the state vector describes 2-D motion in the x-y plane. You
can specify the state vector as a row or column vector. The components of the state vector are
[x;vx;y;vy;omega] where x represents the x-coordinate and vx represents the velocity in the
x-direction. y represents the y-coordinate and vy represents the velocity in the y-direction. omega
represents the turn rate.

When specified as a 5-by-N matrix, each column represents a different state vector N represents
the number of states.

• When specified as a 7-element vector, the state vector describes 3-D motion. You can specify the
state vector as a row or column vector. The components of the state vector are
[x;vx;y;vy;omega;z;vz] where x represents the x-coordinate and vx represents the velocity
in the x-direction. y represents the y-coordinate and vy represents the velocity in the y-direction.
omega represents the turn rate. z represents the z-coordinate and vz represents the velocity in
the z-direction.

When specified as a 7-by-N matrix, each column represents a different state vector. N represents
the number of states.

Position coordinates are in meters. Velocity coordinates are in meters/second. Turn rate is in degrees/
second.
Example: [5;0.1;4;-0.2;0.01]
Data Types: double

dt — Time step interval of filter
1.0 (default) | positive scalar

Time step interval of filter, specified as a positive scalar. Time units are in seconds.
Example: 0.5
Data Types: single | double

w — State noise
scalar | real-valued (D+1)-by-N matrix

State noise, specified as a scalar or real-valued (D+1)-length -by-N matrix. D is the number of motion
dimensions and N is the number of state vectors. The components are each columns are
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[ax;ay;alpha] for 2-D motion or [ax;ay;alpha;az] for 3-D motion. ax, ay, and az are the linear
acceleration noise values in the x-, y-, and z-axes, respectively, and alpha is the angular acceleration
noise value. If specified as a scalar, the value expands to a (D+1)-by-N matrix.
Data Types: single | double

Output Arguments
updatedstate — Updated state vector
real-valued column or row vector | real-valued matrix

Updated state vector, returned as a real-valued vector or real-valued matrix with same number of
elements and dimensions as the input state vector.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
cameas | cameasjac | constacc | constaccjac | constturnjac | constvel | constveljac |
ctmeas | ctmeasjac | cvmeas | cvmeasjac | initctekf | initctukf

Objects
trackingEKF | trackingUKF

Introduced in R2017a
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constturnjac
Jacobian for constant turn-rate motion

Syntax
jacobian = constturnjac(state)
jacobian = constturnjac(state,dt)
[jacobian,noisejacobian] = constturnjac(state,w,dt)

Description
jacobian = constturnjac(state) returns the updated Jacobian, jacobian, for constant turn-
rate Kalman filter motion model for a one-second step time. The state argument specifies the
current state of the filter. Constant turn rate means that motion in the x-y plane follows a constant
angular velocity and motion in the vertical z directions follows a constant velocity model.

jacobian = constturnjac(state,dt) specifies the time step, dt.

[jacobian,noisejacobian] = constturnjac(state,w,dt) also specifies noise, w, and
returns the Jacobian, noisejacobian, of the state with respect to the noise.

Examples

Compute State Jacobian for Constant Turn-Rate Motion

Compute the Jacobian for a constant turn-rate motion state. Assume the turn rate is 12 degrees/
second. The time step is one second.

state = [500,0,0,100,12];
jacobian = constturnjac(state)

jacobian = 5×5

    1.0000    0.9927         0   -0.1043   -0.8631
         0    0.9781         0   -0.2079   -1.7072
         0    0.1043    1.0000    0.9927   -0.1213
         0    0.2079         0    0.9781   -0.3629
         0         0         0         0    1.0000

Compute State Jacobian for Constant Turn-Rate Motion with Specified Time Step

Compute the Jacobian for a constant turn-rate motion state. Assume the turn rate is 12 degrees/
second. The time step is 0.1 second.

state = [500,0,0,100,12];
jacobian = constturnjac(state,0.1)
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jacobian = 5×5

    1.0000    0.1000         0   -0.0010   -0.0087
         0    0.9998         0   -0.0209   -0.1745
         0    0.0010    1.0000    0.1000   -0.0001
         0    0.0209         0    0.9998   -0.0037
         0         0         0         0    1.0000

Input Arguments
state — State vector
real-valued 5-element vector | real-valued 7-element vector

State vector for a constant turn-rate motion model in two or three spatial dimensions, specified as a
real-valued vector.

• When specified as a 5-element vector, the state vector describes 2-D motion in the x-y plane. You
can specify the state vector as a row or column vector. The components of the state vector are
[x;vx;y;vy;omega] where x represents the x-coordinate and vx represents the velocity in the
x-direction. y represents the y-coordinate and vy represents the velocity in the y-direction. omega
represents the turn rate.

• When specified as a 7-element vector, the state vector describes 3-D motion. You can specify the
state vector as a row or column vector. The components of the state vector are
[x;vx;y;vy;omega;z;vz] where x represents the x-coordinate and vx represents the velocity
in the x-direction. y represents the y-coordinate and vy represents the velocity in the y-direction.
omega represents the turn rate. z represents the z-coordinate and vz represents the velocity in
the z-direction.

Position coordinates are in meters. Velocity coordinates are in meters/second. Turn rate is in degrees/
second.
Example: [5;0.1;4;-0.2;0.01]
Data Types: double

dt — Time step interval of filter
1.0 (default) | positive scalar

Time step interval of filter, specified as a positive scalar. Time units are in seconds.
Example: 0.5
Data Types: single | double

w — State noise
scalar | real-valued (D+1) vector

State noise, specified as a scalar or real-valued M-by-(D+1)-length vector. D is the number of motion
dimensions. D is two for 2-D motion and D is three for 3-D motion. The vector components are
[ax;ay;alpha] for 2-D motion or [ax;ay;alpha;az] for 3-D motion. ax, ay, and az are the linear
acceleration noise values in the x-, y-, and z-axes, respectively, and alpha is the angular acceleration
noise value. If specified as a scalar, the value expands to a (D+1) vector.
Data Types: single | double
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Output Arguments
jacobian — Constant turn-rate motion Jacobian
real-valued 5-by-5 matrix | real-valued 7-by-7 matrix

Constant turn-rate motion Jacobian, returned as a real-valued 5-by-5 matrix or 7-by-7 matrix
depending on the size of the state vector. The Jacobian is constructed from the partial derivatives of
the state at the updated time step with respect to the state at the previous time step.

noisejacobian — Constant turn-rate motion noise Jacobian
real-valued 5-by-5 matrix | real-valued 7-by-7 matrix

Constant turn-rate motion noise Jacobian, returned as a real-valued 5-by-(D+1) matrix where D is two
for 2-D motion or a real-valued 7-by-(D+1) matrix where D is three for 3-D motion. The Jacobian is
constructed from the partial derivatives of the state at the updated time step with respect to the noise
components.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
cameas | cameasjac | constacc | constaccjac | constturn | constvel | constveljac |
ctmeas | ctmeasjac | cvmeas | cvmeasjac | initctekf

Objects
trackingEKF

Introduced in R2017a
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constvel
Constant velocity state update

Syntax
updatedstate = constvel(state)
updatedstate = constvel(state,dt)
updatedstate = constvel(state,w,dt)

Description
updatedstate = constvel(state) returns the updated state, state, of a constant-velocity
Kalman filter motion model after a one-second time step.

updatedstate = constvel(state,dt) specifies the time step, dt.

updatedstate = constvel(state,w,dt) also specifies state noise, w.

Examples

Update State for Constant-Velocity Motion

Update the state of two-dimensional constant-velocity motion for a time interval of one second.

state = [1;1;2;1];
state = constvel(state)

state = 4×1

     2
     1
     3
     1

Update State for Constant-Velocity Motion with Specified Time Step

Update the state of two-dimensional constant-velocity motion for a time interval of 1.5 seconds.

state = [1;1;2;1];
state = constvel(state,1.5)

state = 4×1

    2.5000
    1.0000
    3.5000
    1.0000
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Input Arguments
state — Kalman filter state vector
real-valued 2N-element vector

Kalman filter state vector for constant-velocity motion, specified as a real-valued 2N-element column
vector where N is the number of spatial degrees of freedom of motion. The state is expected to be
Cartesian state. For each spatial degree of motion, the state vector takes the form shown in this table.

Spatial Dimensions State Vector Structure
1-D [x;vx]
2-D [x;vx;y;vy]
3-D [x;vx;y;vy;z;vz]

For example, x represents the x-coordinate and vx represents the velocity in the x-direction. If the
motion model is 1-D, values along the y and z axes are assumed to be zero. If the motion model is 2-D,
values along the z axis are assumed to be zero. Position coordinates are in meters and velocity
coordinates are in meters/sec.
Example: [5;.1;0;-.2;-3;.05]
Data Types: single | double

dt — Time step interval of filter
1.0 (default) | positive scalar

Time step interval of filter, specified as a positive scalar. Time units are in seconds.
Example: 0.5
Data Types: single | double

w — State noise
scalar | real-valued D-by-N matrix

State noise, specified as a scalar or real-valued D-by-N matrix. D is the number of motion dimensions
and N is the number of state vectors. For example, D = 2 for the 2-D motion. If specified as a scalar,
the scalar value is expanded to a D-by-N matrix.
Data Types: single | double

Output Arguments
updatedstate — Updated state vector
real-valued column or row vector | real-valued matrix

Updated state vector, returned as a real-valued vector or real-valued matrix with same number of
elements and dimensions as the input state vector.

Algorithms
For a two-dimensional constant-velocity process, the state transition matrix after a time step, T, is
block diagonal as shown here.
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xk + 1
vx, k + 1
yk + 1

vy, k + 1

=

1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

xk
vxk
yk

vyk

The block for each spatial dimension is:

1 T
0 1

For each additional spatial dimension, add an identical block.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
cameas | cameasjac | constacc | constaccjac | constturn | constturnjac | constveljac |
ctmeas | ctmeasjac | cvmeas | cvmeasjac

Objects
trackingEKF | trackingKF | trackingUKF

Introduced in R2017a
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constveljac
Jacobian for constant-velocity motion

Syntax
jacobian = constveljac(state)
jacobian = constveljac(state,dt)
[jacobian,noisejacobian] = constveljac(state,w,dt)

Description
jacobian = constveljac(state) returns the updated Jacobian , jacobian, for a constant-
velocity Kalman filter motion model for a step time of one second. The state argument specifies the
current state of the filter.

jacobian = constveljac(state,dt) specifies the time step, dt.

[jacobian,noisejacobian] = constveljac(state,w,dt) specifies the state noise, w, and
returns the Jacobian, noisejacobian, of the state with respect to the noise.

Examples

Compute State Jacobian for Constant-Velocity Motion

Compute the state Jacobian for a two-dimensional constant-velocity motion model for a one second
update time.

state = [1,1,2,1].';
jacobian = constveljac(state)

jacobian = 4×4

     1     1     0     0
     0     1     0     0
     0     0     1     1
     0     0     0     1

Compute State Jacobian for Constant-Velocity Motion with Specified Time Step

Compute the state Jacobian for a two-dimensional constant-velocity motion model for a half-second
update time.

state = [1;1;2;1];

Compute the state update Jacobian for 0.5 second.

jacobian = constveljac(state,0.5)
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jacobian = 4×4

    1.0000    0.5000         0         0
         0    1.0000         0         0
         0         0    1.0000    0.5000
         0         0         0    1.0000

Input Arguments
state — Kalman filter state vector
real-valued 2N-element vector

Kalman filter state vector for constant-velocity motion, specified as a real-valued 2N-element column
vector where N is the number of spatial degrees of freedom of motion. The state is expected to be
Cartesian state. For each spatial degree of motion, the state vector takes the form shown in this table.

Spatial Dimensions State Vector Structure
1-D [x;vx]
2-D [x;vx;y;vy]
3-D [x;vx;y;vy;z;vz]

For example, x represents the x-coordinate and vx represents the velocity in the x-direction. If the
motion model is 1-D, values along the y and z axes are assumed to be zero. If the motion model is 2-D,
values along the z axis are assumed to be zero. Position coordinates are in meters and velocity
coordinates are in meters/sec.
Example: [5;.1;0;-.2;-3;.05]
Data Types: single | double

dt — Time step interval of filter
1.0 (default) | positive scalar

Time step interval of filter, specified as a positive scalar. Time units are in seconds.
Example: 0.5
Data Types: single | double

w — State noise
scalar | real-valued N-by-1 vector

State noise, specified as a scalar or real-valued real valued N-by-1 vector. N is the number of motion
dimensions. For example, N = 2 for the 2-D motion. If specified as a scalar, the scalar value is
expanded to an N-by-1 vector.
Data Types: single | double

Output Arguments
jacobian — Constant-velocity motion Jacobian
real-valued 2N-by-2N matrix
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Constant-velocity motion Jacobian, returned as a real-valued 2N-by-2N matrix. N is the number of
spatial degrees of motion.

noisejacobian — Constant velocity motion noise Jacobian
real-valued 2N-by-N matrix

Constant velocity motion noise Jacobian, returned as a real-valued 2N-by-N matrix. N is the number
of spatial degrees of motion. The Jacobian is constructed from the partial derivatives of the state at
the updated time step with respect to the noise components.

Algorithms
For a two-dimensional constant-velocity motion, the Jacobian matrix for a time step, T, is block
diagonal:

1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

The block for each spatial dimension has this form:

1 T
0 1

For each additional spatial dimension, add an identical block.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
cameas | cameasjac | constacc | constaccjac | constturn | constturnjac | constvel |
ctmeas | ctmeasjac | cvmeas | cvmeasjac

Objects
trackingEKF | trackingKF | trackingUKF

Introduced in R2017a

3 Functions

3-54



ctmeas
Measurement function for constant turn-rate motion

Syntax
measurement = ctmeas(state)
measurement = ctmeas(state,frame)
measurement = ctmeas(state,frame,sensorpos)
measurement = ctmeas(state,frame,sensorpos,sensorvel)
measurement = ctmeas(state,frame,sensorpos,sensorvel,laxes)
measurement = ctmeas(state,measurementParameters)

Description
measurement = ctmeas(state) returns the measurement for a constant turn-rate Kalman filter
motion model in rectangular coordinates. The state argument specifies the current state of the
filter.

measurement = ctmeas(state,frame) also specifies the measurement coordinate system,
frame.

measurement = ctmeas(state,frame,sensorpos) also specifies the sensor position,
sensorpos.

measurement = ctmeas(state,frame,sensorpos,sensorvel) also specifies the sensor
velocity, sensorvel.

measurement = ctmeas(state,frame,sensorpos,sensorvel,laxes) also specifies the local
sensor axes orientation, laxes.

measurement = ctmeas(state,measurementParameters) specifies the measurement
parameters, measurementParameters.

Examples

Create Measurement from Constant Turn-Rate Motion in Rectangular Frame

Create a measurement from an object undergoing constant turn-rate motion. The state is the position
and velocity in each dimension and the turn-rate. The measurements are in rectangular coordinates.

state = [1;10;2;20;5];
measurement = ctmeas(state)

measurement = 3×1

     1
     2
     0
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The z-component of the measurement is zero.

Create Measurement from Constant Turn-Rate Motion in Spherical Frame

Define the state of an object in 2-D constant turn-rate motion. The state is the position and velocity in
each dimension, and the turn rate. The measurements are in spherical coordinates.

state = [1;10;2;20;5];
measurement = ctmeas(state,'spherical')

measurement = 4×1

   63.4349
         0
    2.2361
   22.3607

The elevation of the measurement is zero and the range rate is positive indicating that the object is
moving away from the sensor.

Create Measurement from Constant Turn-Rate Motion in Translated Spherical Frame

Define the state of an object moving in 2-D constant turn-rate motion. The state consists of position
and velocity, and the turn rate. The measurements are in spherical coordinates with respect to a
frame located at [20;40;0].

state = [1;10;2;20;5];
measurement = ctmeas(state,'spherical',[20;40;0])

measurement = 4×1

 -116.5651
         0
   42.4853
  -22.3607

The elevation of the measurement is zero and the range rate is negative indicating that the object is
moving toward the sensor.

Create Measurement from Constant Turn-Rate Motion using Measurement Parameters

Define the state of an object moving in 2-D constant turn-rate motion. The state consists of position
and velocity, and the turn rate. The measurements are in spherical coordinates with respect to a
frame located at [20;40;0].

state2d = [1;10;2;20;5];
frame = 'spherical';
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sensorpos = [20;40;0];
sensorvel = [0;5;0];
laxes = eye(3);
measurement = ctmeas(state2d,frame,sensorpos,sensorvel,laxes)

measurement = 4×1

 -116.5651
         0
   42.4853
  -17.8885

The elevation of the measurement is zero and the range rate is negative indicating that the object is
moving toward the sensor.

Put the measurement parameters in a structure and use the alternative syntax.

measparm = struct('Frame',frame,'OriginPosition',sensorpos, ...
    'OriginVelocity',sensorvel,'Orientation',laxes);
measurement = ctmeas(state2d,measparm)

measurement = 4×1

 -116.5651
         0
   42.4853
  -17.8885

Input Arguments
state — State vector
real-valued 5-element vector | real-valued 7-element vector | 5-by-N real-valued matrix | 7-by-N real-
valued matrix

State vector for a constant turn-rate motion model in two or three spatial dimensions, specified as a
real-valued vector or matrix.

• When specified as a 5-element vector, the state vector describes 2-D motion in the x-y plane. You
can specify the state vector as a row or column vector. The components of the state vector are
[x;vx;y;vy;omega] where x represents the x-coordinate and vx represents the velocity in the
x-direction. y represents the y-coordinate and vy represents the velocity in the y-direction. omega
represents the turn rate.

When specified as a 5-by-N matrix, each column represents a different state vector N represents
the number of states.

• When specified as a 7-element vector, the state vector describes 3-D motion. You can specify the
state vector as a row or column vector. The components of the state vector are
[x;vx;y;vy;omega;z;vz] where x represents the x-coordinate and vx represents the velocity
in the x-direction. y represents the y-coordinate and vy represents the velocity in the y-direction.
omega represents the turn rate. z represents the z-coordinate and vz represents the velocity in
the z-direction.
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When specified as a 7-by-N matrix, each column represents a different state vector. N represents
the number of states.

Position coordinates are in meters. Velocity coordinates are in meters/second. Turn rate is in degrees/
second.
Example: [5;0.1;4;-0.2;0.01]
Data Types: double

frame — Measurement output frame
'rectangular' (default) | 'spherical'

Measurement output frame, specified as 'rectangular' or 'spherical'. When the frame is
'rectangular', a measurement consists of x, y, and z Cartesian coordinates. When specified as
'spherical', a measurement consists of azimuth, elevation, range, and range rate.
Data Types: char

sensorpos — Sensor position
[0;0;0] (default) | real-valued 3-by-1 column vector

Sensor position with respect to the navigation frame, specified as a real-valued 3-by-1 column vector.
Units are in meters.
Data Types: double

sensorvel — Sensor velocity
[0;0;0] (default) | real-valued 3-by-1 column vector

Sensor velocity with respect to the navigation frame, specified as a real-valued 3-by-1 column vector.
Units are in m/s.
Data Types: double

laxes — Local sensor coordinate axes
[1,0,0;0,1,0;0,0,1] (default) | 3-by-3 orthogonal matrix

Local sensor coordinate axes, specified as a 3-by-3 orthogonal matrix. Each column specifies the
direction of the local x-, y-, and z-axes, respectively, with respect to the navigation frame. That is, the
matrix is the rotation matrix from the global frame to the sensor frame.
Data Types: double

measurementParameters — Measurement parameters
structure | array of structure

Measurement parameters, specified as a structure or an array of structures. The fields of the
structure are:
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Field Description Example
Frame Frame used to report

measurements, specified as one
of these values:

• 'rectangular' —
Detections are reported in
rectangular coordinates.

• 'spherical' — Detections
are reported in spherical
coordinates.

'spherical'

OriginPosition Position offset of the origin of
the frame relative to the parent
frame, specified as an [x y z]
real-valued vector.

[0 0 0]

OriginVelocity Velocity offset of the origin of
the frame relative to the parent
frame, specified as a [vx vy
vz] real-valued vector.

[0 0 0]

Orientation Frame rotation matrix, specified
as a 3-by-3 real-valued
orthonormal matrix.

[1 0 0; 0 1 0; 0 0 1]

HasAzimuth Logical scalar indicating if
azimuth is included in the
measurement.

1

HasElevation Logical scalar indicating if
elevation is included in the
measurement. For
measurements reported in a
rectangular frame, and if
HasElevation is false, the
reported measurements assume
0 degrees of elevation.

1

HasRange Logical scalar indicating if
range is included in the
measurement.

1

HasVelocity Logical scalar indicating if the
reported detections include
velocity measurements. For
measurements reported in the
rectangular frame, if
HasVelocity is false, the
measurements are reported as
[x y z]. If HasVelocity is
true, measurements are
reported as [x y z vx vy
vz].

1
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Field Description Example
IsParentToChild Logical scalar indicating if

Orientation performs a frame
rotation from the parent
coordinate frame to the child
coordinate frame. When
IsParentToChild is false,
then Orientation performs a
frame rotation from the child
coordinate frame to the parent
coordinate frame.

0

Data Types: struct

Output Arguments
measurement — Measurement vector
N-by-1 column vector

Measurement vector, returned as an N-by-1 column vector. The form of the measurement depends
upon which syntax you use.

• When the syntax does not use the measurementParameters argument, the measurement vector
is [x,y,z] when the frame input argument is set to 'rectangular' and [az;el;r;rr] when
the frame is set to 'spherical'.

• When the syntax uses the measurementParameters argument, the size of the measurement
vector depends on the values of the frame, HasVelocity, and HasElevation fields in the
measurementParameters structure.

frame measurement
'spherical' Specifies the azimuth angle, az, elevation

angle, el, range, r, and range rate, rr, of the
object with respect to the local ego vehicle
coordinate system. Positive values for range
rate indicate that an object is moving away
from the sensor.

Spherical measurements

  HasElevation
  false true
HasVeloc
ity

false [az;r] [az;el;r
]

true [az;r;rr
]

[az;el;r
;rr]

Angle units are in degrees, range units are in
meters, and range rate units are in m/s.
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frame measurement
'rectangular Specifies the Cartesian position and velocity

coordinates of the tracked object with respect
to the ego vehicle coordinate system.

Rectangular measurements

HasVelocity false [x;y;y]
true [x;y;z;vx;v

y;vz]

Position units are in meters and velocity units
are in m/s.

Data Types: double

More About
Azimuth and Elevation Angle Definitions

Define the azimuth and elevation angles used in Automated Driving Toolbox.

The azimuth angle of a vector is the angle between the x-axis and its orthogonal projection onto the
xy plane. The angle is positive in going from the x axis toward the y axis. Azimuth angles lie between
–180 and 180 degrees. The elevation angle is the angle between the vector and its orthogonal
projection onto the xy-plane. The angle is positive when going toward the positive z-axis from the xy
plane.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
cameas | cameasjac | constacc | constaccjac | constturn | constturnjac | constvel |
constveljac | ctmeasjac | cvmeas | cvmeasjac

Objects
trackingEKF | trackingKF | trackingUKF
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Introduced in R2017a
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ctmeasjac
Jacobian of measurement function for constant turn-rate motion

Syntax
measurementjac = ctmeasjac(state)
measurementjac = ctmeasjac(state,frame)
measurementjac = ctmeasjac(state,frame,sensorpos)
measurementjac = ctmeasjac(state,frame,sensorpos,sensorvel)
measurementjac = ctmeasjac(state,frame,sensorpos,sensorvel,laxes)
measurementjac = ctmeasjac(state,measurementParameters)

Description
measurementjac = ctmeasjac(state) returns the measurement Jacobian, measurementjac,
for a constant turn-rate Kalman filter motion model in rectangular coordinates. state specifies the
current state of the track.

measurementjac = ctmeasjac(state,frame) also specifies the measurement coordinate
system, frame.

measurementjac = ctmeasjac(state,frame,sensorpos) also specifies the sensor position,
sensorpos.

measurementjac = ctmeasjac(state,frame,sensorpos,sensorvel) also specifies the
sensor velocity, sensorvel.

measurementjac = ctmeasjac(state,frame,sensorpos,sensorvel,laxes) also specifies
the local sensor axes orientation, laxes.

measurementjac = ctmeasjac(state,measurementParameters) specifies the measurement
parameters, measurementParameters.

Examples

Measurement Jacobian of Constant Turn-Rate Motion in Rectangular Frame

Define the state of an object in 2-D constant turn-rate motion. The state is the position and velocity in
each dimension, and the turn rate. Construct the measurement Jacobian in rectangular coordinates.

state = [1;10;2;20;5];
jacobian = ctmeasjac(state)

jacobian = 3×5

     1     0     0     0     0
     0     0     1     0     0
     0     0     0     0     0
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Measurement Jacobian of Constant Turn-Rate Motion in Spherical Frame

Define the state of an object in 2-D constant turn-rate motion. The state is the position and velocity in
each dimension, and the turn rate. Compute the measurement Jacobian with respect to spherical
coordinates.

state = [1;10;2;20;5];
measurementjac = ctmeasjac(state,'spherical')

measurementjac = 4×5

  -22.9183         0   11.4592         0         0
         0         0         0         0         0
    0.4472         0    0.8944         0         0
    0.0000    0.4472    0.0000    0.8944         0

Measurement Jacobian of Constant Turn-Rate Object in Translated Spherical Frame

Define the state of an object in 2-D constant turn-rate motion. The state is the position and velocity in
each dimension, and the turn rate. Compute the measurement Jacobian with respect to spherical
coordinates centered at [5;-20;0].

state = [1;10;2;20;5];
sensorpos = [5;-20;0];
measurementjac = ctmeasjac(state,'spherical',sensorpos)

measurementjac = 4×5

   -2.5210         0   -0.4584         0         0
         0         0         0         0         0
   -0.1789         0    0.9839         0         0
    0.5903   -0.1789    0.1073    0.9839         0

Measurement Jacobian of Constant Turn-Rate Object Using Measurement Parameters

Define the state of an object in 2-D constant turn-rate motion. The state is the position and velocity in
each dimension, and the turn rate. Compute the measurement Jacobian with respect to spherical
coordinates centered at [25;-40;0].

state2d = [1;10;2;20;5];
sensorpos = [25,-40,0].';
frame = 'spherical';
sensorvel = [0;5;0];
laxes = eye(3);
measurementjac = ctmeasjac(state2d,frame,sensorpos,sensorvel,laxes)

measurementjac = 4×5
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   -1.0284         0   -0.5876         0         0
         0         0         0         0         0
   -0.4961         0    0.8682         0         0
    0.2894   -0.4961    0.1654    0.8682         0

Put the measurement parameters in a structure and use the alternative syntax.

measparm = struct('Frame',frame,'OriginPosition',sensorpos,'OriginVelocity',sensorvel, ...
    'Orientation',laxes);
measurementjac = ctmeasjac(state2d,measparm)

measurementjac = 4×5

   -1.0284         0   -0.5876         0         0
         0         0         0         0         0
   -0.4961         0    0.8682         0         0
    0.2894   -0.4961    0.1654    0.8682         0

Input Arguments
state — State vector
real-valued 5-element vector | real-valued 7-element vector | 5-by-N real-valued matrix | 7-by-N real-
valued matrix

State vector for a constant turn-rate motion model in two or three spatial dimensions, specified as a
real-valued vector or matrix.

• When specified as a 5-element vector, the state vector describes 2-D motion in the x-y plane. You
can specify the state vector as a row or column vector. The components of the state vector are
[x;vx;y;vy;omega] where x represents the x-coordinate and vx represents the velocity in the
x-direction. y represents the y-coordinate and vy represents the velocity in the y-direction. omega
represents the turn rate.

When specified as a 5-by-N matrix, each column represents a different state vector N represents
the number of states.

• When specified as a 7-element vector, the state vector describes 3-D motion. You can specify the
state vector as a row or column vector. The components of the state vector are
[x;vx;y;vy;omega;z;vz] where x represents the x-coordinate and vx represents the velocity
in the x-direction. y represents the y-coordinate and vy represents the velocity in the y-direction.
omega represents the turn rate. z represents the z-coordinate and vz represents the velocity in
the z-direction.

When specified as a 7-by-N matrix, each column represents a different state vector. N represents
the number of states.

Position coordinates are in meters. Velocity coordinates are in meters/second. Turn rate is in degrees/
second.
Example: [5;0.1;4;-0.2;0.01]
Data Types: double
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frame — Measurement output frame
'rectangular' (default) | 'spherical'

Measurement output frame, specified as 'rectangular' or 'spherical'. When the frame is
'rectangular', a measurement consists of x, y, and z Cartesian coordinates. When specified as
'spherical', a measurement consists of azimuth, elevation, range, and range rate.
Data Types: char

sensorpos — Sensor position
[0;0;0] (default) | real-valued 3-by-1 column vector

Sensor position with respect to the navigation frame, specified as a real-valued 3-by-1 column vector.
Units are in meters.
Data Types: double

sensorvel — Sensor velocity
[0;0;0] (default) | real-valued 3-by-1 column vector

Sensor velocity with respect to the navigation frame, specified as a real-valued 3-by-1 column vector.
Units are in m/s.
Data Types: double

laxes — Local sensor coordinate axes
[1,0,0;0,1,0;0,0,1] (default) | 3-by-3 orthogonal matrix

Local sensor coordinate axes, specified as a 3-by-3 orthogonal matrix. Each column specifies the
direction of the local x-, y-, and z-axes, respectively, with respect to the navigation frame. That is, the
matrix is the rotation matrix from the global frame to the sensor frame.
Data Types: double

measurementParameters — Measurement parameters
structure | array of structure

Measurement parameters, specified as a structure or an array of structures. The fields of the
structure are:

Field Description Example
Frame Frame used to report

measurements, specified as one
of these values:

• 'rectangular' —
Detections are reported in
rectangular coordinates.

• 'spherical' — Detections
are reported in spherical
coordinates.

'spherical'
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Field Description Example
OriginPosition Position offset of the origin of

the frame relative to the parent
frame, specified as an [x y z]
real-valued vector.

[0 0 0]

OriginVelocity Velocity offset of the origin of
the frame relative to the parent
frame, specified as a [vx vy
vz] real-valued vector.

[0 0 0]

Orientation Frame rotation matrix, specified
as a 3-by-3 real-valued
orthonormal matrix.

[1 0 0; 0 1 0; 0 0 1]

HasAzimuth Logical scalar indicating if
azimuth is included in the
measurement.

1

HasElevation Logical scalar indicating if
elevation is included in the
measurement. For
measurements reported in a
rectangular frame, and if
HasElevation is false, the
reported measurements assume
0 degrees of elevation.

1

HasRange Logical scalar indicating if
range is included in the
measurement.

1

HasVelocity Logical scalar indicating if the
reported detections include
velocity measurements. For
measurements reported in the
rectangular frame, if
HasVelocity is false, the
measurements are reported as
[x y z]. If HasVelocity is
true, measurements are
reported as [x y z vx vy
vz].

1

IsParentToChild Logical scalar indicating if
Orientation performs a frame
rotation from the parent
coordinate frame to the child
coordinate frame. When
IsParentToChild is false,
then Orientation performs a
frame rotation from the child
coordinate frame to the parent
coordinate frame.

0

Data Types: struct
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Output Arguments
measurementjac — Measurement Jacobian
real-valued 3-by-5 matrix | real-valued 4-by-5 matrix

Measurement Jacobian, returned as a real-valued 3-by-5 or 4-by-5 matrix. The row dimension and
interpretation depend on value of the frame argument.

Frame Measurement Jacobian
'rectangular' Jacobian of the measurements [x;y;z] with

respect to the state vector. The measurement
vector is with respect to the local coordinate
system. Coordinates are in meters.

'spherical' Jacobian of the measurement vector
[az;el;r;rr] with respect to the state vector.
Measurement vector components specify the
azimuth angle, elevation angle, range, and range
rate of the object with respect to the local sensor
coordinate system. Angle units are in degrees.
Range units are in meters and range rate units
are in meters/second.

More About
Azimuth and Elevation Angle Definitions

Define the azimuth and elevation angles used in Automated Driving Toolbox.

The azimuth angle of a vector is the angle between the x-axis and its orthogonal projection onto the
xy plane. The angle is positive in going from the x axis toward the y axis. Azimuth angles lie between
–180 and 180 degrees. The elevation angle is the angle between the vector and its orthogonal
projection onto the xy-plane. The angle is positive when going toward the positive z-axis from the xy
plane.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
cameas | cameasjac | constacc | constaccjac | constturn | constturnjac | constvel |
constveljac | ctmeas | cvmeas | cvmeasjac

Objects
trackingEKF | trackingKF | trackingUKF
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Introduced in R2017a
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cvmeas
Measurement function for constant velocity motion

Syntax
measurement = cvmeas(state)
measurement = cvmeas(state,frame)
measurement = cvmeas(state,frame,sensorpos)
measurement = cvmeas(state,frame,sensorpos,sensorvel)
measurement = cvmeas(state,frame,sensorpos,sensorvel,laxes)
measurement = cvmeas(state,measurementParameters)

Description
measurement = cvmeas(state) returns the measurement for a constant-velocity Kalman filter
motion model in rectangular coordinates. The state argument specifies the current state of the
tracking filter.

measurement = cvmeas(state,frame) also specifies the measurement coordinate system,
frame.

measurement = cvmeas(state,frame,sensorpos) also specifies the sensor position,
sensorpos.

measurement = cvmeas(state,frame,sensorpos,sensorvel) also specifies the sensor
velocity, sensorvel.

measurement = cvmeas(state,frame,sensorpos,sensorvel,laxes) specifies the local
sensor axes orientation, laxes.

measurement = cvmeas(state,measurementParameters) specifies the measurement
parameters, measurementParameters.

Examples

Create Measurement from Constant-Velocity Object in Rectangular Frame

Define the state of an object in 2-D constant-velocity motion. The state is the position and velocity in
both dimensions. The measurements are in rectangular coordinates.

state = [1;10;2;20];
measurement = cvmeas(state)

measurement = 3×1

     1
     2
     0
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The z-component of the measurement is zero.

Create Measurement from Constant Velocity Object in Spherical Frame

Define the state of an object in 2-D constant-velocity motion. The state is the position and velocity in
each spatial dimension. The measurements are in spherical coordinates.

state = [1;10;2;20];
measurement = cvmeas(state,'spherical')

measurement = 4×1

   63.4349
         0
    2.2361
   22.3607

The elevation of the measurement is zero and the range rate is positive. These results indicate that
the object is moving away from the sensor.

Create Measurement from Constant-Velocity Object in Translated Spherical Frame

Define the state of an object in 2-D constant-velocity motion. The state consists of position and
velocity in each spatial dimension. The measurements are in spherical coordinates with respect to a
frame located at (20;40;0) meters.

state = [1;10;2;20];
measurement = cvmeas(state,'spherical',[20;40;0])

measurement = 4×1

 -116.5651
         0
   42.4853
  -22.3607

The elevation of the measurement is zero and the range rate is negative. These results indicate that
the object is moving toward the sensor.

Create Measurement from Constant-Velocity Object Using Measurement Parameters

Define the state of an object in 2-D constant-velocity motion. The state consists of position and
velocity in each spatial dimension. The measurements are in spherical coordinates with respect to a
frame located at (20;40;0) meters.

state2d = [1;10;2;20];
frame = 'spherical';
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sensorpos = [20;40;0];
sensorvel = [0;5;0];
laxes = eye(3);
measurement = cvmeas(state2d,frame,sensorpos,sensorvel,laxes)

measurement = 4×1

 -116.5651
         0
   42.4853
  -17.8885

The elevation of the measurement is zero and the range rate is negative. These results indicate that
the object is moving toward the sensor.

Put the measurement parameters in a structure and use the alternative syntax.

measparm = struct('Frame',frame,'OriginPosition',sensorpos,'OriginVelocity',sensorvel, ...
    'Orientation',laxes);
measurement = cvmeas(state2d,measparm)

measurement = 4×1

 -116.5651
         0
   42.4853
  -17.8885

Input Arguments
state — Kalman filter state vector
real-valued 2N-element vector

Kalman filter state vector for constant-velocity motion, specified as a real-valued 2N-element column
vector where N is the number of spatial degrees of freedom of motion. The state is expected to be
Cartesian state. For each spatial degree of motion, the state vector takes the form shown in this table.

Spatial Dimensions State Vector Structure
1-D [x;vx]
2-D [x;vx;y;vy]
3-D [x;vx;y;vy;z;vz]

For example, x represents the x-coordinate and vx represents the velocity in the x-direction. If the
motion model is 1-D, values along the y and z axes are assumed to be zero. If the motion model is 2-D,
values along the z axis are assumed to be zero. Position coordinates are in meters and velocity
coordinates are in meters/sec.
Example: [5;.1;0;-.2;-3;.05]
Data Types: single | double

frame — Measurement output frame
'rectangular' (default) | 'spherical'
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Measurement output frame, specified as 'rectangular' or 'spherical'. When the frame is
'rectangular', a measurement consists of x, y, and z Cartesian coordinates. When specified as
'spherical', a measurement consists of azimuth, elevation, range, and range rate.
Data Types: char

sensorpos — Sensor position
[0;0;0] (default) | real-valued 3-by-1 column vector

Sensor position with respect to the navigation frame, specified as a real-valued 3-by-1 column vector.
Units are in meters.
Data Types: double

sensorvel — Sensor velocity
[0;0;0] (default) | real-valued 3-by-1 column vector

Sensor velocity with respect to the navigation frame, specified as a real-valued 3-by-1 column vector.
Units are in m/s.
Data Types: double

laxes — Local sensor coordinate axes
[1,0,0;0,1,0;0,0,1] (default) | 3-by-3 orthogonal matrix

Local sensor coordinate axes, specified as a 3-by-3 orthogonal matrix. Each column specifies the
direction of the local x-, y-, and z-axes, respectively, with respect to the navigation frame. That is, the
matrix is the rotation matrix from the global frame to the sensor frame.
Data Types: double

measurementParameters — Measurement parameters
structure | array of structure

Measurement parameters, specified as a structure or an array of structures. The fields of the
structure are:

Field Description Example
Frame Frame used to report

measurements, specified as one
of these values:

• 'rectangular' —
Detections are reported in
rectangular coordinates.

• 'spherical' — Detections
are reported in spherical
coordinates.

'spherical'

OriginPosition Position offset of the origin of
the frame relative to the parent
frame, specified as an [x y z]
real-valued vector.

[0 0 0]
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Field Description Example
OriginVelocity Velocity offset of the origin of

the frame relative to the parent
frame, specified as a [vx vy
vz] real-valued vector.

[0 0 0]

Orientation Frame rotation matrix, specified
as a 3-by-3 real-valued
orthonormal matrix.

[1 0 0; 0 1 0; 0 0 1]

HasAzimuth Logical scalar indicating if
azimuth is included in the
measurement.

1

HasElevation Logical scalar indicating if
elevation is included in the
measurement. For
measurements reported in a
rectangular frame, and if
HasElevation is false, the
reported measurements assume
0 degrees of elevation.

1

HasRange Logical scalar indicating if
range is included in the
measurement.

1

HasVelocity Logical scalar indicating if the
reported detections include
velocity measurements. For
measurements reported in the
rectangular frame, if
HasVelocity is false, the
measurements are reported as
[x y z]. If HasVelocity is
true, measurements are
reported as [x y z vx vy
vz].

1

IsParentToChild Logical scalar indicating if
Orientation performs a frame
rotation from the parent
coordinate frame to the child
coordinate frame. When
IsParentToChild is false,
then Orientation performs a
frame rotation from the child
coordinate frame to the parent
coordinate frame.

0

Data Types: struct
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Output Arguments
measurement — Measurement vector
N-by-1 column vector

Measurement vector, returned as an N-by-1 column vector. The form of the measurement depends
upon which syntax you use.

• When the syntax does not use the measurementParameters argument, the measurement vector
is [x,y,z] when the frame input argument is set to 'rectangular' and [az;el;r;rr] when
the frame is set to 'spherical'.

• When the syntax uses the measurementParameters argument, the size of the measurement
vector depends on the values of the frame, HasVelocity, and HasElevation fields in the
measurementParameters structure.

frame measurement
'spherical' Specifies the azimuth angle, az, elevation

angle, el, range, r, and range rate, rr, of the
object with respect to the local ego vehicle
coordinate system. Positive values for range
rate indicate that an object is moving away
from the sensor.

Spherical measurements

  HasElevation
  false true
HasVeloc
ity

false [az;r] [az;el;r
]

true [az;r;rr
]

[az;el;r
;rr]

Angle units are in degrees, range units are in
meters, and range rate units are in m/s.

'rectangular Specifies the Cartesian position and velocity
coordinates of the tracked object with respect
to the ego vehicle coordinate system.

Rectangular measurements

HasVelocity false [x;y;y]
true [x;y;z;vx;v

y;vz]

Position units are in meters and velocity units
are in m/s.

Data Types: double

 cvmeas

3-77



More About
Azimuth and Elevation Angle Definitions

Define the azimuth and elevation angles used in Automated Driving Toolbox.

The azimuth angle of a vector is the angle between the x-axis and its orthogonal projection onto the
xy plane. The angle is positive in going from the x axis toward the y axis. Azimuth angles lie between
–180 and 180 degrees. The elevation angle is the angle between the vector and its orthogonal
projection onto the xy-plane. The angle is positive when going toward the positive z-axis from the xy
plane.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
cameas | cameasjac | constacc | constaccjac | constturn | constturnjac | constvel |
constveljac | ctmeas | ctmeasjac | cvmeasjac

Objects
trackingEKF | trackingKF | trackingUKF

Introduced in R2017a
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cvmeasjac
Jacobian of measurement function for constant velocity motion

Syntax
measurementjac = cvmeasjac(state)
measurementjac = cvmeasjac(state,frame)
measurementjac = cvmeasjac(state,frame,sensorpos)
measurementjac = cvmeasjac(state,frame,sensorpos,sensorvel)
measurementjac = cvmeasjac(state,frame,sensorpos,sensorvel,laxes)
measurementjac = cvmeasjac(state,measurementParameters)

Description
measurementjac = cvmeasjac(state) returns the measurement Jacobian for constant-velocity
Kalman filter motion model in rectangular coordinates. state specifies the current state of the
tracking filter.

measurementjac = cvmeasjac(state,frame) also specifies the measurement coordinate
system, frame.

measurementjac = cvmeasjac(state,frame,sensorpos) also specifies the sensor position,
sensorpos.

measurementjac = cvmeasjac(state,frame,sensorpos,sensorvel) also specifies the
sensor velocity, sensorvel.

measurementjac = cvmeasjac(state,frame,sensorpos,sensorvel,laxes) also specifies
the local sensor axes orientation, laxes.

measurementjac = cvmeasjac(state,measurementParameters) specifies the measurement
parameters, measurementParameters.

Examples

Measurement Jacobian of Constant-Velocity Object in Rectangular Frame

Define the state of an object in 2-D constant-velocity motion. The state is the position and velocity in
each spatial dimension. Construct the measurement Jacobian in rectangular coordinates.

state = [1;10;2;20];
jacobian = cvmeasjac(state)

jacobian = 3×4

     1     0     0     0
     0     0     1     0
     0     0     0     0

3 Functions

3-80



Measurement Jacobian of Constant-Velocity Motion in Spherical Frame

Define the state of an object in 2-D constant-velocity motion. The state is the position and velocity in
each dimension. Compute the measurement Jacobian with respect to spherical coordinates.

state = [1;10;2;20];
measurementjac = cvmeasjac(state,'spherical')

measurementjac = 4×4

  -22.9183         0   11.4592         0
         0         0         0         0
    0.4472         0    0.8944         0
    0.0000    0.4472    0.0000    0.8944

Measurement Jacobian of Constant-Velocity Object in Translated Spherical Frame

Define the state of an object in 2-D constant-velocity motion. The state is the position and velocity in
each spatial dimension. Compute the measurement Jacobian with respect to spherical coordinates
centered at (5;-20;0) meters.

state = [1;10;2;20];
sensorpos = [5;-20;0];
measurementjac = cvmeasjac(state,'spherical',sensorpos)

measurementjac = 4×4

   -2.5210         0   -0.4584         0
         0         0         0         0
   -0.1789         0    0.9839         0
    0.5903   -0.1789    0.1073    0.9839

Create Measurement Jacobian for Constant-Velocity Object Using Measurement Parameters

Define the state of an object in 2-D constant-velocity motion. The state consists of position and
velocity in each spatial dimension. The measurements are in spherical coordinates with respect to a
frame located at (20;40;0) meters.

state2d = [1;10;2;20];
frame = 'spherical';
sensorpos = [20;40;0];
sensorvel = [0;5;0];
laxes = eye(3);
measurementjac = cvmeasjac(state2d,frame,sensorpos,sensorvel,laxes)

measurementjac = 4×4

    1.2062         0   -0.6031         0
         0         0         0         0
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   -0.4472         0   -0.8944         0
    0.0471   -0.4472   -0.0235   -0.8944

Put the measurement parameters in a structure and use the alternative syntax.

measparm = struct('Frame',frame,'OriginPosition',sensorpos,'OriginVelocity',sensorvel, ...
    'Orientation',laxes);
measurementjac = cvmeasjac(state2d,measparm)

measurementjac = 4×4

    1.2062         0   -0.6031         0
         0         0         0         0
   -0.4472         0   -0.8944         0
    0.0471   -0.4472   -0.0235   -0.8944

Input Arguments
state — Kalman filter state vector
real-valued 2N-element vector

Kalman filter state vector for constant-velocity motion, specified as a real-valued 2N-element column
vector where N is the number of spatial degrees of freedom of motion. The state is expected to be
Cartesian state. For each spatial degree of motion, the state vector takes the form shown in this table.

Spatial Dimensions State Vector Structure
1-D [x;vx]
2-D [x;vx;y;vy]
3-D [x;vx;y;vy;z;vz]

For example, x represents the x-coordinate and vx represents the velocity in the x-direction. If the
motion model is 1-D, values along the y and z axes are assumed to be zero. If the motion model is 2-D,
values along the z axis are assumed to be zero. Position coordinates are in meters and velocity
coordinates are in meters/sec.
Example: [5;.1;0;-.2;-3;.05]
Data Types: single | double

frame — Measurement output frame
'rectangular' (default) | 'spherical'

Measurement output frame, specified as 'rectangular' or 'spherical'. When the frame is
'rectangular', a measurement consists of x, y, and z Cartesian coordinates. When specified as
'spherical', a measurement consists of azimuth, elevation, range, and range rate.
Data Types: char

sensorpos — Sensor position
[0;0;0] (default) | real-valued 3-by-1 column vector

Sensor position with respect to the navigation frame, specified as a real-valued 3-by-1 column vector.
Units are in meters.
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Data Types: double

sensorvel — Sensor velocity
[0;0;0] (default) | real-valued 3-by-1 column vector

Sensor velocity with respect to the navigation frame, specified as a real-valued 3-by-1 column vector.
Units are in m/s.
Data Types: double

laxes — Local sensor coordinate axes
[1,0,0;0,1,0;0,0,1] (default) | 3-by-3 orthogonal matrix

Local sensor coordinate axes, specified as a 3-by-3 orthogonal matrix. Each column specifies the
direction of the local x-, y-, and z-axes, respectively, with respect to the navigation frame. That is, the
matrix is the rotation matrix from the global frame to the sensor frame.
Data Types: double

measurementParameters — Measurement parameters
structure | array of structure

Measurement parameters, specified as a structure or an array of structures. The fields of the
structure are:

Field Description Example
Frame Frame used to report

measurements, specified as one
of these values:

• 'rectangular' —
Detections are reported in
rectangular coordinates.

• 'spherical' — Detections
are reported in spherical
coordinates.

'spherical'

OriginPosition Position offset of the origin of
the frame relative to the parent
frame, specified as an [x y z]
real-valued vector.

[0 0 0]

OriginVelocity Velocity offset of the origin of
the frame relative to the parent
frame, specified as a [vx vy
vz] real-valued vector.

[0 0 0]

Orientation Frame rotation matrix, specified
as a 3-by-3 real-valued
orthonormal matrix.

[1 0 0; 0 1 0; 0 0 1]

HasAzimuth Logical scalar indicating if
azimuth is included in the
measurement.

1
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Field Description Example
HasElevation Logical scalar indicating if

elevation is included in the
measurement. For
measurements reported in a
rectangular frame, and if
HasElevation is false, the
reported measurements assume
0 degrees of elevation.

1

HasRange Logical scalar indicating if
range is included in the
measurement.

1

HasVelocity Logical scalar indicating if the
reported detections include
velocity measurements. For
measurements reported in the
rectangular frame, if
HasVelocity is false, the
measurements are reported as
[x y z]. If HasVelocity is
true, measurements are
reported as [x y z vx vy
vz].

1

IsParentToChild Logical scalar indicating if
Orientation performs a frame
rotation from the parent
coordinate frame to the child
coordinate frame. When
IsParentToChild is false,
then Orientation performs a
frame rotation from the child
coordinate frame to the parent
coordinate frame.

0

Data Types: struct

Output Arguments
measurementjac — Measurement Jacobian
real-valued 3-by-N matrix | real-valued 4-by-N matrix

Measurement Jacobian, specified as a real-valued 3-by-N or 4-by-N matrix. N is the dimension of the
state vector. The first dimension and meaning depend on value of the frame argument.

Frame Measurement Jacobian
'rectangular' Jacobian of the measurements [x;y;z] with

respect to the state vector. The measurement
vector is with respect to the local coordinate
system. Coordinates are in meters.
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Frame Measurement Jacobian
'spherical' Jacobian of the measurement vector

[az;el;r;rr] with respect to the state vector.
Measurement vector components specify the
azimuth angle, elevation angle, range, and range
rate of the object with respect to the local sensor
coordinate system. Angle units are in degrees.
Range units are in meters and range rate units
are in meters/second.

More About
Azimuth and Elevation Angle Definitions

Define the azimuth and elevation angles used in Automated Driving Toolbox.

The azimuth angle of a vector is the angle between the x-axis and its orthogonal projection onto the
xy plane. The angle is positive in going from the x axis toward the y axis. Azimuth angles lie between
–180 and 180 degrees. The elevation angle is the angle between the vector and its orthogonal
projection onto the xy-plane. The angle is positive when going toward the positive z-axis from the xy
plane.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
cameas | cameasjac | constacc | constaccjac | constturn | constturnjac | constvel |
constveljac | ctmeas | ctmeasjac | cvmeas

Objects
trackingEKF | trackingKF | trackingUKF
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Introduced in R2017a
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estimateMonoCameraParameters
Estimate extrinsic monocular camera parameters using checkerboard

Syntax
[pitch,yaw,roll,height] = estimateMonoCameraParameters(intrinsics,
imagePoints,worldPoints,patternOriginHeight)
[pitch,yaw,roll,height] = estimateMonoCameraParameters( ___ ,Name,Value)

Description
[pitch,yaw,roll,height] = estimateMonoCameraParameters(intrinsics,
imagePoints,worldPoints,patternOriginHeight) estimates the extrinsic parameters of a
monocular camera by using the intrinsic parameters of the camera and a checkerboard calibration
pattern. The returned extrinsic parameters define the yaw, pitch, and roll rotation angles between the
camera coordinate system (Computer Vision Toolbox) and vehicle coordinate system on page 3-94
axes. The function also returns the height of the camera above the ground. Specify the intrinsic
parameters, the image and world coordinates of the checkerboard corner points, and the height of
the checkerboard pattern's origin above the ground.

By default, the function assumes that the camera is facing forward and that the checkerboard pattern
is parallel with the ground. For all possible camera and checkerboard placements, see “Calibrate a
Monocular Camera”.

[pitch,yaw,roll,height] = estimateMonoCameraParameters( ___ ,Name,Value) specifies
options using one or more name-value pairs, in addition to the inputs and outputs from the previous
syntax. For example, you can specify the orientation or position of the checkerboard pattern.

Examples

Configure Monocular Camera Using Checkerboard Pattern

Configure a monocular fisheye camera by removing lens distortion and then estimating the camera's
extrinsic parameters. Use an image of a checkerboard as the calibration pattern. For a more detailed
look at how to configure a monocular camera that has a fisheye lens, see the “Configure Monocular
Fisheye Camera” example.

Load the intrinsic parameters of a monocular camera that has a fisheye lens. intrinsics is a
fisheyeIntrinsics (Computer Vision Toolbox) object.

ld = load('fisheyeCameraIntrinsics');
intrinsics = ld.intrinsics;

Load an image of a checkerboard pattern that is placed flat on the ground. This image is for
illustrative purposes and was not taken from a camera mounted to the vehicle. In a camera mounted
to the vehicle, the X-axis of the pattern points to the right of the vehicle, and the Y-axis of the pattern
points to the camera. Display the image.

3 Functions

3-88



imageFileName = fullfile(toolboxdir('driving'),'drivingdata','checkerboard.png');
I = imread(imageFileName);
imshow(I)

Detect the coordinates of the checkerboard corners in the image.

[imagePoints,boardSize] = detectCheckerboardPoints(I);

Generate the corresponding world coordinates of the corners.

squareSize = 0.029; % Square size in meters
worldPoints = generateCheckerboardPoints(boardSize,squareSize);

Estimate the extrinsic parameters required to configure the monoCamera object. Because the
checkerboard pattern is directly on the ground, set the height of the pattern's origin to 0.

patternOriginHeight = 0;
[pitch,yaw,roll,height] = estimateMonoCameraParameters(intrinsics, ...
                             imagePoints,worldPoints,patternOriginHeight);

Because monoCamera does not accept fisheyeIntrinsics objects, remove distortion from the
image and compute new intrinsic parameters from the undistorted image. camIntrinsics is an
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cameraIntrinsics (Computer Vision Toolbox) object. Display the image to confirm distortion is
removed.

[undistortedI,camIntrinsics] = undistortFisheyeImage(I,intrinsics,'Output','full');
imshow(undistortedI)

Configure the monocular camera using the estimated parameters.

monoCam = monoCamera(camIntrinsics,height,'Pitch',pitch,'Yaw',yaw,'Roll',roll)

monoCam = 
  monoCamera with properties:

        Intrinsics: [1x1 cameraIntrinsics]
        WorldUnits: 'meters'
            Height: 0.4447
             Pitch: 21.8459
               Yaw: -3.6130
              Roll: -3.1707
    SensorLocation: [0 0]
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Input Arguments
intrinsics — Intrinsic camera parameters
cameraIntrinsics object | fisheyeIntrinsics object

Intrinsic camera parameters, specified as a cameraIntrinsics or fisheyeIntrinsics object.

Checkerboard pattern images produced by these cameras can include lens distortion, which can
affect the accuracy of corner point detections. To remove lens distortion and compute new intrinsic
parameters, use these functions:

• For cameraIntrinsics objects, use undistortImage.
• For fisheyeIntrinsics objects, use undistortFisheyeImage.

imagePoints — Image coordinates of checkerboard corner points
M-by-2 matrix

Image coordinates of checkerboard corner points, specified as an M-by-2 matrix of M number of [x y]
vectors. These points must come from an image captured by a monocular camera. To detect these
points in an image, use the detectCheckerboardPoints function.

estimateMonoCameraParameters assumes that all points in worldPoints are in the (XP, YP) plane
and that M is greater than or equal to 4. To specify the height of the (XP, YP) plane above the ground,
use patternOriginHeight.
Data Types: single | double

worldPoints — World coordinates of corner points in checkerboard
M-by-2 matrix

World coordinates of the corner points in the checkerboard, specified as an M-by-2 matrix of M
number of [x y] vectors.

estimateMonoCameraParameters assumes that all points in worldPoints are in the (XP, YP) plane
and that M is greater than or equal to 4. To specify the height of the (XP, YP) plane above the ground,
use patternOriginHeight.

Point (0,0) corresponds to the bottom-right corner of the top-left square of the checkerboard.

Data Types: single | double
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patternOriginHeight — Height of checkerboard pattern's origin
nonnegative real scalar

Height of the checkerboard pattern's origin above the ground, specified as a nonnegative real scalar.
The origin is the bottom-right corner of the top-left square of the checkerboard.

The measurement of patternOriginHeight depends on the orientation of the checkerboard
pattern, as shown in these diagrams.

Horizontal Orientation Vertical Orientation

To specify the pattern orientation, use the 'PatternOrientation' name-value pair. If you set
'PatternOrientation' to 'horizontal' (default), and the pattern is on the ground, then set
patternOriginHeight to 0.
Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'PatternOrientation','vertical','PatternPosition','right'

PatternOrientation — Orientation of checkerboard pattern
'horizontal' (default) | 'vertical'

Orientation of the checkerboard pattern relative to the ground, specified as the comma-separated
pair consisting of 'PatternOrientation' and one of the following:

• 'horizontal' — Checkerboard pattern is parallel to the ground.
• 'vertical' — Checkerboard pattern is perpendicular to the ground.

PatternPosition — Position of checkerboard pattern
'front' (default) | 'back' | 'left' | 'right'

Position of the checkerboard pattern relative to the ground, specified as the comma-separated pair
consisting of 'PatternPosition' and one of the following:

• 'front' — Checkerboard pattern is in front of the vehicle.
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• 'back' — Checkerboard pattern is behind the vehicle.
• 'left' — Checkerboard pattern is to the left of the vehicle.
• 'right' — Checkerboard pattern is to the right of the vehicle.

Output Arguments
pitch — Pitch angle
real scalar

Pitch angle between the horizontal plane of the vehicle and the optical axis of the camera, returned
as a real scalar in degrees. pitch uses the ISO convention for rotation, with a clockwise positive
angle direction when looking in the positive direction of the vehicle's YV-axis.

For more details, see “Angle Directions” on page 3-95.

yaw — Yaw angle
real scalar

Yaw angle between the XV-axis of the vehicle and the optical axis of the camera, returned as a real
scalar in degrees. yaw uses the ISO convention for rotation, with a clockwise positive angle direction
when looking in the positive direction of the vehicle's ZV-axis.

For more details, see “Angle Directions” on page 3-95.
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roll — Roll angle
real scalar

Roll angle of the camera around its optical axis, returned as a real scalar in degrees. roll uses the
ISO convention for rotation, with a clockwise positive angle direction when looking in the positive
direction of the vehicle's XV-axis.

For more details, see “Angle Directions” on page 3-95.

height — Perpendicular height from ground to camera
nonnegative real scalar

Perpendicular height from the ground to the focal point of the camera, returned as a nonnegative real
scalar in world units, such as meters.

More About
Vehicle Coordinate System

In the vehicle coordinate system (XV, YV, ZV) defined by a monoCamera object:

• The XV-axis points forward from the vehicle.
• The YV-axis points to the left, as viewed when facing forward.
• The ZV-axis points up from the ground to maintain the right-handed coordinate system.
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By default, the origin of this coordinate system is on the road surface, directly below the camera
center (focal point of camera).

To obtain more reliable results from estimateMonoCameraParameters, the checkerboard pattern
must be placed in precise locations relative to this coordinate system. For more details, see
“Calibrate a Monocular Camera”.

Angle Directions

The monocular camera sensor uses clockwise positive angle directions when looking in the positive
direction of the Z-, Y-, and X-axes, respectively.
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See Also
Apps
Camera Calibrator

Functions
detectCheckerboardPoints | estimateCameraParameters | estimateFisheyeParameters |
extrinsics | generateCheckerboardPoints

Objects
cameraIntrinsics | fisheyeIntrinsics | monoCamera

Topics
“Calibrate a Monocular Camera”
“Configure Monocular Fisheye Camera”
“Coordinate Systems in Automated Driving Toolbox”

Introduced in R2018b
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evaluateLaneBoundaries
Evaluate lane boundary models against ground truth

Syntax
numMatches = evaluateLaneBoundaries(boundaries,worldGroundTruthPoints,
threshold)
[numMatches,numMissed,numFalsePositives] = evaluateLaneBoundaries( ___ )
[ ___ ] = evaluateLaneBoundaries( ___ ,xWorld)

[ ___ ] = evaluateLaneBoundaries(boundaries,groundTruthBoundaries,threshold)
[ ___ ,assignments] = evaluateLaneBoundaries( ___ )

Description
numMatches = evaluateLaneBoundaries(boundaries,worldGroundTruthPoints,
threshold) returns the total number of lane boundary matches (true positives) within the lateral
distance threshold by comparing the input boundary models, boundaries, against ground truth
data.

[numMatches,numMissed,numFalsePositives] = evaluateLaneBoundaries( ___ ) also
returns the total number of misses (false negatives) and false positives, using the previous inputs.

[ ___ ] = evaluateLaneBoundaries( ___ ,xWorld) specifies the x-axis points at which to
perform the comparisons. Points specified in worldGroundTruthPoints are linearly interpolated at
the given x-axis locations.

[ ___ ] = evaluateLaneBoundaries(boundaries,groundTruthBoundaries,threshold)
compares the boundaries against ground truth models that are specified in an array of lane boundary
objects or a cell array of arrays.

[ ___ ,assignments] = evaluateLaneBoundaries( ___ ) also returns the assignment indices
that are specified in groundTruthBoundaries. Each boundary is matched to the corresponding
class assignment in groundTruthBoundaries. The kth boundary in boundaries is matched to the
assignments(k) element of worldGroundTruthPoints. Zero indicates a false positive (no match
found).

Examples

Compare Lane Boundary Models

Create a set of ground truth points, add noise to simulate actual lane boundary points, and compare
the simulated data to the model.

Create a set of points representing ground truth by using parabolic parameters.

parabolaParams1 = [-0.001 0.01 0.5];
parabolaParams2 = [0.001 0.02 0.52];
x = (0:0.1:20)';
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y1 = polyval(parabolaParams1,x);
y2 = polyval(parabolaParams1,x);

Add noise relative to the offset parameter.

y1 = y1 + 0.10*parabolaParams1(3)*(rand(length(y1),1)-0.5);
y2 = y2 + 0.10*parabolaParams2(3)*(rand(length(y2),1)-0.5);

Create a set of test boundary models.

testlbs = parabolicLaneBoundary([-0.002 0.01 0.5;
                                 -0.001 0.02 0.45;
                                 -0.001 0.01 0.5;
                                  0.000 0.02 0.52;
                                 -0.001 0.01 0.51]);

Compare the boundary models to the ground truth points. Calculate the precision and sensitivity of
the models based on the number of matches, misses, and false positives.

threshold = 0.1;
[numMatches,numMisses,numFalsePositives,~] = ...
        evaluateLaneBoundaries(testlbs,{[x y1],[x y2]},threshold);

disp('Precision:');

Precision:

disp(numMatches/(numMatches+numFalsePositives));

    0.4000

disp('Sensitivity/Recall:');

Sensitivity/Recall:

disp(numMatches/(numMatches+numMisses));

     1

Input Arguments
worldGroundTruthPoints — Ground truth points of lane boundaries
[x y] array | cell array of [x y] arrays

Ground truth points of lane boundaries, specified as an [x y] array or cell array of [x y] arrays.
The x-axis points must be unique and in the same coordinate system as the boundary models. A lane
boundary must contain at least two points, but for a robust comparison, four or more points are
recommended. Each element of the cell array represents a separate lane boundary.

threshold — Maximum lateral distance from ground truth
real scalar

Maximum lateral distance between a model and ground truth point in order for that point to be
considered a valid match (true positive), specified as a real scalar.

boundaries — Lane boundary models
array of parabolicLaneBoundary objects | array of cubicLaneBoundary objects
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Lane boundary models, specified as an array of parabolicLaneBoundary objects or
cubicLaneBoundary objects. Lane boundary models contain the following properties:

• Parameters — A vector corresponding to the coefficients of the boundary model. The size of the
vector depends on the degree of polynomial for the model.

Lane Boundary Object Parameters
parabolicLaneBoundary [A B C], corresponding to coefficients of a

second-degree polynomial equation of the
form y = Ax2 + Bx + C

cubicLaneBoundary [A B C D], corresponding to coefficients of a
third-degree polynomial equation of the form y
= Ax3 + Bx2 + Cx + D

• BoundaryType — A LaneBoundaryType enumeration of supported lane boundaries:

• Unmarked
• Solid
• Dashed
• BottsDots
• DoubleSolid

Specify a lane boundary type as LaneBoundaryType.BoundaryType. For example:

LaneBoundaryType.BottsDots

• Strength — The ratio of the number of unique x-axis locations on the boundary to the total
number of points along the line based on the XExtent property.

• XExtent — A two-element vector describing the minimum and maximum x-axis locations for the
boundary points.

xWorld — x-axis locations of boundary
real-valued vector

x-axis locations of boundary, specified as a real-valued vector. Points in worldGroundTruthPoints
are linearly interpolated at the given x-axis locations. Boundaries outside of these locations are
excluded and count as false negatives.

groundTruthBoundaries — Ground truth boundary models
array of parabolicLaneBoundary or cubicLaneBoundary objects | cell array of
parabolicLaneBoundary or cubicLaneBoundary arrays

Ground truth boundary models, specified as an array of parabolicLaneBoundary or
cubicLaneBoundary objects or cell array of parabolicLaneBoundary or cubicLaneBoundary
arrays.

Output Arguments
numMatches — Number of matches (true positives)
real scalar

Number of matches (true positives), returned as a real scalar.
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numMissed — Number of misses (false negatives)
real scalar

Number of misses (false negatives), returned as a real scalar.

numFalsePositives — Number of false positives
real scalar

Number of false positives, returned as a real scalar.

assignments — Assignment indices for ground truth boundaries
cell array of real-valued arrays

Assignment indices for ground truth boundaries, returned as a cell array of real-valued arrays. Each
boundary is matched to the corresponding assignment in groundTruthBoundaries. The kth
boundary in boundaries is matched to the assignments(k) element of
worldGroundTruthPoints. Zero indicates a false positive (no match found).

See Also
Functions
findCubicLaneBoundaries | findParabolicLaneBoundaries

Objects
cubicLaneBoundary | parabolicLaneBoundary

Apps
Ground Truth Labeler

Introduced in R2017a
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findCubicLaneBoundaries
Find boundaries using cubic model

Syntax
boundaries = findCubicLaneBoundaries(xyBoundaryPoints,approxBoundaryWidth)
[boundaries,boundaryPoints] = findCubicLaneBoundaries(xyBoundaryPoints,
approxBoundaryWidth)
[ ___ ] = findCubicLaneBoundaries( ___ ,Name,Value)

Description
boundaries = findCubicLaneBoundaries(xyBoundaryPoints,approxBoundaryWidth)
uses the random sample consensus (RANSAC) algorithm to find cubic lane boundary models that fit a
set of boundary points and an approximate width. Each model in the returned array of
cubicLaneBoundary objects contains the [A B C D] coefficients of its third-degree polynomial
equation and the strength of the boundary estimate.

[boundaries,boundaryPoints] = findCubicLaneBoundaries(xyBoundaryPoints,
approxBoundaryWidth) also returns a cell array of inlier boundary points for each boundary model
found, using the previous input arguments.

[ ___ ] = findCubicLaneBoundaries( ___ ,Name,Value) uses options specified by one or more
Name,Value pair arguments, with any of the preceding syntaxes.

Examples

Find Cubic Lane Boundaries in Bird's-Eye-View Image

Find lanes in an image by using cubic lane boundary models. Overlay the identified lanes on the
original image and on a bird's-eye-view transformation of the image.

Load an image of a road with lanes. The image was obtained from a camera sensor mounted on the
front of a vehicle.

I = imread('road.png');

Transform the image into a bird's-eye-view image by using a preconfigured sensor object. This object
models the sensor that captured the original image.

bevSensor = load('birdsEyeConfig');
birdsEyeImage = transformImage(bevSensor.birdsEyeConfig,I);
imshow(birdsEyeImage)
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Set the approximate lane marker width in world units (meters).

approxBoundaryWidth = 0.25;

Detect lane features and display them as a black-and-white image.

birdsEyeBW = segmentLaneMarkerRidge(rgb2gray(birdsEyeImage), ...
    bevSensor.birdsEyeConfig,approxBoundaryWidth);
imshow(birdsEyeBW)
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Obtain lane candidate points in world coordinates.

[imageX,imageY]  = find(birdsEyeBW);
xyBoundaryPoints = imageToVehicle(bevSensor.birdsEyeConfig,[imageY,imageX]);

Find lane boundaries in the image by using the findCubicLaneBoundaries function. By default,
the function returns a maximum of two lane boundaries. The boundaries are stored in an array of
cubicLaneBoundary objects.

boundaries = findCubicLaneBoundaries(xyBoundaryPoints,approxBoundaryWidth);
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Use insertLaneBoundary to overlay the lanes on the original image. The XPoints vector
represents the lane points, in meters, that are within range of the ego vehicle's sensor. Specify the
lanes in different colors. By default, lanes are yellow.

XPoints = 3:30;

figure
sensor = bevSensor.birdsEyeConfig.Sensor;
lanesI = insertLaneBoundary(I,boundaries(1),sensor,XPoints);
lanesI = insertLaneBoundary(lanesI,boundaries(2),sensor,XPoints,'Color','green');
imshow(lanesI)

View the lanes in the bird's-eye-view image.

figure
BEconfig = bevSensor.birdsEyeConfig;
lanesBEI = insertLaneBoundary(birdsEyeImage,boundaries(1),BEconfig,XPoints);
lanesBEI = insertLaneBoundary(lanesBEI,boundaries(2),BEconfig,XPoints,'Color','green');
imshow(lanesBEI)
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Input Arguments
xyBoundaryPoints — Candidate boundary points
[x y] vector

Candidate boundary points, specified as an [x y] vector in vehicle coordinates. To obtain the vehicle
coordinates for points in a birdsEyeView image, use the imageToVehicle function to convert the
bird's-eye-view image coordinates to vehicle coordinates.
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approxBoundaryWidth — Approximate boundary width
real scalar

Approximate boundary width, specified as a real scalar in world units. The width is a horizontal y-axis
measurement.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'MaxSamplingAttempts',200

MaxNumBoundaries — Maximum number of lane boundaries
2 (default) | positive integer

Maximum number of lane boundaries that the function attempts to find, specified as the comma-
separated pair consisting of 'MaxNumBoundaries' and a positive integer.

ValidateBoundaryFcn — Function to validate boundary model
function handle

Function to validate the boundary model, specified as the comma-separated pair consisting of
'ValidateBoundaryFcn' and a function handle. The specified function returns logical 1 (true) if
the boundary model is accepted and logical 0 (false) otherwise. Use this function to reject invalid
boundaries. The function must be of the form:

isValid = validateBoundaryFcn(parameters)

parameters is a vector corresponding to the three parabolic parameters.

The default validation function always returns 1 (true).

MaxSamplingAttempts — Maximum number of sampling attempts
100 (default) | positive integer

Maximum number of attempts to find a sample of points that yields a valid cubic boundary, specified
as the comma-separated pair consisting of 'MaxSamplingAttempts' and a function handle.
findCubicLaneBoundaries uses the fitPolynomialRANSAC function to sample from the set of
boundary points and fit a cubic boundary line.

Output Arguments
boundaries — Lane boundary models
array of cubicLaneBoundary objects

Lane boundary models, returned as an array of cubicLaneBoundary objects. Lane boundary objects
contain the following properties:

• Parameters — A four-element vector, [A B C D], that corresponds to the four coefficients of a
third-degree polynomial equation in general form: y = Ax3 + Bx2 + Cx + D.

• BoundaryType — A LaneBoundaryType of supported lane boundaries. The supported lane
boundary types are:
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• Unmarked
• Solid
• Dashed
• BottsDots
• DoubleSolid

Specify a lane boundary type as LaneBoundaryType.BoundaryType. For example:

LaneBoundaryType.BottsDots
• Strength — A ratio of the number of unique x-axis locations on the boundary to the total number

of points along the line, based on the XExtent property.
• XExtent — A two-element vector describing the minimum and maximum x-axis locations for the

boundary points.

boundaryPoints — Inlier boundary points
cell array of [x y] values

Inlier boundary points, returned as a cell array of [x y] values. Each element of the cell array
corresponds to the same element in the array of cubicLaneBoundary objects.

Tips
• To fit a single boundary model to a double lane marker, set the approxBoundaryWidth argument

to be large enough to include the width spanning both lane markers.

Algorithms
• This function uses fitPolynomialRANSAC to find cubic models. Because this algorithm uses

random sampling, the output can vary between runs.
• The maxDistance parameter of fitPolynomialRANSAC is set to half the width specified in the

approxBoundaryWidth argument. Points are considered inliers if they are within the boundary
width. The function obtains the final boundary model using a least-squares fit on the inlier points.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
birdsEyePlot | birdsEyeView | cubicLaneBoundary | fitPolynomialRANSAC | monoCamera |
segmentLaneMarkerRidge

Introduced in R2018a
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findParabolicLaneBoundaries
Find boundaries using parabolic model

Syntax
boundaries = findParabolicLaneBoundaries(xyBoundaryPoints,
approxBoundaryWidth)
[boundaries,boundaryPoints] = findParabolicLaneBoundaries(xyBoundaryPoints,
approxBoundaryWidth)
[ ___ ] = findParabolicLaneBoundaries( ___ ,Name,Value)

Description
boundaries = findParabolicLaneBoundaries(xyBoundaryPoints,
approxBoundaryWidth) uses the random sample consensus (RANSAC) algorithm to find parabolic
lane boundary models that fit a set of boundary points and an approximate width. Each model in the
returned array of parabolicLaneBoundary objects contains the [A B C] coefficients of its second-
degree polynomial equation and the strength of the boundary estimate.

[boundaries,boundaryPoints] = findParabolicLaneBoundaries(xyBoundaryPoints,
approxBoundaryWidth) also returns a cell array of inlier boundary points for each boundary model
found.

[ ___ ] = findParabolicLaneBoundaries( ___ ,Name,Value) uses options specified by one or
more Name,Value pair arguments, with any of the preceding syntaxes.

Examples

Find Parabolic Lane Boundaries in Bird's-Eye-View Image

Find lanes in an image by using parabolic lane boundary models. Overlay the identified lanes on the
original image and on a bird's-eye-view transformation of the image.

Load an image of a road with lanes. The image was obtained from a camera sensor mounted on the
front of a vehicle.

I = imread('road.png');

Transform the image into a bird's-eye-view image by using a preconfigured sensor object. This object
models the sensor that captured the original image.

bevSensor = load('birdsEyeConfig');
birdsEyeImage = transformImage(bevSensor.birdsEyeConfig,I);
imshow(birdsEyeImage)

 findParabolicLaneBoundaries

3-109



Set the approximate lane marker width in world units (meters).

approxBoundaryWidth = 0.25;

Detect lane features and display them as a black-and-white image.

birdsEyeBW = segmentLaneMarkerRidge(rgb2gray(birdsEyeImage), ...
    bevSensor.birdsEyeConfig,approxBoundaryWidth);
imshow(birdsEyeBW)
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Obtain lane candidate points in world coordinates.

[imageX,imageY] = find(birdsEyeBW);
xyBoundaryPoints = imageToVehicle(bevSensor.birdsEyeConfig,[imageY,imageX]);

Find lane boundaries in the image by using the findParabolicLaneBoundaries function. By
default, the function returns a maximum of two lane boundaries. The boundaries are stored in an
array of parabolicLaneBoundary objects.

boundaries = findParabolicLaneBoundaries(xyBoundaryPoints,approxBoundaryWidth);
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Use insertLaneBoundary to overlay the lanes on the original image. The XPoints vector
represents the lane points, in meters, that are within range of the ego vehicle's sensor. Specify the
lanes in different colors. By default, lanes are yellow.

XPoints = 3:30;

figure
sensor = bevSensor.birdsEyeConfig.Sensor;
lanesI = insertLaneBoundary(I,boundaries(1),sensor,XPoints);
lanesI = insertLaneBoundary(lanesI,boundaries(2),sensor,XPoints,'Color','green');
imshow(lanesI)

View the lanes in the bird's-eye-view image.

figure
BEconfig = bevSensor.birdsEyeConfig;
lanesBEI = insertLaneBoundary(birdsEyeImage,boundaries(1),BEconfig,XPoints);
lanesBEI = insertLaneBoundary(lanesBEI,boundaries(2),BEconfig,XPoints,'Color','green');
imshow(lanesBEI)
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Input Arguments
xyBoundaryPoints — Candidate boundary points
[x y] vector

Candidate boundary points, specified as an [x y] vector in vehicle coordinates. To obtain the vehicle
coordinates for points in a birdsEyeView image, use the imageToVehicle function to convert the
bird's-eye-view image coordinates to vehicle coordinates.
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approxBoundaryWidth — Approximate boundary width
real scalar

Approximate boundary width, specified as a real scalar in world units. The width is a horizontal y-axis
measurement.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'MaxSamplingAttempts',200

MaxNumBoundaries — Maximum number of lane boundaries
2 (default) | positive integer

Maximum number of lane boundaries that the function attempts to find, specified as the comma-
separated pair consisting of 'MaxNumBoundaries' and a positive integer.

ValidateBoundaryFcn — Function to validate boundary model
function handle

Function to validate the boundary model, specified as the comma-separated pair consisting of
'ValidateBoundaryFcn' and a function handle. The specified function returns logical 1 (true) if
the boundary model is accepted and logical 0 (false) otherwise. Use this function to reject invalid
boundaries. The function must be of the form:

isValid = validateBoundaryFcn(parameters)

parameters is a vector corresponding to the three parabolic parameters.

The default validation function always returns 1 (true).

MaxSamplingAttempts — Maximum number of sampling attempts
100 (default) | positive integer

Maximum number of attempts to find a sample of points that yields a valid parabolic boundary,
specified as the comma-separated pair consisting of 'MaxSamplingAttempts' and a function
handle. findParabolicLaneBoundaries uses the fitPolynomialRANSAC function to sample
from the set of boundary points and fit a parabolic boundary line.

Output Arguments
boundaries — Lane boundary models
array of parabolicLaneBoundary objects

Lane boundary models, returned as an array of parabolicLaneBoundary objects. Lane boundary
objects contain the following properties:

• Parameters — A three-element vector, [A B C], that corresponds to the three coefficients of a
second-degree polynomial equation in general form: y = Ax2 + Bx + C.

• BoundaryType — A LaneBoundaryType of supported lane boundaries. The supported lane
boundary types are:
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• Unmarked
• Solid
• Dashed
• BottsDots
• DoubleSolid

Specify a lane boundary type as LaneBoundaryType.BoundaryType. For example:

LaneBoundaryType.BottsDots
• Strength — A ratio of the number of unique x-axis locations on the boundary to the total number

of points along the line, based on the XExtent property.
• XExtent — A two-element vector describing the minimum and maximum x-axis locations for the

boundary points.

boundaryPoints — Inlier boundary points
cell array of [x y] values

Inlier boundary points, returned as a cell array of [x y] values. Each element of the cell array
corresponds to the same element in the array of parabolicLaneBoundary objects.

Tips
• To fit a single boundary model to a double lane marker, set the approxBoundaryWidth argument

to be large enough to include the width spanning both lane markers.

Algorithms
• This function uses fitPolynomialRANSAC to find parabolic models. Because this algorithm uses

random sampling, the output can vary between runs.
• The maxDistance parameter of fitPolynomialRANSAC is set to half the width specified in the

approxBoundaryWidth argument. Points are considered inliers if they are within the boundary
width. The function obtains the final boundary model using a least-squares fit on the inlier points.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
birdsEyePlot | birdsEyeView | fitPolynomialRANSAC | monoCamera |
parabolicLaneBoundary | segmentLaneMarkerRidge

Introduced in R2017a
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getTrackPositions
Returns updated track positions and position covariance matrix

Syntax
position = getTrackPositions(tracks,positionSelector)
[position,positionCovariances] = getTrackPositions(tracks,positionSelector)

Description
position = getTrackPositions(tracks,positionSelector) returns a matrix of track
positions. Each row contains the position of a tracked object.

[position,positionCovariances] = getTrackPositions(tracks,positionSelector)
returns a matrix of track positions.

Examples

Find Position of 3-D Constant-Acceleration Object

Create an extended Kalman filter tracker for 3-D constant-acceleration motion.

tracker = trackerTOMHT('FilterInitializationFcn',@initcaekf);

Update the tracker with a single detection and get the tracks output.

detection = objectDetection(0,[10;-20;4],'ObjectClassID',3);
tracks = step(tracker,detection,0)

tracks = 
  objectTrack with properties:

             TrackID: 1
            BranchID: 1
         SourceIndex: 0
          UpdateTime: 0
                 Age: 1
               State: [9x1 double]
     StateCovariance: [9x9 double]
     StateParameters: [1x1 struct]
       ObjectClassID: 3
          TrackLogic: 'Score'
     TrackLogicState: [13.7102 13.7102]
         IsConfirmed: 1
           IsCoasted: 0
      IsSelfReported: 1
    ObjectAttributes: [1x1 struct]

Obtain the position vector from the track state.
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positionSelector = [1 0 0 0 0 0 0 0 0; 0 0 0 1 0 0 0 0 0; 0 0 0 0 0 0 1 0 0];
position = getTrackPositions(tracks, positionSelector)

position = 1×3

   10.0000  -20.0000    4.0000

Find Position and Covariance of 3-D Constant-Velocity Object

Create an extended Kalman filter tracker for 3-D constant-velocity motion.

tracker = trackerTOMHT('FilterInitializationFcn',@initcvekf);

Update the tracker with a single detection and get the tracks output.

detection = objectDetection(0,[10;3;-7],'ObjectClassID',3);
tracks = step(tracker,detection,0)

tracks = 
  objectTrack with properties:

             TrackID: 1
            BranchID: 1
         SourceIndex: 0
          UpdateTime: 0
                 Age: 1
               State: [6x1 double]
     StateCovariance: [6x6 double]
     StateParameters: [1x1 struct]
       ObjectClassID: 3
          TrackLogic: 'Score'
     TrackLogicState: [13.7102 13.7102]
         IsConfirmed: 1
           IsCoasted: 0
      IsSelfReported: 1
    ObjectAttributes: [1x1 struct]

Obtain the position vector and position covariance for that track

positionSelector = [1 0 0 0 0 0; 0 0 1 0 0 0; 0 0 0 0 1 0];
[position,positionCovariance] = getTrackPositions(tracks,positionSelector)

position = 1×3

   10.0000    3.0000   -7.0000

positionCovariance = 3×3

    1.0000   -0.0000         0
   -0.0000    1.0000   -0.0000
         0   -0.0000    1.0000
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Input Arguments
tracks — Track data structure
struct array

Tracked object, specified as a struct array. A track struct array is an array of MATLAB struct
types containing sufficient information to obtain the track position vector and, optionally, the position
covariance matrix. At a minimum, the struct must contain a State column vector field and a
positive-definite StateCovariance matrix field. For an example of a track struct used by
Automated Driving Toolbox, examine the output argument, tracks, returned by the updateTracks
function when used with a multiObjectTracker System object.

positionSelector — Position selection matrix
D-by-N real-valued matrix.

Position selector, specified as a D-by-N real-valued matrix of ones and zeros. D is the number of
dimensions of the tracker. N is the size of the state vector. Using this matrix, the function extracts
track positions from the state vector. Multiply the state vector by position selector matrix returns
positions. The same selector is applied to all object tracks.

Output Arguments
position — Positions of tracked objects
real-valued M-by-D matrix

Positions of tracked objects at last update time, returned as a real-valued M-by-D matrix. D
represents the number of position elements. M represents the number of tracks.

positionCovariances — Position covariance matrices of tracked objects
real-valued D-by-D-M array

Position covariance matrices of tracked objects, returned as a real-valued D-by-D-M array. D
represents the number of position elements. M represents the number of tracks. Each D-by-D
submatrix is a position covariance matrix for a track.

More About
Position Selector for 2-Dimensional Motion

Show the position selection matrix for two-dimensional motion when the state consists of the position
and velocity.

1 0 0 0
0 0 1 0

Position Selector for 3-Dimensional Motion

Show the position selection matrix for three-dimensional motion when the state consists of the
position and velocity.

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
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Position Selector for 3-Dimensional Motion with Acceleration

Show the position selection matrix for three-dimensional motion when the state consists of the
position, velocity, and acceleration.

1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
getTrackVelocities | initcaekf | initcakf | initcaukf | initctekf | initctukf |
initcvkf | initcvukf

Objects
multiObjectTracker | objectDetection

Introduced in R2017a
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getTrackVelocities
Obtain updated track velocities and velocity covariance matrix

Syntax
velocity = getTrackVelocities(tracks,velocitySelector)
[velocity,velocityCovariances] = getTrackVelocities(tracks,velocitySelector)

Description
velocity = getTrackVelocities(tracks,velocitySelector) returns velocities of tracked
objects.

[velocity,velocityCovariances] = getTrackVelocities(tracks,velocitySelector)
also returns the track velocity covariance matrices.

Examples

Find Velocity of 3-D Constant-Acceleration Object

Create an extended Kalman filter tracker for 3-D constant-acceleration motion.

tracker = trackerGNN('FilterInitializationFcn',@initcaekf);

Initialize the tracker with one detection.

detection = objectDetection(0,[10;-20;4],'ObjectClassID',3);
tracks = step(tracker,detection,0);

Add a second detection at a later time and at a different position.

detection = objectDetection(0.1,[10.3;-20.2;4],'ObjectClassID',3);
tracks = step(tracker,detection,0.2);

Obtain the velocity vector from the track state.

velocitySelector = [0 1 0 0 0 0 0 0 0; 0 0 0 0 1 0 0 0 0; 0 0 0 0 0 0 0 1 0];
velocity = getTrackVelocities(tracks,velocitySelector)

velocity = 1×3

    1.0093   -0.6728         0

Velocity and Covariance of 3-D Constant-Acceleration Object

Create an extended Kalman filter tracker for 3-D constant-acceleration motion.

tracker = trackerGNN('FilterInitializationFcn',@initcaekf);
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Initialize the tracker with one detection.

detection = objectDetection(0,[10;-20;4],'ObjectClassID',3);
tracks = step(tracker,detection,0);

Add a second detection at a later time and at a different position.

detection = objectDetection(0.1,[10.3;-20.2;4.3],'ObjectClassID',3);
tracks = step(tracker,detection,0.2);

Obtain the velocity vector from the track state.

velocitySelector = [0 1 0 0 0 0 0 0 0; 0 0 0 0 1 0 0 0 0; 0 0 0 0 0 0 0 1 0];
[velocity,velocityCovariance] = getTrackVelocities(tracks,velocitySelector)

velocity = 1×3

    1.0093   -0.6728    1.0093

velocityCovariance = 3×3

   70.0685         0         0
         0   70.0685         0
         0         0   70.0685

Input Arguments
tracks — Track data structure
struct array

Tracked object, specified as a struct array. A track struct array is an array of MATLAB struct
types containing sufficient information to obtain the track position vector and, optionally, the position
covariance matrix. At a minimum, the struct must contain a State column vector field and a
positive-definite StateCovariance matrix field. For an example of a track struct used by
Automated Driving Toolbox, examine the output argument, tracks, returned by the updateTracks
function when used with a multiObjectTracker System object.

velocitySelector — Velocity selection matrix
D-by-N real-valued matrix.

Velocity selector, specified as a D-by-N real-valued matrix of ones and zeros. D is the number of
dimensions of the tracker. N is the size of the state vector. Using this matrix, the function extracts
track velocities from the state vector. Multiply the state vector by velocity selector matrix returns
velocities. The same selector is applied to all object tracks.

Output Arguments
velocity — Velocities of tracked objects
real-valued 1-by-D vector | real-valued M-by-D matrix

Velocities of tracked objects at last update time, returned as a 1-by-D vector or a real-valued M-by-D
matrix. D represents the number of velocity elements. M represents the number of tracks.
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velocityCovariances — Velocity covariance matrices of tracked objects
real-valued D-by-D-matrix | real-valued D-by-D-by-M array

Velocity covariance matrices of tracked objects, returned as a real-valued D-by-D-matrix or a real-
valued D-by-D-by-M array. D represents the number of velocity elements. M represents the number of
tracks. Each D-by-D submatrix is a velocity covariance matrix for a track.

More About
Velocity Selector for 2-Dimensional Motion

Show the velocity selection matrix for two-dimensional motion when the state consists of the position
and velocity.

0 1 0 0
0 0 0 1

Velocity Selector for 3-Dimensional Motion

Show the velocity selection matrix for three-dimensional motion when the state consists of the
position and velocity.

0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

Velocity Selector for 3-Dimensional Motion with Acceleration

Show the velocity selection matrix for three-dimensional motion when the state consists of the
position, velocity, and acceleration.

0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
getTrackPositions | initcaekf | initcakf | initcaukf | initctekf | initctukf | initcvkf
| initcvukf

Objects
multiObjectTracker | objectDetection

Introduced in R2017a
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hereHDLMCredentials
Set up or delete HERE HD Live Map credentials

Syntax
hereHDLMCredentials('setup')
hereHDLMCredentials('delete')

Description
hereHDLMCredentials('setup') opens a dialog box for specifying the credentials required to
access the HERE HD Live Map2 (HERE HDLM) web service. By default, credentials last for the
duration of a MATLAB session. To save credentials between sessions, in the HERE HD Live Map
Credentials dialog box, select the Save my credentials between MATLAB sessions check box .

Simplified form: hereHDLMCredentials setup

hereHDLMCredentials('delete') deletes saved HERE HDLM credentials. Any subsequent use of
HERE HDLM functions and objects, such as the hereHDLMConfiguration or hereHDLMReader
object, requires entering new credentials.

Simplified form: hereHDLMCredentials delete

Examples

Manage HERE HD Live Map Credentials

Set up HERE HD Live Map (HERE HDLM) credentials.

hereHDLMCredentials setup

2. You need to enter into a separate agreement with HERE in order to gain access to the HDLM services and to get the
required credentials (access_key_id and access_key_secret) for using the HERE Service.

 hereHDLMCredentials
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Enter a valid Access Key ID and Access Key Secret. You can obtain these credentials by entering
into a separate agreement with HERE Technologies. Optionally, select Save my credentials
between MATLAB sessions to save your HERE HDLM credentials between MATLAB sessions. Click
OK.

Load a driving route, and create a HERE HDLM reader using the route coordinates. The HERE HD
Live Map Credentials dialog box does not open, because the credentials have already been set up.

data = load('geoSequence.mat');
reader = hereHDLMReader(data.latitude,data.longitude);

Delete the HERE HDLM credentials you previously entered. The next time you use
hereHDLMReader, you must enter your credentials again.

hereHDLMCredentials delete

See Also
hereHDLMConfiguration | hereHDLMReader

Topics
“Read and Visualize HERE HD Live Map Data”

Introduced in R2019a
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initcaabf
Create constant acceleration alpha-beta tracking filter from detection report

Syntax
abf = initcaabf(detection)

Description
abf = initcaabf(detection) initializes a constant acceleration alpha-beta tracking filter for
object tracking based on information provided in detection.

Examples

Creating Constant Acceleration trackingABF Object from Detection

Create an objectDetection with a position measurement at x=1, y=3 and a measurement noise of [1
0.2; 0.2 2];

detection = objectDetection(0,[1;3],'MeasurementNoise',[1 0.2;0.2 2]);

Use initccabf to create a trackingABF filter initialized at the provided position and using the
measurement noise defined above.

ABF = initcaabf(detection);

Check the values of the state and measurement noise. Verify that the filter state, ABF.State, has the
same position components as the Detection.Measurement. Verify that the filter measurement
noise, ABF.MeasurementNoise, is the same as the Detection.MeasurementNoise values.

ABF.State

ans = 6×1

     1
     0
     0
     3
     0
     0

ABF.MeasurementNoise

ans = 2×2

    1.0000    0.2000
    0.2000    2.0000
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Input Arguments
detection — Detection report
objectDetection object

Detection report, specified as an objectDetection object.
Example: detection = objectDetection(0,[1;4.5;3],'MeasurementNoise', [1.0 0 0;
0 2.0 0; 0 0 1.5])

Output Arguments
abf — Constant velocity alpha-beta filter
trackingABF object

Constant acceleration alpha-beta tracking filter for object tracking, returned as a trackingABF
object.

Algorithms
• The function computes the process noise matrix assuming a unit standard deviation for the

acceleration change rate.
• You can use this function as the FilterInitializationFcn property of trackers.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
objectDetection | trackingABF | trackingEKF | trackingKF | trackingUKF

Introduced in R2020a
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initcvabf
Create constant velocity tracking alpha-beta filter from detection report

Syntax
abf = initcvabf(detection)

Description
abf = initcvabf(detection) initializes a constant velocity alpha-beta filter for object tracking
based on information provided in detection.

Examples

Creating trackingABF Object from Detection

Create an objectDetection with a position measurement at x=1, y=3 and a measurement noise of [1
0.2; 0.2 2];

detection = objectDetection(0,[1;3],'MeasurementNoise',[1 0.2;0.2 2]);

Use initcvabf to create a trackingABF filter initialized at the provided position and using the
measurement noise defined above.

ABF = initcvabf(detection);

Check the values of the state and measurement noise. Verify that the filter state, ABF.State, has the
same position components as the Detection.Measurement. Verify that the filter measurement
noise, ABF.MeasurementNoise, is the same as the Detection.MeasurementNoise values.

ABF.State

ans = 4×1

     1
     0
     3
     0

ABF.MeasurementNoise

ans = 2×2

    1.0000    0.2000
    0.2000    2.0000
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Input Arguments
detection — Detection report
objectDetection object

Detection report, specified as an objectDetection object.
Example: detection = objectDetection(0,[1;4.5;3],'MeasurementNoise', [1.0 0 0;
0 2.0 0; 0 0 1.5])

Output Arguments
abf — Constant velocity alpha-beta filter
trackingABF object

Constant velocity alpha-beta tracking filter for object tracking, returned as a trackingABF object.

Algorithms
• The function computes the process noise matrix assuming a unit acceleration standard deviation.
• You can use this function as the FilterInitializationFcn property of trackers.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
objectDetection | trackingABF | trackingEKF | trackingKF | trackingUKF

Introduced in R2020a

3 Functions
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initcaekf
Create constant-acceleration extended Kalman filter from detection report

Syntax
filter = initcaekf(detection)

Description
filter = initcaekf(detection) creates and initializes a constant-acceleration extended
Kalman filter from information contained in a detection report. For more information about the
extended Kalman filter, see trackingEKF.

Examples

Initialize 3-D Constant-Acceleration Extended Kalman Filter

Create and initialize a 3-D constant-acceleration extended Kalman filter object from an initial
detection report.

Create the detection report from an initial 3-D measurement, (-200;30;0) , of the object position.
Assume uncorrelated measurement noise.

detection = objectDetection(0,[-200;-30;0],'MeasurementNoise',2.1*eye(3), ...
    'SensorIndex',1,'ObjectClassID',1,'ObjectAttributes',{'Car',2});

Create the new filter from the detection report and display its properties.

filter = initcaekf(detection)

filter = 
  trackingEKF with properties:

                          State: [9x1 double]
                StateCovariance: [9x9 double]

             StateTransitionFcn: @constacc
     StateTransitionJacobianFcn: @constaccjac
                   ProcessNoise: [3x3 double]
        HasAdditiveProcessNoise: 0

                 MeasurementFcn: @cameas
         MeasurementJacobianFcn: @cameasjac
               MeasurementNoise: [3x3 double]
    HasAdditiveMeasurementNoise: 1

Show the filter state.

filter.State
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ans = 9×1

  -200
     0
     0
   -30
     0
     0
     0
     0
     0

Show the state covariance matrix.

filter.StateCovariance

ans = 9×9

    2.1000         0         0         0         0         0         0         0         0
         0  100.0000         0         0         0         0         0         0         0
         0         0  100.0000         0         0         0         0         0         0
         0         0         0    2.1000         0         0         0         0         0
         0         0         0         0  100.0000         0         0         0         0
         0         0         0         0         0  100.0000         0         0         0
         0         0         0         0         0         0    2.1000         0         0
         0         0         0         0         0         0         0  100.0000         0
         0         0         0         0         0         0         0         0  100.0000

Create 3D Constant Acceleration EKF from Spherical Measurement

Initialize a 3D constant-acceleration extended Kalman filter from an initial detection report made
from an initial measurement in spherical coordinates. If you want to use spherical coordinates, then
you must supply a measurement parameter structure as part of the detection report with the Frame
field set to 'spherical'. Set the azimuth angle of the target to 45∘, the elevation to 22∘, the range
to 1000 meters, and the range rate to -4.0 m/s.

frame = 'spherical';
sensorpos = [25,-40,-10].';
sensorvel = [0;5;0];
laxes = eye(3);

Create the measurement parameters structure. Set 'HasVelocity' and 'HasElevation' to true.
Then, the measurement vector consists of azimuth, elevation, range, and range rate.

measparms = struct('Frame',frame,'OriginPosition',sensorpos, ...
    'OriginVelocity',sensorvel,'Orientation',laxes,'HasVelocity',true, ...
    'HasElevation',true);
meas = [45;22;1000;-4];
measnoise = diag([3.0,2.5,2,1.0].^2);
detection = objectDetection(0,meas,'MeasurementNoise', ...
    measnoise,'MeasurementParameters',measparms)

detection = 
  objectDetection with properties:
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                     Time: 0
              Measurement: [4x1 double]
         MeasurementNoise: [4x4 double]
              SensorIndex: 1
            ObjectClassID: 0
    MeasurementParameters: [1x1 struct]
         ObjectAttributes: {}

filter = initcaekf(detection);

Display the state vector.

disp(filter.State)

  680.6180
   -2.6225
         0
  615.6180
    2.3775
         0
  364.6066
   -1.4984
         0

Input Arguments
detection — Detection report
objectDetection object

Detection report, specified as an objectDetection object.
Example: detection = objectDetection(0,[1;4.5;3],'MeasurementNoise', [1.0 0 0;
0 2.0 0; 0 0 1.5])

Output Arguments
filter — Extended Kalman filter
trackingEKF object

Extended Kalman filter, returned as a trackingEKF object.

Algorithms
• The function computes the process noise matrix assuming a one-second time step and an

acceleration-rate standard deviation of 1 m/s3.
• You can use this function as the FilterInitializationFcn property of a

multiObjectTracker object.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
Functions
initcakf | initcaukf | initctekf | initctukf | initcvekf | initcvkf | initcvukf

Objects
multiObjectTracker | objectDetection | trackingEKF | trackingKF | trackingUKF

Introduced in R2017a

3 Functions
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initcakf
Create constant-acceleration linear Kalman filter from detection report

Syntax
filter = initcakf(detection)

Description
filter = initcakf(detection) creates and initializes a constant-acceleration linear Kalman
filter from information contained in a detection report. For more information about the linear
Kalman filter, see trackingKF.

Examples

Initialize 2-D Constant-Acceleration Linear Kalman Filter

Create and initialize a 2-D constant-acceleration linear Kalman filter object from an initial detection
report.

Create the detection report from an initial 2-D measurement, (10,−5), of the object position. Assume
uncorrelated measurement noise.

detection = objectDetection(0,[10;-5],'MeasurementNoise',eye(2), ...
    'SensorIndex',1,'ObjectClassID',1,'ObjectAttributes',{'Car',5});

Create the new filter from the detection report.

filter = initcakf(detection);

Show the filter state.

filter.State

ans = 6×1

    10
     0
     0
    -5
     0
     0

Show the state transition model.

filter.StateTransitionModel

ans = 6×6

    1.0000    1.0000    0.5000         0         0         0
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         0    1.0000    1.0000         0         0         0
         0         0    1.0000         0         0         0
         0         0         0    1.0000    1.0000    0.5000
         0         0         0         0    1.0000    1.0000
         0         0         0         0         0    1.0000

Input Arguments
detection — Detection report
objectDetection object

Detection report, specified as an objectDetection object.
Example: detection = objectDetection(0,[1;4.5;3],'MeasurementNoise', [1.0 0 0;
0 2.0 0; 0 0 1.5])

Output Arguments
filter — Linear Kalman filter
trackingKF object

Linear Kalman filter, returned as a trackingKF object.

Algorithms
• The function computes the process noise matrix assuming a one-second time step and an

acceleration rate standard deviation of 1 m/s3.
• You can use this function as the FilterInitializationFcn property of a

multiObjectTracker object.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
initcaekf | initcaukf | initctekf | initctukf | initcvekf | initcvkf | initcvukf

Objects
multiObjectTracker | objectDetection | trackingEKF | trackingKF | trackingUKF

Introduced in R2017a
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initcaukf
Create constant-acceleration unscented Kalman filter from detection report

Syntax
filter = initcaukf(detection)

Description
filter = initcaukf(detection) creates and initializes a constant-acceleration unscented
Kalman filter from information contained in a detection report. For more information about the
unscented Kalman filter, see trackingUKF.

Examples

Initialize 3-D Constant-Acceleration Unscented Kalman Filter

Create and initialize a 3-D constant-acceleration unscented Kalman filter object from an initial
detection report.

Create the detection report from an initial 3-D measurement, (-200,-30,5), of the object position.
Assume uncorrelated measurement noise.

detection = objectDetection(0,[-200;-30;5],'MeasurementNoise',2.0*eye(3), ...
    'SensorIndex',1,'ObjectClassID',1,'ObjectAttributes',{'Car',2});

Create the new filter from the detection report and display the filter properties.

filter = initcaukf(detection)

filter = 
  trackingUKF with properties:

                          State: [9x1 double]
                StateCovariance: [9x9 double]

             StateTransitionFcn: @constacc
                   ProcessNoise: [3x3 double]
        HasAdditiveProcessNoise: 0

                 MeasurementFcn: @cameas
               MeasurementNoise: [3x3 double]
    HasAdditiveMeasurementNoise: 1

                          Alpha: 1.0000e-03
                           Beta: 2
                          Kappa: 0

Show the state.
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filter.State

ans = 9×1

  -200
     0
     0
   -30
     0
     0
     5
     0
     0

Show the state covariance matrix.

filter.StateCovariance

ans = 9×9

    2.0000         0         0         0         0         0         0         0         0
         0  100.0000         0         0         0         0         0         0         0
         0         0  100.0000         0         0         0         0         0         0
         0         0         0    2.0000         0         0         0         0         0
         0         0         0         0  100.0000         0         0         0         0
         0         0         0         0         0  100.0000         0         0         0
         0         0         0         0         0         0    2.0000         0         0
         0         0         0         0         0         0         0  100.0000         0
         0         0         0         0         0         0         0         0  100.0000

Create 3D Constant Acceleration UKF from Spherical Measurement

Initialize a 3D constant-acceleration unscented Kalman filter from an initial detection report made
from a measurement in spherical coordinates. If you want to use spherical coordinates, then you must
supply a measurement parameter structure as part of the detection report with the Frame field set to
'spherical'. Set the azimuth angle of the target to 45∘, and the range to 1000 meters.

frame = 'spherical';
sensorpos = [25,-40,-10].';
sensorvel = [0;5;0];
laxes = eye(3);

Create the measurement structure. Set 'HasVelocity' and 'HasElevation' to false. Then, the
measurement vector consists of azimuth angle and range.

measparms = struct('Frame',frame,'OriginPosition',sensorpos, ...
    'OriginVelocity',sensorvel,'Orientation',laxes,'HasVelocity',false, ...
    'HasElevation',false);
meas = [45;1000];
measnoise = diag([3.0,2.0].^2);
detection = objectDetection(0,meas,'MeasurementNoise', ...
    measnoise,'MeasurementParameters',measparms)
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detection = 
  objectDetection with properties:

                     Time: 0
              Measurement: [2x1 double]
         MeasurementNoise: [2x2 double]
              SensorIndex: 1
            ObjectClassID: 0
    MeasurementParameters: [1x1 struct]
         ObjectAttributes: {}

filter = initcaukf(detection);

Display the state vector.

disp(filter.State)

  732.1068
         0
         0
  667.1068
         0
         0
  -10.0000
         0
         0

Input Arguments
detection — Detection report
objectDetection object

Detection report, specified as an objectDetection object.
Example: detection = objectDetection(0,[1;4.5;3],'MeasurementNoise', [1.0 0 0;
0 2.0 0; 0 0 1.5])

Output Arguments
filter — Unscented Kalman filter
trackingUKF object

Unscented Kalman filter, returned as a trackingUKF object.

Algorithms
• The function computes the process noise matrix assuming a one-second time step and an

acceleration rate standard deviation of 1 m/s3.
• You can use this function as the FilterInitializationFcn property of a

multiObjectTracker object.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
initcaekf | initcakf | initctekf | initctukf | initcvekf | initcvkf | initcvukf

Objects
multiObjectTracker | objectDetection | trackingEKF | trackingKF | trackingUKF

Introduced in R2017a
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initctekf
Create constant turn-rate extended Kalman filter from detection report

Syntax
filter = initctekf(detection)

Description
filter = initctekf(detection) creates and initializes a constant-turn-rate extended Kalman
filter from information contained in a detection report. For more information about the extended
Kalman filter, see trackingEKF.

Examples

Initialize 2-D Constant Turn-Rate Extended Kalman Filter

Create and initialize a 2-D constant turn-rate extended Kalman filter object from an initial detection
report.

Create the detection report from an initial 2-D measurement, (-250,-40), of the object position.
Assume uncorrelated measurement noise.

Extend the measurement to three dimensions by adding a z-component of zero.

detection = objectDetection(0,[-250;-40;0],'MeasurementNoise',2.0*eye(3), ...
    'SensorIndex',1,'ObjectClassID',1,'ObjectAttributes',{'Car',2});

Create the new filter from the detection report and display the filter properties.

filter = initctekf(detection)

filter = 
  trackingEKF with properties:

                          State: [7x1 double]
                StateCovariance: [7x7 double]

             StateTransitionFcn: @constturn
     StateTransitionJacobianFcn: @constturnjac
                   ProcessNoise: [4x4 double]
        HasAdditiveProcessNoise: 0

                 MeasurementFcn: @ctmeas
         MeasurementJacobianFcn: @ctmeasjac
               MeasurementNoise: [3x3 double]
    HasAdditiveMeasurementNoise: 1

Show the state.
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filter.State

ans = 7×1

  -250
     0
   -40
     0
     0
     0
     0

Show the state covariance matrix.

filter.StateCovariance

ans = 7×7

    2.0000         0         0         0         0         0         0
         0  100.0000         0         0         0         0         0
         0         0    2.0000         0         0         0         0
         0         0         0  100.0000         0         0         0
         0         0         0         0  100.0000         0         0
         0         0         0         0         0    2.0000         0
         0         0         0         0         0         0  100.0000

Create 2-D Constant Turnrate EKF from Spherical Measurement

Initialize a 2-D constant-turnrate extended Kalman filter from an initial detection report made from
an initial measurement in spherical coordinates. If you want to use spherical coordinates, then you
must supply a measurement parameter structure as part of the detection report with the Frame field
set to 'spherical'. Set the azimuth angle of the target to 45 degrees, the range to 1000 meters,
and the range rate to -4.0 m/s.

frame = 'spherical';
sensorpos = [25,-40,-10].';
sensorvel = [0;5;0];
laxes = eye(3);

Create the measurement parameters structure. Set 'HasElevation' to false. Then, the
measurement consists of azimuth, range, and range rate.

measparms = struct('Frame',frame,'OriginPosition',sensorpos, ...
    'OriginVelocity',sensorvel,'Orientation',laxes,'HasVelocity',true, ...
    'HasElevation',false);
meas = [45;1000;-4];
measnoise = diag([3.0,2,1.0].^2);
detection = objectDetection(0,meas,'MeasurementNoise', ...
    measnoise,'MeasurementParameters',measparms)

detection = 
  objectDetection with properties:

                     Time: 0
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              Measurement: [3x1 double]
         MeasurementNoise: [3x3 double]
              SensorIndex: 1
            ObjectClassID: 0
    MeasurementParameters: [1x1 struct]
         ObjectAttributes: {}

filter = initctekf(detection);

Filter state vector.

disp(filter.State)

  732.1068
   -2.8284
  667.1068
    2.1716
         0
  -10.0000
         0

Input Arguments
detection — Detection report
objectDetection object

Detection report, specified as an objectDetection object.
Example: detection = objectDetection(0,[1;4.5;3],'MeasurementNoise', [1.0 0 0;
0 2.0 0; 0 0 1.5])

Output Arguments
filter — Extended Kalman filter
trackingEKF object

Extended Kalman filter, returned as a trackingEKF object.

Algorithms
• The function computes the process noise matrix assuming a one-second time step. The function

assumes an acceleration standard deviation of 1 m/s2, and a turn-rate acceleration standard
deviation of 1°/s2.

• You can use this function as the FilterInitializationFcn property of a
multiObjectTracker object.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
Functions
initcaekf | initcakf | initcaukf | initctukf | initcvekf | initcvkf | initcvukf

Objects
multiObjectTracker | objectDetection | trackingEKF | trackingKF | trackingUKF

Introduced in R2017a

3 Functions
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initctukf
Create constant turn-rate unscented Kalman filter from detection report

Syntax
filter = initctukf(detection)

Description
filter = initctukf(detection) creates and initializes a constant-turn-rate unscented Kalman
filter from information contained in a detection report. For more information about the
unscented Kalman filter, see trackingUKF.

Examples

Initialize 2-D Constant Turn-Rate Unscented Kalman Filter

Create and initialize a 2-D constant turn-rate unscented Kalman filter object from an initial detection
report.

Create the detection report from an initial 2D measurement, (-250,-40), of the object position. Assume
uncorrelated measurement noise.

Extend the measurement to three dimensions by adding a z-component of zero.

detection = objectDetection(0,[-250;-40;0],'MeasurementNoise',2.0*eye(3), ...
    'SensorIndex',1,'ObjectClassID',1,'ObjectAttributes',{'Car',2});

Create the new filter from the detection report and display the filter properties.

filter = initctukf(detection)

filter = 
  trackingUKF with properties:

                          State: [7x1 double]
                StateCovariance: [7x7 double]

             StateTransitionFcn: @constturn
                   ProcessNoise: [4x4 double]
        HasAdditiveProcessNoise: 0

                 MeasurementFcn: @ctmeas
               MeasurementNoise: [3x3 double]
    HasAdditiveMeasurementNoise: 1

                          Alpha: 1.0000e-03
                           Beta: 2
                          Kappa: 0
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Show the filter state.

filter.State

ans = 7×1

  -250
     0
   -40
     0
     0
     0
     0

Show the state covariance matrix.

filter.StateCovariance

ans = 7×7

    2.0000         0         0         0         0         0         0
         0  100.0000         0         0         0         0         0
         0         0    2.0000         0         0         0         0
         0         0         0  100.0000         0         0         0
         0         0         0         0  100.0000         0         0
         0         0         0         0         0    2.0000         0
         0         0         0         0         0         0  100.0000

Create 2-D Constant Turn-rate UKF from Spherical Measurement

Initialize a 2-D constant turn-rate extended Kalman filter from an initial detection report made from
an initial measurement in spherical coordinates. If you want to use spherical coordinates, then you
must supply a measurement parameter structure as part of the detection report with the Frame field
set to 'spherical'. Set the azimuth angle of the target to 45 degrees and the range to 1000 meters.

frame = 'spherical';
sensorpos = [25,-40,-10].';
sensorvel = [0;5;0];
laxes = eye(3);

Create the measurement parameters structure. Set 'HasVelocity' and 'HasElevation' to
false. Then, the measurement consists of azimuth and range.

measparms = struct('Frame',frame,'OriginPosition',sensorpos, ...
    'OriginVelocity',sensorvel,'Orientation',laxes,'HasVelocity',false, ...
    'HasElevation',false);
meas = [45;1000];
measnoise = diag([3.0,2].^2);
detection = objectDetection(0,meas,'MeasurementNoise', ...
    measnoise,'MeasurementParameters',measparms)

detection = 
  objectDetection with properties:
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                     Time: 0
              Measurement: [2x1 double]
         MeasurementNoise: [2x2 double]
              SensorIndex: 1
            ObjectClassID: 0
    MeasurementParameters: [1x1 struct]
         ObjectAttributes: {}

filter = initctukf(detection);

Filter state vector.

disp(filter.State)

  732.1068
         0
  667.1068
         0
         0
  -10.0000
         0

Input Arguments
detection — Detection report
objectDetection object

Detection report, specified as an objectDetection object.
Example: detection = objectDetection(0,[1;4.5;3],'MeasurementNoise', [1.0 0 0;
0 2.0 0; 0 0 1.5])

Output Arguments
filter — Unscented Kalman filter
trackingUKF object

Unscented Kalman filter, returned as a trackingUKF object.

Algorithms
• The function computes the process noise matrix assuming a one-second time step. The function

assumes an acceleration standard deviation of 1 m/s2, and a turn-rate acceleration standard
deviation of 1°/s2.

• You can use this function as the FilterInitializationFcn property of a
multiObjectTracker object.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
Functions
initcaekf | initcakf | initcaukf | initctekf | initcvekf | initcvkf | initcvukf

Objects
multiObjectTracker | objectDetection | trackingEKF | trackingKF | trackingUKF

Introduced in R2017a

3 Functions
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initcvekf
Create constant-velocity extended Kalman filter from detection report

Syntax
filter = initcvekf(detection)

Description
filter = initcvekf(detection) creates and initializes a constant-velocity extended Kalman
filter from information contained in a detection report. For more information about the extended
Kalman filter, see trackingEKF.

Examples

Initialize 3-D Constant-Velocity Extended Kalman Filter

Create and initialize a 3-D constant-velocity extended Kalman filter object from an initial detection
report.

Create the detection report from an initial 3-D measurement, (10,20,−5), of the object position.

detection = objectDetection(0,[10;20;-5],'MeasurementNoise',1.5*eye(3), ...
    'SensorIndex',1,'ObjectClassID',1,'ObjectAttributes',{'Sports Car',5});

Create the new filter from the detection report.

filter = initcvekf(detection)

filter = 
  trackingEKF with properties:

                          State: [6x1 double]
                StateCovariance: [6x6 double]

             StateTransitionFcn: @constvel
     StateTransitionJacobianFcn: @constveljac
                   ProcessNoise: [3x3 double]
        HasAdditiveProcessNoise: 0

                 MeasurementFcn: @cvmeas
         MeasurementJacobianFcn: @cvmeasjac
               MeasurementNoise: [3x3 double]
    HasAdditiveMeasurementNoise: 1

Show the filter state.

filter.State

ans = 6×1
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    10
     0
    20
     0
    -5
     0

Show the state covariance.

filter.StateCovariance

ans = 6×6

    1.5000         0         0         0         0         0
         0  100.0000         0         0         0         0
         0         0    1.5000         0         0         0
         0         0         0  100.0000         0         0
         0         0         0         0    1.5000         0
         0         0         0         0         0  100.0000

Create 3-D Constant Velocity EKF from Spherical Measurement

Initialize a 3-D constant-velocity extended Kalman filter from an initial detection report made from a
3-D measurement in spherical coordinates. If you want to use spherical coordinates, then you must
supply a measurement parameter structure as part of the detection report with the Frame field set to
'spherical'. Set the azimuth angle of the target to 45 degrees, the elevation to -10 degrees, the
range to 1000 meters, and the range rate to -4.0 m/s.

frame = 'spherical';
sensorpos = [25,-40,0].';
sensorvel = [0;5;0];
laxes = eye(3);
measparms = struct('Frame',frame,'OriginPosition',sensorpos, ...
    'OriginVelocity',sensorvel,'Orientation',laxes,'HasVelocity',true, ...
    'HasElevation',true);
meas = [45;-10;1000;-4];
measnoise = diag([3.0,2.5,2,1.0].^2);
detection = objectDetection(0,meas,'MeasurementNoise', ...
    measnoise,'MeasurementParameters',measparms)

detection = 
  objectDetection with properties:

                     Time: 0
              Measurement: [4x1 double]
         MeasurementNoise: [4x4 double]
              SensorIndex: 1
            ObjectClassID: 0
    MeasurementParameters: [1x1 struct]
         ObjectAttributes: {}

filter = initcvekf(detection);
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Filter state vector.

disp(filter.State)

  721.3642
   -2.7855
  656.3642
    2.2145
 -173.6482
    0.6946

Input Arguments
detection — Detection report
objectDetection object

Detection report, specified as an objectDetection object.
Example: detection = objectDetection(0,[1;4.5;3],'MeasurementNoise', [1.0 0 0;
0 2.0 0; 0 0 1.5])

Output Arguments
filter — Extended Kalman filter
trackingEKF object

Extended Kalman filter, returned as a trackingEKF object.

Algorithms
• The function computes the process noise matrix assuming a one-second time step and an

acceleration standard deviation of 1 m/s2.
• You can use this function as the FilterInitializationFcn property of a

multiObjectTracker object.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
initcaekf | initcakf | initcaukf | initctekf | initctukf | initcvkf | initcvukf

Objects
multiObjectTracker | objectDetection | trackingEKF | trackingKF | trackingUKF

Introduced in R2017a
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initcvkf
Create constant-velocity linear Kalman filter from detection report

Syntax
filter = initcvkf(detection)

Description
filter = initcvkf(detection) creates and initializes a constant-velocity linear Kalman filter
from information contained in a detection report. For more information about the linear Kalman
filter, see trackingKF.

Examples

Initialize 2-D Constant-Velocity Linear Kalman Filter

Create and initialize a 2-D linear Kalman filter object from an initial detection report.

Create the detection report from an initial 2-D measurement, (10,20), of the object position.

detection = objectDetection(0,[10;20],'MeasurementNoise',[1 0.2; 0.2 2], ...
    'SensorIndex',1,'ObjectClassID',1,'ObjectAttributes',{'Yellow Car',5});

Create the new track from the detection report.

filter = initcvkf(detection)

filter = 
  trackingKF with properties:

               State: [4x1 double]
     StateCovariance: [4x4 double]

         MotionModel: '2D Constant Velocity'
        ControlModel: []
        ProcessNoise: [4x4 double]

    MeasurementModel: [2x4 double]
    MeasurementNoise: [2x2 double]

Show the state.

filter.State

ans = 4×1

    10
     0
    20
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     0

Show the state transition model.

filter.StateTransitionModel

ans = 4×4

     1     1     0     0
     0     1     0     0
     0     0     1     1
     0     0     0     1

Initialize 3-D Constant-Velocity Linear Kalman Filter

Create and initialize a 3-D linear Kalman filter object from an initial detection report.

Create the detection report from an initial 3-D measurement, (10,20,−5), of the object position.

detection = objectDetection(0,[10;20;-5],'MeasurementNoise',eye(3), ...
    'SensorIndex', 1,'ObjectClassID',1,'ObjectAttributes',{'Green Car', 5});

Create the new filter from the detection report and display its properties.

filter = initcvkf(detection)

filter = 
  trackingKF with properties:

               State: [6x1 double]
     StateCovariance: [6x6 double]

         MotionModel: '3D Constant Velocity'
        ControlModel: []
        ProcessNoise: [6x6 double]

    MeasurementModel: [3x6 double]
    MeasurementNoise: [3x3 double]

Show the state.

filter.State

ans = 6×1

    10
     0
    20
     0
    -5
     0

Show the state transition model.
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filter.StateTransitionModel

ans = 6×6

     1     1     0     0     0     0
     0     1     0     0     0     0
     0     0     1     1     0     0
     0     0     0     1     0     0
     0     0     0     0     1     1
     0     0     0     0     0     1

Input Arguments
detection — Detection report
objectDetection object

Detection report, specified as an objectDetection object.
Example: detection = objectDetection(0,[1;4.5;3],'MeasurementNoise', [1.0 0 0;
0 2.0 0; 0 0 1.5])

Output Arguments
filter — Linear Kalman filter
trackingKF object

Linear Kalman filter, returned as a trackingKF object.

Algorithms
• The function computes the process noise matrix assuming a one-second time step and an

acceleration standard deviation of 1 m/s2.
• You can use this function as the FilterInitializationFcn property of a

multiObjectTracker object.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
initcaekf | initcakf | initcaukf | initctekf | initctukf | initcvekf | initcvukf

Objects
multiObjectTracker | objectDetection | trackingEKF | trackingKF | trackingUKF

Introduced in R2017a

3 Functions

3-152



initcvukf
Create constant-velocity unscented Kalman filter from detection report

Syntax
filter = initcvukf(detection)

Description
filter = initcvukf(detection) creates and initializes a constant-velocity unscented Kalman
filter from information contained in a detection report. For more information about the
unscented Kalman filter, see trackingUKF.

Examples

Initialize 3-D Constant-Velocity Unscented Kalman Filter

Create and initialize a 3-D constant-velocity unscented Kalman filter object from an initial detection
report.

Create the detection report from an initial 3-D measurement, (10,200,−5), of the object position.

detection = objectDetection(0,[10;200;-5],'MeasurementNoise',1.5*eye(3), ...
    'SensorIndex',1,'ObjectClassID',1,'ObjectAttributes',{'Sports Car',5});

Create the new filter from the detection report and display the filter properties.

filter = initcvukf(detection)

filter = 
  trackingUKF with properties:

                          State: [6x1 double]
                StateCovariance: [6x6 double]

             StateTransitionFcn: @constvel
                   ProcessNoise: [3x3 double]
        HasAdditiveProcessNoise: 0

                 MeasurementFcn: @cvmeas
               MeasurementNoise: [3x3 double]
    HasAdditiveMeasurementNoise: 1

                          Alpha: 1.0000e-03
                           Beta: 2
                          Kappa: 0

Display the state.

filter.State
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ans = 6×1

    10
     0
   200
     0
    -5
     0

Show the state covariance.

filter.StateCovariance

ans = 6×6

    1.5000         0         0         0         0         0
         0  100.0000         0         0         0         0
         0         0    1.5000         0         0         0
         0         0         0  100.0000         0         0
         0         0         0         0    1.5000         0
         0         0         0         0         0  100.0000

Create Constant Velocity UKF from Spherical Measurement

Initialize a constant-velocity unscented Kalman filter from an initial detection report made from an
initial measurement in spherical coordinates. Because the object lies in the x-y plane, no elevation
measurement is made. If you want to use spherical coordinates, then you must supply a measurement
parameter structure as part of the detection report with the Frame field set to 'spherical'. Set the
azimuth angle of the target to 45 degrees, the range to 1000 meters, and the range rate to -4.0 m/s.

frame = 'spherical';
sensorpos = [25,-40,0].';
sensorvel = [0;5;0];
laxes = eye(3);

Create the measurement parameters structure. Set 'HasElevation' to false. Then, the
measurement consists of azimuth, range, and range rate.

measparms = struct('Frame',frame,'OriginPosition',sensorpos, ...
    'OriginVelocity',sensorvel,'Orientation',laxes,'HasVelocity',true, ...
    'HasElevation',false);
meas = [45;1000;-4];
measnoise = diag([3.0,2,1.0].^2);
detection = objectDetection(0,meas,'MeasurementNoise', ...
    measnoise,'MeasurementParameters',measparms)

detection = 
  objectDetection with properties:

                     Time: 0
              Measurement: [3x1 double]
         MeasurementNoise: [3x3 double]
              SensorIndex: 1
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            ObjectClassID: 0
    MeasurementParameters: [1x1 struct]
         ObjectAttributes: {}

filter = initcvukf(detection);

Display filter state vector.

disp(filter.State)

  732.1068
   -2.8284
  667.1068
    2.1716
         0
         0

Input Arguments
detection — Detection report
objectDetection object

Detection report, specified as an objectDetection object.
Example: detection = objectDetection(0,[1;4.5;3],'MeasurementNoise', [1.0 0 0;
0 2.0 0; 0 0 1.5])

Output Arguments
filter — Unscented Kalman filter
trackingUKF object

Unscented Kalman filter, returned as a trackingUKF object.

Algorithms
• The function computes the process noise matrix assuming a one-second time step and an

acceleration standard deviation of 1 m/s2.
• You can use this function as the FilterInitializationFcn property of a

multiObjectTracker object.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
initcaekf | initcakf | initcaukf | initctekf | initctukf | initcvekf | initcvkf
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Objects
multiObjectTracker | objectDetection | trackingEKF | trackingKF | trackingUKF

Introduced in R2017a

3 Functions

3-156



insertLaneBoundary
Insert lane boundary into image

Syntax
rgb = insertLaneBoundary(I,boundaries,sensor,xVehicle)
rgb = insertLaneBoundary( ___ ,Name,Value)

Description
rgb = insertLaneBoundary(I,boundaries,sensor,xVehicle) inserts lane boundary
markings into a truecolor image. The lanes are overlaid on the input road image, I. This image comes
from the sensor specified in the sensor object. xVehicle specifies the x-coordinates at which to
draw the lane markers. The y-coordinates are calculated based on the parameters of the boundary
models in boundaries.

rgb = insertLaneBoundary( ___ ,Name,Value) inserts lane boundary markings with additional
options specified by one or more Name,Value pair arguments, using the previous input arguments.

Examples

Find Parabolic Lane Boundaries in Bird's-Eye-View Image

Find lanes in an image by using parabolic lane boundary models. Overlay the identified lanes on the
original image and on a bird's-eye-view transformation of the image.

Load an image of a road with lanes. The image was obtained from a camera sensor mounted on the
front of a vehicle.

I = imread('road.png');

Transform the image into a bird's-eye-view image by using a preconfigured sensor object. This object
models the sensor that captured the original image.

bevSensor = load('birdsEyeConfig');
birdsEyeImage = transformImage(bevSensor.birdsEyeConfig,I);
imshow(birdsEyeImage)
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Set the approximate lane marker width in world units (meters).

approxBoundaryWidth = 0.25;

Detect lane features and display them as a black-and-white image.

birdsEyeBW = segmentLaneMarkerRidge(rgb2gray(birdsEyeImage), ...
    bevSensor.birdsEyeConfig,approxBoundaryWidth);
imshow(birdsEyeBW)
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Obtain lane candidate points in world coordinates.

[imageX,imageY] = find(birdsEyeBW);
xyBoundaryPoints = imageToVehicle(bevSensor.birdsEyeConfig,[imageY,imageX]);

Find lane boundaries in the image by using the findParabolicLaneBoundaries function. By
default, the function returns a maximum of two lane boundaries. The boundaries are stored in an
array of parabolicLaneBoundary objects.

boundaries = findParabolicLaneBoundaries(xyBoundaryPoints,approxBoundaryWidth);
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Use insertLaneBoundary to overlay the lanes on the original image. The XPoints vector
represents the lane points, in meters, that are within range of the ego vehicle's sensor. Specify the
lanes in different colors. By default, lanes are yellow.

XPoints = 3:30;

figure
sensor = bevSensor.birdsEyeConfig.Sensor;
lanesI = insertLaneBoundary(I,boundaries(1),sensor,XPoints);
lanesI = insertLaneBoundary(lanesI,boundaries(2),sensor,XPoints,'Color','green');
imshow(lanesI)

View the lanes in the bird's-eye-view image.

figure
BEconfig = bevSensor.birdsEyeConfig;
lanesBEI = insertLaneBoundary(birdsEyeImage,boundaries(1),BEconfig,XPoints);
lanesBEI = insertLaneBoundary(lanesBEI,boundaries(2),BEconfig,XPoints,'Color','green');
imshow(lanesBEI)
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Input Arguments
I — Input road image
truecolor image | grayscale image

Input road image, specified as a truecolor or grayscale image.
Data Types: single | double | int8 | int16 | uint8 | uint16
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boundaries — Lane boundary models
array of parabolicLaneBoundary objects | array of cubicLaneBoundary objects

Lane boundary models, specified as an array of parabolicLaneBoundary objects or
cubicLaneBoundary objects. Lane boundary models contain the following properties:

• Parameters — A vector corresponding to the coefficients of the boundary model. The size of the
vector depends on the degree of polynomial for the model.

Lane Boundary Object Parameters
parabolicLaneBoundary [A B C], corresponding to coefficients of a

second-degree polynomial equation of the
form y = Ax2 + Bx + C

cubicLaneBoundary [A B C D], corresponding to coefficients of a
third-degree polynomial equation of the form y
= Ax3 + Bx2 + Cx + D

• BoundaryType — A LaneBoundaryType enumeration of supported lane boundaries:

• Unmarked
• Solid
• Dashed
• BottsDots
• DoubleSolid

Specify a lane boundary type as LaneBoundaryType.BoundaryType. For example:

LaneBoundaryType.BottsDots
• Strength — The ratio of the number of unique x-axis locations on the boundary to the total

number of points along the line based on the XExtent property.
• XExtent — A two-element vector describing the minimum and maximum x-axis locations for the

boundary points.

sensor — Sensor that collects images
birdsEyeView object | monoCamera object

Sensor that collects images, specified as either a birdsEyeView or monoCamera object.

xVehicle — x-axis locations of boundary
real-valued vector

x-axis locations at which to display the lane boundaries, specified as a real-valued vector in vehicle
coordinates. The spacing between points controls the spacing between dashes and dots for the
corresponding types of boundaries. To show dashed boundaries clearly, specify at least four points in
xVehicle. If you specify fewer than four points, the function draws a solid boundary.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Color',[0 1 0]
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Color — Color of lane boundaries
'yellow' (default) | character vector | string scalar | [R,G,B] vector of RGB values | cell array of
character vectors | string array | m-by-3 matrix of RGB values

Color of lane boundaries, specified as a character vector, string scalar, or [R,G,B] vector of RGB
values. You can specify specific colors for each boundary in boundaries with a cell array of
character vectors, a string array, or an m-by-3 matrix of RGB values. The colors correspond to the
order of the boundary lanes.

RGB values must be in the range of the image data type.

Supported color values are 'blue', 'green', 'red', 'cyan', 'magenta', 'yellow', 'black',
and 'white'.
Example: 'red'
Example: [1,0,0]

LineWidth — Line width for boundary lanes
3 (default) | positive integer

Line width for boundary lanes, specified as a positive integer in pixels.

Output Arguments
rgb — Image with boundary lanes
RGB truecolor image

Image with boundary lanes overlaid, returned as an RGB truecolor image. The output image class
matches the input image, I.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
birdsEyeView | cubicLaneBoundary | fitPolynomialRANSAC | monoCamera |
parabolicLaneBoundary

Introduced in R2017a
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lateralControllerStanley
Compute steering angle command for path following by using Stanley method

Syntax
steerCmd = lateralControllerStanley(refPose,currPose,currVelocity)
steerCmd = lateralControllerStanley(refPose,currPose,currVelocity,Name,Value)

Description
steerCmd = lateralControllerStanley(refPose,currPose,currVelocity) computes the
steering angle command, in degrees, that adjusts the current pose of a vehicle to match a reference
pose, given the current velocity of the vehicle. By default, the function assumes that the vehicle is in
forward motion.

The controller computes the steering angle command using the Stanley method [1], whose control
law is based on a kinematic bicycle model. Use this controller for path following in low-speed
environments, where inertial effects are minimal.

steerCmd = lateralControllerStanley(refPose,currPose,currVelocity,Name,Value)
specifies options using one or more name-value pairs. For example,
lateralControllerStanley(refPose,currPose,currVelocity,'Direction',-1)
computes the steering angle command for a vehicle in reverse motion.

Examples

Steering Angle Command for Vehicle in Forward Motion

Compute the steering angle command that adjusts the current pose of a vehicle to a reference pose
along a driving path. The vehicle is in forward motion.

In this example, you compute a single steering angle command. In path-following algorithms,
compute the steering angle continuously as the pose and velocity of the vehicle change.

Set a reference pose on the path. The pose is at position (4.8 m, 6.5 m) and has an orientation angle
of 2 degrees.

refPose = [4.8, 6.5, 2]; % [meters, meters, degrees]

Set the current pose of the vehicle. The pose is at position (2 m, 6.5 m) and has an orientation angle
of 0 degrees. Set the current velocity of the vehicle to 2 meters per second.

currPose = [2, 6.5, 0]; % [meters, meters, degrees]
currVelocity = 2; % meters per second

Compute the steering angle command. For the vehicle to match the reference pose, the steering
wheel must turn 2 degrees counterclockwise.

steerCmd = lateralControllerStanley(refPose,currPose,currVelocity)
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steerCmd = 2.0000

Steering Angle Command for Vehicle in Reverse Motion

Compute the steering angle command that adjusts the current pose of a vehicle to a reference pose
along a driving path. The vehicle is in reverse motion.

In this example, you compute a single steering angle command. In path-following algorithms,
compute the steering angle continuously as the pose and velocity of the vehicle change.

Set a reference pose on the path. The pose is at position (5 m, 9 m) and has an orientation angle of 90
degrees.

refPose = [5, 9, 90]; % [meters, meters, degrees]

Set the current pose of the vehicle. The pose is at position (5 m, 10 m) and has an orientation angle of
75 degrees.

currPose = [5, 10, 75]; % [meters, meters, degrees]

Set the current velocity of the vehicle to –2 meters per second. Because the vehicle is in reverse
motion, the velocity must be negative.

currVelocity = -2; % meters per second

Compute the steering angle command. For the vehicle to match the reference pose, the steering
wheel must turn 15 degrees clockwise.

steerCmd = lateralControllerStanley(refPose,currPose,currVelocity,'Direction',-1)

steerCmd = -15.0000

Input Arguments
refPose — Reference pose
[x, y, Θ] vector

Reference pose, specified as an [x, y, Θ] vector. x and y are in meters, and Θ is in degrees.

x and y specify the reference point to steer the vehicle toward. Θ specifies the orientation angle of the
path at this reference point and is positive in the counterclockwise direction.

• For a vehicle in forward motion, the reference point is the point on the path that is closest to the
center of the vehicle's front axle.
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• For a vehicle in reverse motion, the reference point is the point on the path that is closest to the
center of the vehicle's rear axle.

Data Types: single | double

currPose — Current pose
[x, y, Θ] vector

Current pose of the vehicle, specified as an [x, y, Θ] vector. x and y are in meters, and Θ is in degrees.
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x and y specify the location of the vehicle, which is defined as the center of the vehicle's rear axle.

Θ specifies the orientation angle of the vehicle at location (x,y) and is positive in the counterclockwise
direction.

For more details on vehicle pose, see “Coordinate Systems in Automated Driving Toolbox”.
Data Types: single | double

currVelocity — Current longitudinal velocity
real scalar

Current longitudinal velocity of the vehicle, specified as a real scalar. Units are in meters per second.

• If the vehicle is in forward motion, then this value must be greater than 0.
• If the vehicle is in reverse motion, then this value must be less than 0.
• A value of 0 represents a vehicle that is not in motion.

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'MaxSteeringAngle',25

Direction — Driving direction of vehicle
1 (forward motion) (default) | -1 (reverse motion)

Driving direction of the vehicle, specified as the comma-separated pair consisting of 'Direction'
and either 1 for forward motion or -1 for reverse motion. The driving direction determines the
position error and angle error used to compute the steering angle command. For more details, see
“Algorithms” on page 3-169.
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PositionGain — Position gain
2.5 (default) | positive real scalar

Position gain of the vehicle, specified as the comma-separated pair consisting of 'PositionGain'
and a positive real scalar. This value determines how much the position error affects the steering
angle. Typical values are in the range [1, 5]. Increase this value to increase the magnitude of the
steering angle.

Wheelbase — Distance between front and rear axles of vehicle
2.8 (default) | real scalar

Distance between the front and rear axles of the vehicle, in meters, specified as the comma-separated
pair consisting of 'Wheelbase' and a real scalar. This value applies only when the vehicle is in
forward motion.

MaxSteeringAngle — Maximum allowed steering angle
35 (default) | real scalar in the range (0, 180)

Maximum allowed steering angle of the vehicle, in degrees, specified as the comma-separated pair
consisting of 'MaxSteeringAngle' and a real scalar in the range (0, 180).

The steerCmd value is saturated to the range [-MaxSteeringAngle, MaxSteeringAngle].

• Values below -MaxSteeringAngle are set to -MaxSteeringAngle.
• Values above MaxSteeringAngle are set to MaxSteeringAngle.

Output Arguments
steerCmd — Steering angle command
real scalar

Steering angle command, in degrees, returned as a real scalar. This value is positive in the
counterclockwise direction.

For more details, see “Coordinate Systems in Automated Driving Toolbox”.
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Algorithms
To compute the steering angle command, the controller minimizes the position error and the angle
error of the current pose with respect to the reference pose. The driving direction of the vehicle
determines these error values.

When the vehicle is in forward motion ('Direction' name-value pair is 1):

• The position error is the lateral distance from the center of the front axle to the reference point on
the path.

• The angle error is the angle of the front wheel with respect to reference path.

When the vehicle is in reverse motion ('Direction' name-value pair is -1):

• The position error is the lateral distance from the center of the rear axle to the reference point on
the path.

• The angle error is the angle of the rear wheel with respect to reference path.

For details on how the controller minimizes these errors, see [1].

References
[1] Hoffmann, Gabriel M., Claire J. Tomlin, Michael Montemerlo, and Sebastian Thrun. "Autonomous

Automobile Trajectory Tracking for Off-Road Driving: Controller Design, Experimental
Validation and Racing." American Control Conference. 2007, pp. 2296–2301. doi:10.1109/
ACC.2007.4282788

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Blocks
Lateral Controller Stanley | Longitudinal Controller Stanley

Objects
pathPlannerRRT

Topics
“Automated Parking Valet”
“Coordinate Systems in Automated Driving Toolbox”

Introduced in R2018b
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removeCustomBasemap
Remove custom basemap

Syntax
removeCustomBasemap(basemapName)

Description
removeCustomBasemap(basemapName) removes the custom basemap specified by basemapName
from the list of available basemaps.

If the custom basemap specified by basemapName has not been previously added using the
addCustomBasemap function, the removeCustomBasemap function returns an error.

Examples

Remove Custom Basemap

Add a custom basemap to view locations on an OpenStreetMap® basemap.

name = 'openstreetmap';
url = 'a.tile.openstreetmap.org';
copyright = char(uint8(169));
attribution = copyright + "OpenStreetMap contributors";
addCustomBasemap(name,url,'Attribution',attribution)

Use the custom basemap with a geographic player.

data = load('geoSequence.mat');
player = geoplayer(data.latitude(1),data.longitude(1),'Basemap',name);
plotRoute(player,data.latitude,data.longitude);
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Remove the custom basemap. The custom basemap associated with the specified name remains
stored in this geographic player. However, this basemap is no longer available for use with new
players.

removeCustomBasemap(name)

Input Arguments
basemapName — Name of custom basemap
string scalar | character vector

Name of the custom basemap to remove, specified as a string scalar or character vector. You define
the basemap name when you add the basemap using the addCustomBasemap function.
Data Types: string | char

See Also
addCustomBasemap | geoaxes | geobasemap | geobubble | geodensityplot | geoplayer |
geoplot | geoscatter

Introduced in R2019a
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segmentLaneMarkerRidge
Detect lanes in a grayscale intensity image

Syntax
birdsEyeBW = segmentLaneMarkerRidge(birdsEyeImage,birdsEyeConfig,
approxMarkerWidth)
birdsEyeBW = segmentLaneMarkerRidge( ___ ,Name,Value)

Description
birdsEyeBW = segmentLaneMarkerRidge(birdsEyeImage,birdsEyeConfig,
approxMarkerWidth) returns a binary image that represents lane features. The function segments
the input grayscale intensity image, birdsEyeImage, using a lane ridge detector. birdsEyeConfig
transforms point locations from vehicle coordinates to image coordinates. The approxMarkerWidth
argument is in world units, and specifies the approximate width of the lane-like features that are
detected.

birdsEyeBW = segmentLaneMarkerRidge( ___ ,Name,Value) returns a binary image with
additional options specified by one or more Name,Value pair arguments.

Examples

Detect Lanes in Road Image

Load a bird's-eye-view configuration object.

load birdsEyeConfig

Load the image captured from the sensor that is defined in the bird's-eye-view configuration object.

I = imread('road.png');
figure
imshow(I)
title('Original Image')
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Create a bird's-eye-view image.

birdsEyeImage = transformImage(birdsEyeConfig,I);
imshow(birdsEyeImage)
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Convert bird's-eye-view image to grayscale.

birdsEyeImage = rgb2gray(birdsEyeImage);

Set the approximate lane marker width to 25 cm, which is in world units.

approxMarkerWidth = 0.25;

Detect lane features.

birdsEyeBW = segmentLaneMarkerRidge(birdsEyeImage,birdsEyeConfig,approxMarkerWidth);
imshow(birdsEyeBW)
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Input Arguments
birdsEyeImage — Bird’s-eye-view image
matrix

Bird’s-eye-view image, specified as a nonsparse matrix.
Data Types: single | int16 | uint16 | uint8
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birdsEyeConfig — Object to transform point locations
birdsEyeView object

Object to transform point locations from vehicle to image coordinates, specified as a birdsEyeView
object.

approxMarkerWidth — Approximate width of lane-like features
real scalar in world units

Approximate width of lane-like features for the function to detect in the bird’s-eye-view image,
specified as a real scalar in world units, such as meters.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'ROI' []

ROI — Region of interest
[] (default) | world units

Region of interest in world units, specified as the comma-separated pair consisting of 'ROI' and a 1-
by-4 vector in the format [xmin,xmax,ymin,ymax]. The function searches for lane-like features only
within this region of interest. If you do not specify ROI, the function searches the entire image.

Sensitivity — Sensitivity factor
0.25 (default) | real scalar in the range [0, 1]

Sensitivity factor, specified as the comma-separated pair consisting of 'Sensitivity' and a real
scalar in the range [0, 1]. You can increase this value to detect more lane-like features. However, the
higher sensitivity can increase the risk of false detections.

Output Arguments
birdsEyeBW — Bird’s-eye-view image
binary image

Bird’s-eye-view image, returned as a binary image that represents lane features.

More About
Vehicle Coordinate System

This function uses a vehicle coordinate system to define point locations, as defined by the sensor in
the birdsEyeView object. It uses the same world units as defined by the
birdsEyeConfig.Sensor.WorldUnits property. See “Coordinate Systems in Automated Driving
Toolbox”.

Algorithms
segmentLaneMarkerRidge selects lanes by searching for pixels that are lane-like. Lane-like pixels
are groups of pixels with high-intensity contrast compared to neighboring pixels on either side. The
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function chooses the filter used to threshold the intensity contrast based on the
approxMarkerWidth value. The filter has high responses for pixels with intensity values higher than
those of the left and right neighboring pixels that have a similar intensity at a distance of
approxMarkerWidth. The function retains only certain values from the filtered image based on the
Sensitivity factor.

References
[1] Nieto, M., J. A. Laborda, and L. Salgado. “Road Environment Modeling Using Robust Perspective

Analysis and Recursive Bayesian Segmentation.” Machine Vision and Applications. Volume 22,
Issue 6, 2011, pp. 927–945.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
birdsEyeView

Introduced in R2017a
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smoothPathSpline
Smooth vehicle path using cubic spline interpolation

Syntax
[poses,directions] = smoothPathSpline(refPoses,refDirections,numSmoothPoses)
[poses,directions] = smoothPathSpline(refPoses,refDirections,numSmoothPoses,
minSeparation)
[ ___ ,cumLengths,curvatures] = smoothPathSpline( ___ )

Description
[poses,directions] = smoothPathSpline(refPoses,refDirections,numSmoothPoses)
generates a smooth vehicle path, consisting of numSmoothPoses discretized poses, by fitting the
input reference path poses to a cubic spline. Given the input reference path directions,
smoothPathSpline also returns the directions that correspond to each pose.

Use this function to convert a C1-continuous vehicle path to a C2-continuous path. C1-continuous
paths include the driving.DubinsPathSegment or driving.ReedsSheppPathSegment paths
that you can plan using a pathPlannerRRT object. For more details on these path types, see “C1-
Continuous and C2-Continuous Paths” on page 3-183.

You can use the returned poses and directions with a vehicle controller, such as the
lateralControllerStanley function.

[poses,directions] = smoothPathSpline(refPoses,refDirections,numSmoothPoses,
minSeparation) specifies a minimum separation threshold between poses. If the distance between
two poses is smaller than minSeparation, the function uses only one of the poses for interpolation.

[ ___ ,cumLengths,curvatures] = smoothPathSpline( ___ ) also returns the cumulative path
length and signed path curvature at each returned pose, using any of the previous syntaxes. Use
these values to generate a velocity profile along the path.

Examples

Smooth a Planned Path

Smooth a path that was planned by an RRT* path planner.

Load and plot a costmap of a parking lot.

data = load('parkingLotCostmap.mat');
costmap = data.parkingLotCostmap;
plot(costmap)
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Define start and goal poses for the vehicle as [x, y, Θ] vectors. World units for the (x,y) locations are
in meters. World units for the Θ orientation angles are in degrees.

startPose = [4,4,90]; % [meters, meters, degrees]
goalPose = [30,13,0];

Use a pathPlannerRRT object to plan a path from the start pose to the goal pose.

planner = pathPlannerRRT(costmap);
refPath = plan(planner,startPose,goalPose);

Plot and zoom in on the planned path. The path is composed of a sequence of Dubins curves. These
curves include abrupt changes in curvature that are not suitable for driving with passengers.

hold on
plot(refPath,'Vehicle','off','DisplayName','Reference path')
xlim([3 31])
ylim([3 18])
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Interpolate the transition poses of the path. Use these poses as the reference poses for interpolating
the smooth path. Also return the motion directions at each pose.

[refPoses,refDirections] = interpolate(refPath);

Specify the number of poses to return in the smooth path. Return poses spaced about 0.1 meters
apart, along the entire length of the path.

approxSeparation = 0.1; % meters
numSmoothPoses = round(refPath.Length / approxSeparation);

Generate the smooth path by fitting a cubic spline to the reference poses. smoothPathSpline
returns the specified number of discretized poses along the smooth path.

[poses,directions] = smoothPathSpline(refPoses,refDirections,numSmoothPoses);

Plot the smooth path. The more abrupt changes in curvature that were present in the reference path
are now smoothed out.

plot(poses(:,1),poses(:,2),'LineWidth',2,'DisplayName','Smooth path')
hold off
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Input Arguments
refPoses — Reference poses
M-by-3 matrix of [x, y, Θ] vectors

Reference poses of the vehicle along the path, specified as an M-by-3 matrix of [x, y, Θ] vectors,
where M is the number of poses.

x and y specify the location of the vehicle in meters. Θ specifies the orientation angle of the vehicle in
degrees.
Data Types: single | double

refDirections — Reference directions
M-by-1 column vector of 1s (forward motion) and –1s (reverse motion)

Reference directions of the vehicle along the path, specified as an M-by-1 column vector of 1s
(forward motion) and –1s (reverse motion). M is the number of reference directions. Each element of
refDirections corresponds to a pose in the refPoses input argument.
Data Types: single | double

numSmoothPoses — Number of smooth poses to return
positive integer
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Number of smooth poses to return in the poses output argument, specified as a positive integer. To
increase the granularity of the returned poses, increase numSmoothPoses.

minSeparation — Minimum separation between poses
1e-3 (default) | positive real scalar

Minimum separation between poses, in meters, specified as a positive real scalar. If the Euclidean (x,
y) distance between two poses is less than this value, then the function uses only one of these poses
for interpolation.

Output Arguments
poses — Discretized poses of smoothed path
numSmoothPoses-by-3 matrix of [x, y, Θ] vectors

Discretized poses of the smoothed path, returned as a numSmoothPoses-by-3 matrix of [x, y, Θ]
vectors.

x and y specify the location of the vehicle in meters. Θ specifies the orientation angle of the vehicle in
degrees.

The values in poses are of the same data type as the values in the refPoses input argument.

directions — Motion directions at each output pose
numSmoothPoses-by-1 column vector of 1s (forward motion) and –1s (reverse motion)

Motion directions at each output pose in poses, returned as a numSmoothPoses-by-1 column vector
of 1s (forward motion) and –1s (reverse motion).

The values in directions are of the same data type as the values in the refDirections input
argument.

cumLengths — Cumulative path lengths
numSmoothPoses-by-1 real-valued column vector

Cumulative path length at each output pose in poses, returned as a numSmoothPoses-by-1 real-
valued column vector. Units are in meters.

You can use the cumLengths and curvatures outputs to generate a velocity profile of the vehicle
along the smooth path. For more details, see the “Automated Parking Valet” example.

curvatures — Signed path curvatures
numSmoothPoses-by-1 real-valued column vector

Signed path curvatures at each output pose in poses, returned as a numSmoothPoses-by-1 real-
valued column vector. Units are in radians per meter.

You can use the curvatures and cumLengths outputs to generate a velocity profile of the vehicle
along the smooth path. For more details, see the “Automated Parking Valet” example.
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More About
C1-Continuous and C2-Continuous Paths

A path is C1-continuous if its derivative exists and is continuous. Paths that are only C1-continuous
have discontinuities in their curvature. For example, a path composed of Dubins or Reeds-Sheep path
segments has discontinuities in curvature at the points where the segments join. These
discontinuities result in changes in direction that are not smooth enough for driving with passengers.

A path is also C2-continuous if its second derivative exists and is continuous. C2-continuous paths
have continuous curvature and are smooth enough for driving with passengers.

Tips
• To check if a smooth path is collision-free, specify the smooth poses as an input to the

checkPathValidity function.

Algorithms
• The path-smoothing algorithm interpolates a parametric cubic spline that passes through all input

reference pose points. The parameter of the spline is the cumulative chord length at these points.
[1]

• The tangent direction of the smoothed output path approximately matches the orientation angle of
the vehicle at the starting and goal poses.

References
[1] Floater, Michael S. "On the Deviation of a Parametric Cubic Spline Interpolant from Its Data

Polygon." Computer Aided Geometric Design. Vol. 25, Number 3, 2008, pp. 148–156.
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[2] Lepetic, Marko, Gregor Klancar, Igor Skrjanc, Drago Matko, and Bostjan Potocnik. "Time Optimal
Path Planning Considering Acceleration Limits." Robotics and Autonomous Systems. Vol. 45,
Numbers 3–4, 2003, pp. 199–210.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
checkPathValidity | driving.Path | interpolate | lateralControllerStanley |
pathPlannerRRT | spline

Blocks
Path Smoother Spline

Topics
“Automated Parking Valet”

Introduced in R2019a
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vehicleDetectorACF
Load vehicle detector using aggregate channel features

Syntax
detector = vehicleDetectorACF
detector = vehicleDetectorACF(modelName)

Description
detector = vehicleDetectorACF returns a pretrained vehicle detector using aggregate channel
features (ACF). The returned acfObjectDetector object is trained using unoccluded images of the
front, rear, left, and right sides of the vehicles.

detector = vehicleDetectorACF(modelName) returns a pretrained vehicle detector based on
the model specified in modelName. A 'full-view' model uses training images that are unoccluded
views from the front, rear, left, and right sides of vehicles. A 'front-rear-view' model uses
images only from the front and rear sides of the vehicle.

Examples

Detect Vehicles in Image

Load the pre-trained detector for vehicles

detector = vehicleDetectorACF('front-rear-view');

Load an image and run the detector.

I = imread('highway.png');
[bboxes,scores] = detect(detector,I);

Overlay bounding boxes and scores for vehicles detected in the image.

I = insertObjectAnnotation(I,'rectangle',bboxes,scores);
figure
imshow(I)
title('Detected Vehicles and Detection Scores')
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Input Arguments
modelName — Type of vehicle detector model
'full-view' (default) | 'front-rear-view'

Type of vehicle detector model, specified as either 'front-rear-view' or 'full-view'. A
'full-view' model uses training images that are unoccluded views from the front, rear, left, and
right sides of vehicles. A 'front-rear-view' model uses images only from the front and rear sides
of the vehicle.
Data Types: char | string

Output Arguments
detector — Trained ACF-based object detector
acfObjectDetector object

Trained ACF-based object detector, returned as an acfObjectDetector object.

See Also
acfObjectDetector | trainACFObjectDetector

Introduced in R2017a
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vehicleDetectorFasterRCNN
Detect vehicles using Faster R-CNN

Syntax
detector = vehicleDetectorFasterRCNN

Description
detector = vehicleDetectorFasterRCNN returns a trained Faster R-CNN (regions with
convolution neural networks) object detector for detecting vehicles. Faster R-CNN is a deep learning
object detection framework that uses a convolutional neural network (CNN) for detection.

The detector is trained using unoccluded images of the front, rear, left, and right sides of vehicles.
The CNN used with the vehicle detector uses a modified version of the MobileNet-v2 network
architecture.

Use of this function requires Deep Learning Toolbox™.

Note The detector is trained using uint8 images. Before using this detector, rescale the input
images to the range [0, 255] by using im2uint8 or rescale.

Examples

Detect Vehicles on Highway

Detect cars in a single image and annotate the image with the detection scores. To detect cars, use a
Faster R-CNN object detector that was trained using images of vehicles.

Load the pretrained detector.

fasterRCNN = vehicleDetectorFasterRCNN('full-view');

Use the detector on a loaded image. Store the locations of the bounding boxes and their detection
scores.

I = imread('highway.png');
[bboxes,scores] = detect(fasterRCNN,I);

Annotate the image with the detections and their scores.

I = insertObjectAnnotation(I,'rectangle',bboxes,scores);
figure
imshow(I)
title('Detected Vehicles and Detection Scores')
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Output Arguments
detector — Trained Faster R-CNN-based object detector
fasterRCNNObjectDetector object

Trained Faster R-CNN-based object detector, returned as an fasterRCNNObjectDetector object.

Compatibility Considerations
modelName input argument is not recommended
Behavior change in future release

modelName input argument is not recommended. To update your code, remove all instances of
modelName.

Discouraged Usage Recommended Replacement
modelName = 'front-rear-view'
detector = vehicleDetectorFasterRCNN(modelName);

detector = vehicleDetectorFasterRCNN;

See Also
fasterRCNNObjectDetector | trainFasterRCNNObjectDetector | vehicleDetectorACF |
vehicleDetectorYOLOv2

Introduced in R2017a

3 Functions

3-188



vehicleDetectorYOLOv2
Detect vehicles using YOLO v2 Network

Syntax
detector = vehicleDetectorYOLOv2

Description
detector = vehicleDetectorYOLOv2 returns a trained you only look once (YOLO) v2 object
detector for detecting vehicles. YOLO v2 is a deep learning object detection framework that uses a
convolutional neural network (CNN) for detection.

The detector is trained using unoccluded RGB images of the front, rear, left, and right sides of cars on
a highway scene. The CNN used with the vehicle detector uses a modified version of the MobileNet-
v2 network architecture. You can also fine tune the vehicle detector with additional training data by
using the trainYOLOv2ObjectDetector.

For information about creating a YOLO v2 object detector, see “Create YOLO v2 Object Detection
Network” (Computer Vision Toolbox). Use of this function requires Deep Learning Toolbox.

Examples

Detect Vehicles Using YOLO v2 Detector

This example shows how to detect cars in an image and annotate the image with the detection scores.
To detect the cars, use a YOLO v2 detector that is trained to detect vehicles in an image.

Load the pretrained detector.

detector = vehicleDetectorYOLOv2();

Read a test image into the workspace.

I = imread('highway.png');

Detect vehicles in the test image by using the trained YOLO v2 detector. Pass the test image and the
detector as input to the detect (Computer Vision Toolbox) function. The detect function returns the
bounding boxes and the detection scores.

[bboxes,scores] = detect(detector,I);

Annotate the image with the bounding boxes and the detection scores. Display the detection results.
The bounding boxes localize vehicles in the test image.

I = insertObjectAnnotation(I,'rectangle',bboxes,scores);
figure
imshow(I)
title('Detected vehicles and detection scores');
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Output Arguments
detector — Trained YOLO v2 network for vehicle detection
yolov2ObjectDetector

Trained YOLO v2 network for vehicle detection, returned as an yolov2ObjectDetector object. To
detect vehicles in a test image, pass the YOLO v2 vehicle detector as input to the detect function.

See Also
Objects
yolov2ObjectDetector

Functions
configureDetectorMonoCamera | detect | trainYOLOv2ObjectDetector |
vehicleDetectorFasterRCNN

Topics
“Create YOLO v2 Object Detection Network” (Computer Vision Toolbox)
“Train YOLO v2 Network for Vehicle Detection” (Computer Vision Toolbox)
“Object Detection Using YOLO v2 Deep Learning” (Computer Vision Toolbox)

Introduced in R2020a
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latlon2local
Convert geographic coordinates to local Cartesian coordinates

Syntax
[xEast,yNorth,zUp] = latlon2local(lat,lon,alt,origin)

Description
[xEast,yNorth,zUp] = latlon2local(lat,lon,alt,origin) converts point locations given
by lat, lon, and alt from geographic coordinates to local Cartesian coordinates returned as xEast,
yNorth, and zUp. origin specifies the anchor of the local coordinate system as a vector of the form
[latOrigin,lonOrigin,altOrigin]. Local x, y, z coordinates align with east, north and up directions,
respectively. alt and altOrigin are altitudes as returned by a typical GPS sensor.

Examples

Convert Route to Cartesian Coordinates

Load a GPS route.

d = load('geoRoute.mat');

Define the origin in geographic coordinates, latitude and longitude.

alt = 10;  % 10 meters is an approximate altitude in Boston, MA
origin = [d.latitude(1), d.longitude(1), alt];

Convert the route from geographic coordinates to Cartesian coordinates, x and y.

[xEast,yNorth] = latlon2local(d.latitude,d.longitude,alt,origin);

Plot the route in Cartesian coordinates.

figure;
plot(xEast,yNorth)
axis('equal'); % set 1:1 aspect ratio to see real-world shape
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Input Arguments
lat — Latitude coordinates
numeric scalar | numeric vector

Latitude coordinates, in degrees, specified as a numeric scalar or vector. Value must be in the range
[–90, 90]. lat must be the same length as lon.
Example: lat = 42.3648
Data Types: single | double

lon — Longitude coordinates
real scalar or vector in the range [–180, 180]

Longitude coordinates, in degrees, specified as a numeric scalar or vector. Value must be in the range
[–180, 180]. lon must be the same length as lat.
Example: lon = -71.0214
Data Types: single | double

alt — Altitude
numeric scalar | numeric vector

Altitude, in meters, specified as a numeric scalar or vector.
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Example: 10
Data Types: single | double

origin — Anchor of local coordinate system
three-element vector

Anchor of local coordinate system, specified as a three-element vector of the form
[latOrigin,lonOrigin,altOrigin].
Example: [42.3648, -71.0214, 10.0];
Data Types: single | double

Output Arguments
xEast — x-coordinates
numeric scalar | numeric vector

x-coordinates, returned as a numeric scalar or vector, in meters.

xEast is the same class as lat. However, if any of the input arguments is of class single, then
xEast is of class single.

yNorth — y-coordinates
numeric scalar | numeric vector

y-coordinates, returned as a numeric scalar or vector, in meters.

yNorth is the same class as lon. However, if any of the input arguments is of class single, then
yNorth is of class single.

zUp — Altitude
numeric scalar or vector

Altitude, returned as a numeric scalar or vector, in meters.

zUp is the same class as alt. However, if any of the input arguments is of class single, then zUp is
of class single.

Tips
• The latitude and longitude of the geographic coordinate system use the WGS84 standard that is

commonly used by GPS receivers.
• This function defines altitude as the height, in meters, above the WGS84 reference ellipsoid.
• Some GPS receivers use standards other than WGS84. Conversions using other ellipsoids are

available in the Mapping Toolbox. This function addresses the most common conversion between
geographic locations and Cartesian coordinates used by the on-board sensors of a vehicle.

See Also
geoplayer | geoplot | local2latlon
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local2latlon
Convert local Cartesian coordinates to geographic coordinates

Syntax
[lat,lon,alt] = local2latlon(xEast,yNorth,zUp,origin)

Description
[lat,lon,alt] = local2latlon(xEast,yNorth,zUp,origin) converts point locations given
by xEast, yNorth, and zUp from local Cartesian coordinates to geographic coordinates returned as
lat, lon, and alt. origin specifies the anchor of the local coordinate system as a three-element
vector of the form [latOrigin,lonOrigin,altOrigin]. Local coordinates xEast, yNorth, and zUp align
with the east, north, and up directions, respectively. alt and altOrigin are altitudes as typically
returned by GPS sensors.

Examples

Convert Route to Geographic Coordinates

Establish an anchor point in the geographic coordinate system. These latitude and longitude
coordinates specify Boston, MA.

origin = [42.3648, -71.0214, 10.0];

Generate local route in Cartesian coordinates, x, y, and z.

z = zeros(1,101);    % maintain height of 0 m
x = 0:1000:100000;   % 100 km in 1 km increments
y = x;               % move 100 km northeast

Convert the local route coordinates to geographic coordinates, latitude and longitude.

[lat,lon] = local2latlon(x,y,z,origin);

Visualize the route on a map.

zoomLevel = 12;
player = geoplayer(lat(1),lon(1),zoomLevel);
plotRoute(player,lat,lon);
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Input Arguments
xEast — x-coordinates
numeric scalar | numeric vector

x-coordinates in the local Cartesian coordinate system, specified as a numeric scalar or vector, in
meters.
Example: -2.7119
Data Types: single | double

yNorth — y-coordinates
numeric scalar | numeric vector

y-coordinates in the local Cartesian coordinate system, specified as a numeric scalar or vector, in
meters.
Example: -7.0681
Data Types: single | double

zUp — z-coordinate
numeric scalar | numeric vector
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y coordinate in local Cartesian coordinate system, specified as a numeric scalar or vector, in meters.
Example: -0.2569
Data Types: single | double

origin — Anchor of local coordinate system
three-element vector

Anchor of local coordinate system, specified as a three-element vector of the form
[latOrigin,lonOrigin,altOrigin].
Example: [42.3648 -71.0214 10]
Data Types: single | double

Output Arguments
lat — Latitude
numeric scalar or vector

Latitude, in degrees, returned as a numeric scalar or vector.

lat is the same class as xEast. However, if any of the input arguments is of class single, then lat
is of class single.

lon — Longitude
numeric scalar or vector

Longitude, in degrees, returned as a numeric scalar or vector.

lon is the same class as yNorth. However, if any of the input arguments is of class single, then lon
is of class single.

alt — Altitude
numeric scalar or vector

Altitude, in meters, returned as a numeric scalar or vector, the same class as zUp.

alt is the same class as zUp. However, if any of the input arguments is of class single, then alt is
of class single.

Tips
• The latitude and longitude of the geographic coordinate system use the WGS84 standard that is

commonly used by GPS receivers.
• This function defines altitude as the height, in meters, above the WGS84 reference ellipsoid.
• Some GPS receivers use standards other than WGS84. Conversions using other ellipsoids are

available in the Mapping Toolbox. This function addresses the most common conversion between
geographic locations and Cartesian coordinates used by the on-board sensors of a vehicle.

See Also
geoplayer | geoplot | latlon2local
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birdsEyePlot
Plot detections, tracks, and sensor coverages around vehicle

Description
The birdsEyePlot object displays a bird's-eye plot of a 2-D driving scenario in the immediate
vicinity of an ego vehicle. You can use this plot with sensors capable of detecting objects and lanes.

To display aspects of a driving scenario on a bird’s-eye plot:

1 Create a birdsEyePlot object.
2 Create plotters for the aspects of the driving scenario that you want to plot.
3 Use the plotters with their corresponding plot functions to display those aspects on the bird's-eye

plot.

This table shows the plotter functions to use based on the driving scenario aspect that you want to
plot.

Driving Scenario Aspect to
Plot

Plotter Creation Function Plotter Display Function

Sensor coverage areas coverageAreaPlotter plotCoverageArea
Sensor detections detectionPlotter plotDetection
Lane boundaries laneBoundaryPlotter plotLaneBoundary
Lane markings laneMarkingPlotter plotLaneMarking
Object meshes meshPlotter plotMesh
Object outlines outlinePlotter plotOutline
Ego vehicle path pathPlotter plotPath
Point cloud pointCloudPlotter plotPointCloud
Object tracking results trackPlotter plotTrack

For an example of how to configure and use a bird's-eye plot, see “Visualize Sensor Coverage,
Detections, and Tracks”.

Creation

Syntax
bep = birdsEyePlot
bep = birdsEyePlot(Name,Value)

Description

bep = birdsEyePlot creates a bird’s-eye plot in a new figure.
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bep = birdsEyePlot(Name,Value) sets properties on page 4-3 using one or more
Name,Value pair arguments. For example, birdsEyePlot('XLimits',[0 60],'YLimits',[-20
20]) displays the area that is 60 meters in front of the ego vehicle and 20 meters to either side of the
ego vehicle. Enclose each property name in quotes.

Properties
Parent — Axes on which to plot
axes handle

Axes on which to plot, specified as an axes handle. By default, the birdsEyePlot object uses the
current axes handle, which is returned by the gca function.

Plotters — Plotters created for bird's-eye plot
array of plotter objects

Plotters created for the bird's-eye plot, specified as an array of plotter objects.

XLimits — X-axis range
real-valued vector of the form [Xmin Xmax]

X-axis range of the bird's-eye plot, in vehicle coordinates, specified as a real-valued vector of the form
[Xmin Xmax]. Units are in meters. If you do not specify XLimits, then the plot uses the default values
for the parent axes.

The X-axis is vertical and positive in the forward direction of the ego vehicle. The origin is at the
center of the rear axle of the ego vehicle.
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For more details on the coordinate system used in the bird's-eye plot, see “Vehicle Coordinate
System” on page 4-11.

YLimits — Y-axis range
real-valued vector of the form [Ymin Ymax]

Y-axis range of the bird's-eye plot, in vehicle coordinates, specified as a real-valued vector of the form
[Ymin Ymax]. Units are in meters. If you do not specify YLimits, then the plot uses the default values
for the parent axes.

The Y-axis runs horizontally and is positive to the left of the ego vehicle, as viewed when facing
forward. The origin is at the center of the rear axle of the ego vehicle.
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For more details on the coordinate system used in the birdsEyePlot object, see “Vehicle Coordinate
System” on page 4-11.

Object Functions

Plotter Creation
coverageAreaPlotter Coverage area plotter for bird's-eye plot
detectionPlotter Detection plotter for bird's-eye plot
laneBoundaryPlotter Lane boundary plotter for bird's-eye plot
laneMarkingPlotter Lane marking plotter for bird's-eye plot
meshPlotter Mesh plotter for bird's-eye plot
outlinePlotter Outline plotter for bird's-eye plot
pathPlotter Path plotter for bird's-eye plot
pointCloudPlotter Point cloud plotter for bird's-eye plot
trackPlotter Track plotter for bird's-eye plot
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Plotter Display
plotCoverageArea Display sensor coverage area on bird's-eye plot
plotDetection Display object detections on bird's-eye plot
plotLaneBoundary Display lane boundaries on bird’s-eye plot
plotLaneMarking Display lane markings on bird’s-eye plot
plotMesh Display object meshes on bird's-eye plot
plotOutline Display object outlines on bird's-eye plot
plotPath Display actor paths on bird’s-eye plot
plotPointCloud Display generated point cloud on bird's-eye plot
plotTrack Display object tracks on bird's-eye plot

Plotter Utilities
clearData Clear data from specific plotter of bird’s-eye plot
clearPlotterData Clear data from bird’s-eye plot
findPlotter Find plotters associated with bird’s-eye plot

Examples

Create and Display a Bird's-Eye Plot

Create a bird's-eye plot with an x-axis range from 0 to 90 meters and a y-axis range from –35 to 35
meters.

bep = birdsEyePlot('XLim',[0 90],'YLim',[-35 35]);
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Display a coverage area with a 35-degree field of view and a 60-meter range.

caPlotter = coverageAreaPlotter(bep,'DisplayName','Radar coverage area');
mountPosition = [1 0];
range = 60;
orientation = 0;
fieldOfView = 35;
plotCoverageArea(caPlotter,mountPosition,range,orientation,fieldOfView);

Display radar detections with coordinates at (30, –5), (50, –10), and (40, 7).

radarPlotter = detectionPlotter(bep,'DisplayName','Radar detections');
plotDetection(radarPlotter,[30 -5; 50 -10; 40 7]);
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Create Bird's-Eye Plot with Coverage Area and Detection Plotters

Create a bird's-eye plot with an x-axis range of 0 to 90 meters and a y-axis range from –35 to 35
meters. Configure the plot to include a radar coverage area plotter and a detection plotter. Set the
display names of these plotters.

bep = birdsEyePlot('XLim',[0 90],'YLim',[-35 35]);
coverageAreaPlotter(bep,'DisplayName','Radar coverage area');
detectionPlotter(bep,'DisplayName','Radar detections');
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Use findPlotter to locate the plotters by their display names.

caPlotter = findPlotter(bep,'DisplayName','Radar coverage area');
radarPlotter = findPlotter(bep,'DisplayName','Radar detections');

Plot the coverage area and detected objects.

plotCoverageArea(caPlotter,[1 0],30,0,35);
plotDetection(radarPlotter,[30 5; 30 -10; 30 15]);
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Clear data from the plot.

clearPlotterData(bep);
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Limitations
The rectangle-zoom feature, where you draw a rectangle to zoom in on a section of a figure, does not
work in bird's-eye plot figures.

More About
Vehicle Coordinate System

The birdsEyePlot uses the vehicle coordinate system (XV, YV), where:

• The XV-axis points forward from the ego vehicle.
• The YV-axis points to the left, as viewed when facing forward.

The origin is at the center of rotation of the ego vehicle. This point is on the road surface, beneath the
center of the rear axle of the ego vehicle.
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For more details about the vehicle coordinate system, see “Coordinate Systems in Automated Driving
Toolbox”.

See Also
Bird's-Eye Scope | drivingScenario

Topics
“Visualize Sensor Coverage, Detections, and Tracks”
“Coordinate Systems in Automated Driving Toolbox”

Introduced in R2017a
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clearData
Clear data from specific plotter of bird’s-eye plot

Syntax
clearData(pl)

Description
clearData(pl) clears data belonging to the plotter pl associated with a bird’s-eye plot. This
function can clear data from these plotters:

• detectionPlotter
• laneBoundaryPlotter
• laneMarkingPlotter
• outlinePlotter
• meshPlotter
• pathPlotter
• pointCloudPlotter
• trackPlotter

To clear data from all plotters belonging to a bird's-eye plot, use the clearPlotterData function.

Examples

Clear Specific Plotter Data from Bird's-Eye Plot

Create a bird's-eye plot. Add a track plotter and detection plotter to the bird's-eye plot.

bep = birdsEyePlot('XLim',[0,90],'YLim',[-35,35]);
tPlotter = trackPlotter(bep,'DisplayName','Tracks');
detPlotter = detectionPlotter(bep,'DisplayName','Radar detections');
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Create and display a set of tracks on the bird's-eye plot.

trackPos = [30 15 1; 60 -15 1; 20 5 1];
trackLabels = {'T1','T2','T3'};
plotTrack(tPlotter,trackPos,trackLabels)
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Create and display a set of detections on the bird's-eye plot.

detPos = [30 5 4; 30 -10 2; 50 15 1];
detLabels = {'D1','D2','D3'};
plotDetection(detPlotter,detPos,detLabels)
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Clear the track plotter data from the bird's-eye plot.

clearData(tPlotter)
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Input Arguments
pl — Plotter belonging to bird’s-eye plot
plotter object

Plotter belonging to a birdsEyePlot object, specified as a plotter object. You can clear data from
any plotter except coverageAreaPlotter.

See Also
Objects
birdsEyePlot | clearPlotterData | findPlotter

Introduced in R2017a
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clearPlotterData
Clear data from bird’s-eye plot

Syntax
clearPlotterData(bep)

Description
clearPlotterData(bep) clears all plotter data displayed in the specified bird’s-eye plot. Legend
entries and coverage areas are not cleared from the plot.

To clear data from a specific plotter, use the clearData function.

Examples

Create Bird's-Eye Plot with Coverage Area and Detection Plotters

Create a bird's-eye plot with an x-axis range of 0 to 90 meters and a y-axis range from –35 to 35
meters. Configure the plot to include a radar coverage area plotter and a detection plotter. Set the
display names of these plotters.

bep = birdsEyePlot('XLim',[0 90],'YLim',[-35 35]);
coverageAreaPlotter(bep,'DisplayName','Radar coverage area');
detectionPlotter(bep,'DisplayName','Radar detections');
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Use findPlotter to locate the plotters by their display names.

caPlotter = findPlotter(bep,'DisplayName','Radar coverage area');
radarPlotter = findPlotter(bep,'DisplayName','Radar detections');

Plot the coverage area and detected objects.

plotCoverageArea(caPlotter,[1 0],30,0,35);
plotDetection(radarPlotter,[30 5; 30 -10; 30 15]);

 clearPlotterData
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Clear data from the plot.

clearPlotterData(bep);
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Input Arguments
bep — Bird’s-eye plot
birdsEyePlot object

Bird’s-eye plot, specified as a birdsEyePlot object.

See Also
Functions
birdsEyePlot | clearData | findPlotter

Introduced in R2017a
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coverageAreaPlotter
Package: 

Coverage area plotter for bird's-eye plot

Syntax
caPlotter = coverageAreaPlotter(bep)
caPlotter = coverageAreaPlotter(bep,Name,Value)

Description
caPlotter = coverageAreaPlotter(bep) creates a CoverageAreaPlotter object that
configures the display of sensor coverage areas on a bird's-eye plot. The CoverageAreaPlotter
object is stored in the Plotters property of the input birdsEyePlot object, bep. To display the
sensor coverage areas, use the plotCoverageArea function.

caPlotter = coverageAreaPlotter(bep,Name,Value) sets properties using one or more
Name,Value pair arguments. For example,
coverageAreaPlotter(bep,'DisplayName','Coverage area') sets the display name that
appears in the bird's-eye-plot legend.

Examples

Create and Display Coverage Area on Bird's-Eye Plot

Create a bird's-eye plot with an x-axis range from 0 to 90 meters and a y-axis range from –35 to 35
meters. Create a coverage area plotter that displays coverage areas in red.

bep = birdsEyePlot('XLim',[0 90],'YLim',[-35 35]);
caPlotter = coverageAreaPlotter(bep,'DisplayName','Radar coverage area','FaceColor','r');
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Display a coverage area that has a 35-degree field of view and a 60-meter range. Mount the coverage
area sensor 1 meter in front of the origin. Set the orientation angle of the sensor to 0 degrees.

mountPosition = [1 0];
range = 60;
orientation = 0;
fieldOfView = 35;
plotCoverageArea(caPlotter,mountPosition,range,orientation,fieldOfView);

 coverageAreaPlotter

4-23



Input Arguments
bep — Bird’s-eye plot
birdsEyePlot object

Bird’s-eye plot, specified as a birdsEyePlot object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: coverageAreaPlotter('FaceColor','red') sets the fill color of sensor coverage
areas to red.

DisplayName — Plotter name to display in legend
'' (default) | character vector | string scalar

Plotter name to display in legend, specified as the comma-separated pair consisting of
'DisplayName' and character vector or string scalar. If you do not specify a name, the bird's-eye
plot does not display a legend entry for the plotter.

FaceColor — Fill color of coverage areas
[0 0 0] (black) (default) | RGB triplet | hexadecimal color code | color name | short color name
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Fill color of coverage areas, specified as the comma-separated pair consisting of 'FaceColor' and
an RGB triplet, a hexadecimal color code, a color name, or a short color name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

EdgeColor — Border color of coverage areas
[0 0 0] (black) (default) | RGB triplet | hexadecimal color code | color name | short color name

Border color of coverage areas, specified as the comma-separated pair consisting of 'EdgeColor'
and an RGB triplet, a hexadecimal color code, a color name, or a short color name.

For a custom color, specify an RGB triplet or a hexadecimal color code.
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• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

FaceAlpha — Transparency of coverage areas
0.1 (default) | scalar in the range [0, 1]

Transparency of coverage areas, specified as the comma-separated pair consisting of 'FaceAlpha'
and a scalar in the range [0, 1]. A value of 0 makes the coverage area fully transparent. A value of 1
makes the coverage area fully opaque.

Tag — Tag associated with plotter object
'PlotterN' (default) | character vector | string scalar
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Tag associated with the plotter object, specified as the comma-separated pair consisting of 'Tag' and
a character vector or string scalar. The default value is 'PlotterN', where N is an integer that
corresponds to the Nth plotter associated with the input birdsEyePlot object.

Output Arguments
caPlotter — Coverage area plotter
CoverageAreaPlotter object

Coverage area plotter, returned as a CoverageAreaPlotter object. You can modify this object by
changing its property values. The property names correspond to the name-value pair arguments of
the coverageAreaPlotter function.

caPlotter is stored in the Plotters property of the input birdsEyePlot object, bep. To plot the
coverage areas, use the plotCoverageArea function.

See Also
birdsEyePlot | findPlotter | plotCoverageArea

Introduced in R2017a
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detectionPlotter
Package: 

Detection plotter for bird's-eye plot

Syntax
detPlotter = detectionPlotter(bep)
detPlotter = detectionPlotter(bep,Name,Value)

Description
detPlotter = detectionPlotter(bep) creates a DetectionPlotter object that configures
the display of object detections on a bird's-eye plot. The DetectionPlotter object is stored in the
Plotters property of the input birdsEyePlot object, bep. To plot the object detections, use the
plotDetection function.

detPlotter = detectionPlotter(bep,Name,Value) sets properties using one or more
Name,Value pair arguments. For example,
detectionPlotter(bep,'DisplayName','Detections') sets the display name that appears in
the bird's-eye-plot legend.

Examples

Create and Display Labeled Detections on Bird's-Eye Plot

Create a bird's-eye plot with an x-axis range from 0 to 90 meters and a y-axis range from –35 to 35
meters. Create a radar detection plotter that displays detections in blue.

bep = birdsEyePlot('XLim',[0 90],'YLim',[-35 35]);
detPlotter = detectionPlotter(bep,'DisplayName','Radar detections', ...
    'MarkerFaceColor','b');
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Display the positions and velocities of three labeled detections.

positions = [30 5; 30 -10; 30 15];
velocities = [-10 0; -10 3; -10 -4];
labels = {'D1','D2','D3'};
plotDetection(detPlotter,positions,velocities,labels);
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Input Arguments
bep — Bird’s-eye plot
birdsEyePlot object

Bird’s-eye plot, specified as a birdsEyePlot object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: detectionPlotter('Marker','+') sets the marker symbol for detections to a plus
sign.

DisplayName — Plotter name to display in legend
'' (default) | character vector | string scalar

Plotter name to display in legend, specified as the comma-separated pair consisting of
'DisplayName' and character vector or string scalar. If you do not specify a name, the bird's-eye
plot does not display a legend entry for the plotter.

Marker — Marker symbol for detections
'o' (default) | '+' | '*' | '.' | 'x' | ...
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Marker symbol for detections, specified as the comma-separated pair consisting of 'Marker' and
one of the markers in this table.

Value Description
'o' Circle
'+' Plus sign
'*' Asterisk
'.' Point
'x' Cross
'_' Horizontal line
'|' Vertical line
'square' or 's' Square
'diamond' or 'd' Diamond
'^' Upward-pointing triangle
'v' Downward-pointing triangle
'>' Right-pointing triangle
'<' Left-pointing triangle
'pentagram' or 'p' Five-pointed star (pentagram)
'hexagram' or 'h' Six-pointed star (hexagram)
'none' No markers

MarkerSize — Size of marker for detections
6 (default) | positive integer

Size of marker, specified as the comma-separated pair consisting of 'MarkerSize' and a positive
integer in points.

MarkerEdgeColor — Marker outline color for detections
[0 0 0] (black) (default) | RGB triplet | hexadecimal color code | color name | short color name

Marker outline color for detections, specified as the comma-separated pair consisting of
'MarkerEdgeColor' and an RGB triplet, a hexadecimal color code, a color name, or a short color
name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.
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Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

MarkerFaceColor — Marker fill color
'none' (default) | RGB triplet | hexadecimal color code | color name | short color name

Marker fill color, specified as the comma-separated pair consisting of 'MarkerFaceColor' and an
RGB triplet, a hexadecimal color code, a color name, or a short color name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.
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Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

FontSize — Font size for labeling detections
10 points (default) | positive integer

Font size for labeling detections, specified as the comma-separated pair consisting of 'FontSize'
and a positive integer in font points.

LabelOffset — Gap between label and positional point
[0 0] (default) | real-valued vector of the form [x y]

Gap between label and positional point, specified as the comma-separated pair consisting of
'LabelOffset' and a real-valued vector of the form [x y]. Units are in meters.

VelocityScaling — Scale factor for magnitude length of velocity vectors
1 (default) | positive real scalar

Scale factor for magnitude length of velocity vectors, specified as the comma-separated pair
consisting of 'VelocityScaling' and a positive real scalar. The bird's-eye plot renders the
magnitude vector value as M × VelocityScaling, where M is the magnitude of velocity.

Tag — Tag associated with plotter object
'PlotterN' (default) | character vector | string scalar
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Tag associated with the plotter object, specified as the comma-separated pair consisting of 'Tag' and
a character vector or string scalar. The default value is 'PlotterN', where N is an integer that
corresponds to the Nth plotter associated with the input birdsEyePlot object.

Output Arguments
detPlotter — Detection plotter
DetectionPlotter object

Detection plotter, returned as a DetectionPlotter object. You can modify this object by changing
its property values. The property names correspond to the name-value pair arguments of the
detectionPlotter function.

detPlotter is stored in the Plotters property of the input birdsEyePlot object, bep. To plot the
detections, use the plotDetection function.

See Also
birdsEyePlot | clearData | clearPlotterData | findPlotter | plotDetection

Introduced in R2017a
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findPlotter
Find plotters associated with bird’s-eye plot

Syntax
p = findPlotter(bep)
p = findPlotter(bep,Name,Value)

Description
p = findPlotter(bep) returns an array of plotters associated with a bird’s-eye plot.

p = findPlotter(bep,Name,Value) specifies options using one or more Name,Value pair
arguments. For example, findPlotter(bep,'Tag','Plotter1') returns the plotter object whose
Tag property value is 'Plotter1'.

Examples

Create Bird's-Eye Plot with Coverage Area and Detection Plotters

Create a bird's-eye plot with an x-axis range of 0 to 90 meters and a y-axis range from –35 to 35
meters. Configure the plot to include a radar coverage area plotter and a detection plotter. Set the
display names of these plotters.

bep = birdsEyePlot('XLim',[0 90],'YLim',[-35 35]);
coverageAreaPlotter(bep,'DisplayName','Radar coverage area');
detectionPlotter(bep,'DisplayName','Radar detections');
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Use findPlotter to locate the plotters by their display names.

caPlotter = findPlotter(bep,'DisplayName','Radar coverage area');
radarPlotter = findPlotter(bep,'DisplayName','Radar detections');

Plot the coverage area and detected objects.

plotCoverageArea(caPlotter,[1 0],30,0,35);
plotDetection(radarPlotter,[30 5; 30 -10; 30 15]);
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Clear data from the plot.

clearPlotterData(bep);
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Input Arguments
bep — Bird’s-eye plot
birdsEyePlot object

Bird’s-eye plot, specified as a birdsEyePlot object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'DisplayName','MyBirdsEyePlots'

DisplayName — Display name of plotter to find
character vector | string scalar

Display name of the plotter to find, specified as the comma-separated pair consisting of
'DisplayName' and a character vector or string scalar. DisplayName is the plotter name that
appears in the legend of the bird's-eye plot. To match missing legend entries, specify DisplayName
as ''.

Tag — Tag of plotter to find
'PlotterN' (default) | character vector | string scalar
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Tag of plotter to find, specified as the comma-separated pair consisting of 'Tag' and a character
vector or string scalar. By default, plotter objects have a Tag property with a default value of
'PlotterN'. N is an integer that corresponds to the Nth plotter associated with the specified
birdsEyePlot object, bep.

Output Arguments
p — Plotters associated with input bird’s-eye plot
array of plotter objects

Plotters associated with the input bird’s-eye plot, returned as an array of plotter objects.

See Also
Functions
birdsEyePlot | clearData | clearPlotterData

Introduced in R2017a
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laneBoundaryPlotter
Package: 

Lane boundary plotter for bird's-eye plot

Syntax
lbPlotter = laneBoundaryPlotter(bep)
lbPlotter = laneBoundaryPlotter(bep,Name,Value)

Description
lbPlotter = laneBoundaryPlotter(bep) creates a LaneBoundaryPlotter object that
configures the display of lane boundaries on a bird's-eye plot. The LaneBoundaryPlotter object is
stored in the Plotters property of the input birdsEyePlot object, bep. To display the lane
boundaries, use the plotLaneBoundary function.

lbPlotter = laneBoundaryPlotter(bep,Name,Value) sets properties using one or more
Name,Value pair arguments. For example, laneBoundaryPlotter(bep,'DisplayName','Lane
boundaries') sets the display name that appears in the bird's-eye-plot legend.

Examples

Create and Display Lane Boundaries on Bird's-Eye Plot

Create left-lane and right-lane boundaries.

leftlb = parabolicLaneBoundary([-0.001,0.01,-1.8]);
rightlb = parabolicLaneBoundary([-0.001,0.01,1.8]);

Create a bird's-eye plot with an x-axis range from 0 to 30 meters and a y-axis range from –5 to 5
meters.

bep = birdsEyePlot('XLimits',[0 30],'YLimits',[-5 5]);
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Create a lane boundary plotter.

lbPlotter = laneBoundaryPlotter(bep,'DisplayName','Lane boundaries');
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Display the lane boundaries on the bird's-eye plot.

plotLaneBoundary(lbPlotter,[leftlb rightlb]);

4 Objects

4-42



Input Arguments
bep — Bird’s-eye plot
birdsEyePlot object

Bird’s-eye plot, specified as a birdsEyePlot object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: laneBoundaryPlotter('Color','red') sets the color of lane boundaries to red.

DisplayName — Plotter name to display in legend
'' (default) | character vector | string scalar

Plotter name to display in legend, specified as the comma-separated pair consisting of
'DisplayName' and character vector or string scalar. If you do not specify a name, the bird's-eye
plot does not display a legend entry for the plotter.

Color — Lane boundary color
[0 0 0] (black) (default) | RGB triplet | hexadecimal color code | color name | short color name
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Lane boundary color, specified as the comma-separated pair consisting of 'Color' and an RGB
triplet, a hexadecimal color code, a color name, or a short color name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

LineStyle — Lane boundary line style
'-' (default) | '--' | ':' | '-.' | 'none'

Lane boundary line style, specified as the comma-separated pair consisting of 'LineStyle' and one
of the options listed in this table.
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Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' No line No line

Tag — Tag associated with plotter object
'PlotterN' (default) | character vector | string scalar

Tag associated with the plotter object, specified as the comma-separated pair consisting of 'Tag' and
a character vector or string scalar. The default value is 'PlotterN', where N is an integer that
corresponds to the Nth plotter associated with the input birdsEyePlot object.

Output Arguments
lbPlotter — Lane boundary plotter
LaneBoundaryPlotter object

Lane boundary plotter, returned as a LaneBoundaryPlotter object. You can modify this object by
changing its property values. The property names correspond to the name-value pair arguments of
the laneBoundaryPlotter function.

lbPlotter is stored in the Plotters property of the input birdsEyePlot object, bep. To plot the
lane boundaries, use the plotLaneBoundary function.

See Also
birdsEyePlot | clearData | clearPlotterData | findPlotter | plotLaneBoundary

Introduced in R2017a
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laneMarkingPlotter
Package: 

Lane marking plotter for bird's-eye plot

Syntax
lmPlotter = laneMarkingPlotter(bep)
lmPlotter = laneMarkingPlotter(bep,Name,Value)

Description
lmPlotter = laneMarkingPlotter(bep) creates a LaneMarkingPlotter object that
configures the display of lane markings on a bird's-eye plot. The LaneMarkingPlotter object is
stored in the Plotters property of the input birdsEyePlot object, bep. To display the lane
markings, use the plotLaneMarking function.

lmPlotter = laneMarkingPlotter(bep,Name,Value) sets properties using one or more
Name,Value pair arguments. For example, laneMarkingPlotter(bep,'DisplayName','Lane
markings') sets the display name that appears in the bird's-eye-plot legend.

Examples

Generate Object and Lane Boundary Detections

Create a driving scenario containing an ego vehicle and a target vehicle traveling along a three-lane
road. Detect the lane boundaries by using a vision detection generator.

scenario = drivingScenario;

Create a three-lane road by using lane specifications.

roadCenters = [0 0 0; 60 0 0; 120 30 0];
lspc = lanespec(3);
road(scenario,roadCenters,'Lanes',lspc);

Specify that the ego vehicle follows the center lane at 30 m/s.

egovehicle = vehicle(scenario,'ClassID',1);
egopath = [1.5 0 0; 60 0 0; 111 25 0];
egospeed = 30;
trajectory(egovehicle,egopath,egospeed);

Specify that the target vehicle travels ahead of the ego vehicle at 40 m/s and changes lanes close to
the ego vehicle.

targetcar = vehicle(scenario,'ClassID',1);
targetpath = [8 2; 60 -3.2; 120 33];
targetspeed = 40;
trajectory(targetcar,targetpath,targetspeed);
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Display a chase plot for a 3-D view of the scenario from behind the ego vehicle.

chasePlot(egovehicle)

Create a vision detection generator that detects lanes and objects. The pitch of the sensor points one
degree downward.

visionSensor = visionDetectionGenerator('Pitch',1.0);
visionSensor.DetectorOutput = 'Lanes and objects';
visionSensor.ActorProfiles = actorProfiles(scenario);

Run the simulation.

1 Create a bird's-eye plot and the associated plotters.
2 Display the sensor coverage area.
3 Display the lane markings.
4 Obtain ground truth poses of targets on the road.
5 Obtain ideal lane boundary points up to 60 m ahead.
6 Generate detections from the ideal target poses and lane boundaries.
7 Display the outline of the target.
8 Display object detections when the object detection is valid.
9 Display the lane boundary when the lane detection is valid.

bep = birdsEyePlot('XLim',[0 60],'YLim',[-35 35]);
caPlotter = coverageAreaPlotter(bep,'DisplayName','Coverage area', ...
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    'FaceColor','blue');
detPlotter = detectionPlotter(bep,'DisplayName','Object detections');
lmPlotter = laneMarkingPlotter(bep,'DisplayName','Lane markings');
lbPlotter = laneBoundaryPlotter(bep,'DisplayName', ...
    'Lane boundary detections','Color','red');
olPlotter = outlinePlotter(bep);
plotCoverageArea(caPlotter,visionSensor.SensorLocation,...
    visionSensor.MaxRange,visionSensor.Yaw, ...
    visionSensor.FieldOfView(1));
while advance(scenario)
    [lmv,lmf] = laneMarkingVertices(egovehicle);
    plotLaneMarking(lmPlotter,lmv,lmf)
    tgtpose = targetPoses(egovehicle);
    lookaheadDistance = 0:0.5:60;
    lb = laneBoundaries(egovehicle,'XDistance',lookaheadDistance,'LocationType','inner');
    [obdets,nobdets,obValid,lb_dets,nlb_dets,lbValid] = ...
        visionSensor(tgtpose,lb,scenario.SimulationTime);
    [objposition,objyaw,objlength,objwidth,objoriginOffset,color] = targetOutlines(egovehicle);
    plotOutline(olPlotter,objposition,objyaw,objlength,objwidth, ...
        'OriginOffset',objoriginOffset,'Color',color)
    if obValid
        detPos = cellfun(@(d)d.Measurement(1:2),obdets,'UniformOutput',false);
        detPos = vertcat(zeros(0,2),cell2mat(detPos')');
        plotDetection(detPlotter,detPos)
    end
    if lbValid
        plotLaneBoundary(lbPlotter,vertcat(lb_dets.LaneBoundaries))
    end
end
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Input Arguments
bep — Bird’s-eye plot
birdsEyePlot object

Bird’s-eye plot, specified as a birdsEyePlot object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: laneBoundaryPlotter('Color','red') sets the color of lane markings to red.

DisplayName — Plotter name to display in legend
'' (default) | character vector | string scalar

Plotter name to display in legend, specified as the comma-separated pair consisting of
'DisplayName' and character vector or string scalar. If you do not specify a name, the bird's-eye
plot does not display a legend entry for the plotter.

FaceColor — Face color of lane marking patches
[0.6 0.6 0.6] (gray) (default) | RGB triplet | color name
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Face color of lane marking patches, specified as the comma-separated pair consisting of
'FaceColor' and an RGB triplet or one of the color names listed in the table.

For a custom color, specify an RGB triplet. An RGB triplet is a three-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0, 1]; for example, [0.4 0.6 0.7]. Alternatively, you can specify some common
colors by name. This table lists the named color options and the equivalent RGB triplet values.

Color Name RGB Triplet Appearance
'red' [1 0 0]
'green' [0 1 0]
'blue' [0 0 1]
'cyan' [0 1 1]
'magenta' [1 0 1]
'yellow' [1 1 0]
'black' [0 0 0]
'white' [1 1 1]

Tag — Tag associated with plotter object
'PlotterN' (default) | character vector | string scalar

Tag associated with the plotter object, specified as the comma-separated pair consisting of 'Tag' and
a character vector or string scalar. The default value is 'PlotterN', where N is an integer that
corresponds to the Nth plotter associated with the input birdsEyePlot object.

Output Arguments
lmPlotter — Lane marking plotter
LaneMarkingPlotter object

Lane marking plotter, returned as a LaneMarkingPlotter object. You can modify this object by
changing its property values. The property names correspond to the name-value pair arguments of
the laneMarkingPlotter function.

lmPlotter is stored in the Plotters property of the input birdsEyePlot object, bep. To plot the
lane markings, use the plotLaneMarking function.

See Also
birdsEyePlot | clearData | clearPlotterData | findPlotter | plotLaneMarking

Introduced in R2018a
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meshPlotter
Package: 

Mesh plotter for bird's-eye plot

Syntax
mPlotter = meshPlotter(bep)
mPlotter = meshPlotter(bep,Name,Value)

Description
mPlotter = meshPlotter(bep) creates a MeshPlotter object that configures the display of
meshes on page 4-56 on a bird's-eye plot. The MeshPlotter object is stored in the Plotters
property of the input birdsEyePlot object, bep. To display the mesh representations of objects, use
the plotMesh function.

mPlotter = meshPlotter(bep,Name,Value) sets properties using one or more Name,Value
pair arguments. For example, meshPlotter(bep,'FaceAlpha',1) sets the mesh faces to be fully
opaque.

Examples

Display Actor Meshes in Driving Scenario

Display actors in a driving scenario by using their mesh representations instead of their cuboid
representations.

Create a driving scenario, and add a 25-meter straight road to the scenario.

scenario = drivingScenario;
roadcenters = [0 0 0; 25 0 0];
road(scenario,roadcenters);

Add a pedestrian and a vehicle to the scenario. Specify the mesh dimensions of the actors using
prebuilt meshes.

• Specify the pedestrian mesh as a driving.scenario.pedestrianMesh object.
• Specify the vehicle mesh as a driving.scenario.carMesh object.

p = actor(scenario,'ClassID',4, ...
            'Length',0.2,'Width',0.4, ...
            'Height',1.7,'Mesh',driving.scenario.pedestrianMesh);

v = vehicle(scenario,'ClassID',1, ...
            'Mesh',driving.scenario.carMesh);

Add trajectories for the pedestrian and vehicle.
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• Specify for the pedestrian to cross the road at 1 meter per second.
• Specify for the vehicle to follow the road at 10 meters per second.

waypointsP = [15 -3 0; 15 3 0];
speedP = 1;
trajectory(p,waypointsP,speedP);

wayPointsV = [v.RearOverhang 0 0; (25 - v.Length + v.RearOverhang) 0 0];
speedV = 10;
trajectory(v,wayPointsV,speedV)

Add an egocentric plot for the vehicle. Turn the display of meshes on.

chasePlot(v,'Meshes','on')

Create a bird's-eye plot in which to display the meshes. Also create a mesh plotter and lane boundary
plotter. Then run the simulation loop.

1 Obtain the road boundaries of the road the vehicle is on.
2 Obtain the mesh vertices, faces, and colors of the actor meshes, with positions relative to the

vehicle.
3 Plot the road boundaries and actor meshes on the bird's-eye plot.
4 Pause the scenario to allow time for the plots to update. The chase plot updates every time you

advance the scenario.
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bep = birdsEyePlot('XLim',[-25 25],'YLim',[-10 10]);
mPlotter = meshPlotter(bep);
lbPlotter = laneBoundaryPlotter(bep);
legend('off')

while advance(scenario)

   rb = roadBoundaries(v);

   [vertices,faces,colors] = targetMeshes(v);

   plotLaneBoundary(lbPlotter,rb)
   plotMesh(mPlotter,vertices,faces,'Color',colors)

   pause(0.01)
end
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Input Arguments
bep — Bird’s-eye plot
birdsEyePlot object

Bird’s-eye plot, specified as a birdsEyePlot object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: meshPlotter('FaceAlpha',0.5) sets the mesh faces to be 50% transparent.

FaceAlpha — Transparency of mesh faces
0.75 (default) | scalar in the range [0, 1]

Transparency of mesh faces, specified as the comma-separated pair consisting of 'FaceAlpha' and
a scalar in the range [0, 1]. A value of 0 makes the mesh faces fully transparent. A value of 1 makes
the mesh faces fully opaque.

Tag — Tag associated with plotter object
'PlotterN' (default) | character vector | string scalar
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Tag associated with the plotter object, specified as the comma-separated pair consisting of 'Tag' and
a character vector or string scalar. The default value is 'PlotterN', where N is an integer that
corresponds to the Nth plotter associated with the input birdsEyePlot object.

Output Arguments
mPlotter — Mesh plotter
MeshPlotter object

Mesh plotter, returned as a MeshPlotter object. You can modify this object by changing its property
values. The property names correspond to the name-value pair arguments of the meshPlotter
function.

mPlotter is stored in the Plotters property of the input birdsEyePlot object, bep. To plot the
meshes, use the plotMesh function.

More About
Meshes

In driving scenarios, a mesh is a triangle-based 3-D representation of an object. Mesh representations
of objects are more detailed than the default cuboid (box-shaped) representations of objects. Meshes
are useful for generating synthetic point cloud data from a driving scenario.

This table shows the difference between a cuboid representation and a mesh representation of a
vehicle in a driving scenario.

Cuboid Mesh

See Also
birdsEyePlot | clearData | clearPlotterData | plotMesh | targetMeshes

Introduced in R2020b
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outlinePlotter
Package: 

Outline plotter for bird's-eye plot

Syntax
olPlotter = outlinePlotter(bep)
olPlotter = outlinePlotter(bep,Name,Value)

Description
olPlotter = outlinePlotter(bep) creates an OutlinePlotter object that configures the
display of object outlines on a bird's-eye plot. The OutlinePlotter object is stored in the Plotters
property of the birdsEyePlot object, bep. To display the outlines of actors that are in a driving
scenario, first use targetOutlines to get the dimensions of the actors. Then, after creating an
outline plotter object, use the plotOutline function to display the outlines of all the actors in the
bird's-eye plot.

olPlotter = outlinePlotter(bep,Name,Value) sets properties using one or more
Name,Value pair arguments. For example, outlinePlotter(bep,'FaceAlpha',0) sets the areas
within each outline to be fully transparent.

Examples

Plot Outlines of Targets on Bird's-Eye Plot

Create a driving scenario. Create a 25 m road segment, add a pedestrian and a vehicle, and specify
their trajectories to follow. The pedestrian crosses the road at 1 m/s. The vehicle drives along the
road at 10 m/s.

scenario = drivingScenario;

road(scenario,[0 0 0; 25 0 0]);

p = actor(scenario,'ClassID',4,'Length',0.2,'Width',0.4,'Height',1.7);
v = vehicle(scenario,'ClassID',1);

trajectory(p,[15 -3 0; 15 3 0],1);
trajectory(v,[v.RearOverhang 0 0; 25-v.Length+v.RearOverhang 0 0], 10);

Use a chase plot to display the scenario from the perspective of the vehicle.

chasePlot(v,'Centerline','on')
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Create a bird's-eye plot, outline plotter, and lane boundary plotter.

bep = birdsEyePlot('XLim',[-25 25],'YLim',[-10 10]);
olPlotter = outlinePlotter(bep);
lbPlotter = laneBoundaryPlotter(bep);
legend('off')
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Run the simulation loop. Update the plotter with outlines for the targets.

while advance(scenario)
   % Obtain the road boundaries and rectangular outlines.
   rb = roadBoundaries(v);
   [position,yaw,length,width,originOffset,color] = targetOutlines(v);

   % Update the bird's-eye plotters with the road and actors.
   plotLaneBoundary(lbPlotter,rb);
   plotOutline(olPlotter,position,yaw,length,width, ...
               'OriginOffset',originOffset,'Color',color);

   % Allow time for plot to update.
   pause(0.01)
end
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Input Arguments
bep — Bird’s-eye plot
birdsEyePlot object

Bird’s-eye plot, specified as a birdsEyePlot object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: outlinePlotter('FaceAlpha',1) sets the areas within each outline to be fully opaque.

FaceAlpha — Transparency of area within each outline
0.75 (default) | real scalar

Transparency of the area within each outline, specified as the comma-separated pair consisting of
'FaceAlpha' and a real scalar in the range [0, 1]. A value of 0 makes the areas fully transparent. A
value of 1 makes the areas fully opaque.

Tag — Tag associated with plotter object
'PlotterN' (default) | character vector | string scalar
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Tag associated with the plotter object, specified as the comma-separated pair consisting of 'Tag' and
a character vector or string scalar. The default value is 'PlotterN', where N is an integer that
corresponds to the Nth plotter associated with the input birdsEyePlot object.

Output Arguments
olPlotter — Outline plotter
OutlinePlotter object

Outline plotter, returned as an OutlinePlotter object. You can modify this object by changing its
property values. The property names correspond to the name-value pair arguments of the
outlinePlotter function.

olPlotter is stored in the Plotters property of a birdsEyePlot object. To plot the outlines of
actors that are in a driving scenario, first use targetOutlines to get the dimensions of the actors.
Then, after calling outlinePlotter to create a plotter object, use plotOutline to plot the outlines
of all the actors in a bird's-eye plot.

See Also
birdsEyePlot | clearData | clearPlotterData | findPlotter | plotOutline

Introduced in R2017b
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pathPlotter
Package: 

Path plotter for bird's-eye plot

Syntax
pPlotter = pathPlotter(bep)
pPlotter = pathPlotter(bep,Name,Value)

Description
pPlotter = pathPlotter(bep) creates a PathPlotter object that configures the display of
actor paths on a bird's-eye plot. The PathPlotter object is stored in the Plotters property of the
input birdsEyePlot object, bep. To display the paths, use the plotPath function.

pPlotter = pathPlotter(bep,Name,Value) sets properties using one or more Name,Value
pair arguments. For example, pathPlotter(bep,'DisplayName','Actor paths') sets the
display name that appears in the bird's-eye-plot legend.

Examples

Plot Path of Ego Vehicle

Create a 3-meter-wide lane.

lb = parabolicLaneBoundary([-0.001,0.01,1.5]);
rb = parabolicLaneBoundary([-0.001,0.01,-1.5]);

Compute the lane boundary model manually from 0 to 30 meters along the x-axis.

xWorld = (0:30)';
yLeft = computeBoundaryModel(lb,xWorld);
yRight = computeBoundaryModel(rb,xWorld);

Create a bird's-eye plot and lane boundary plotter. Display the lane information on the bird's-eye plot.

bep = birdsEyePlot('XLimits',[0 30],'YLimits',[-5 5]);
lanePlotter = laneBoundaryPlotter(bep,'DisplayName','Lane boundaries');
plotLaneBoundary(lanePlotter,{[xWorld,yLeft],[xWorld,yRight]});
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Create a path plotter. Create and display the path of an ego vehicle that travels through the center of
the lane.

yCenter = (yLeft + yRight)/2;
egoPathPlotter = pathPlotter(bep,'DisplayName','Ego vehicle path');
plotPath(egoPathPlotter,{[xWorld,yCenter]});
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Input Arguments
bep — Bird’s-eye plot
birdsEyePlot object

Bird’s-eye plot, specified as a birdsEyePlot object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: pathPlotter('Color','red') sets the color of the path to red.

DisplayName — Plotter name to display in legend
'' (default) | character vector | string scalar

Plotter name to display in legend, specified as the comma-separated pair consisting of
'DisplayName' and character vector or string scalar. If you do not specify a name, the bird's-eye
plot does not display a legend entry for the plotter.

Color — Path color
[0 0 0] (black) (default) | RGB triplet | hexadecimal color code | color name | short color name
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Path color, specified as the comma-separated pair consisting of 'Color' and an RGB triplet, a
hexadecimal color code, a color name, or a short color name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

LineStyle — Path line style
':' (default) | '-' | '--' | '-.' | 'none'

Path line style, specified as the comma-separated pair consisting of 'LineStyle' and one of the
options listed in this table.

4 Objects

4-66



Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' No line No line

Tag — Tag associated with plotter object
'PlotterN' (default) | character vector | string scalar

Tag associated with the plotter object, specified as the comma-separated pair consisting of 'Tag' and
a character vector or string scalar. The default value is 'PlotterN', where N is an integer that
corresponds to the Nth plotter associated with the input birdsEyePlot object.

Output Arguments
pPlotter — Path plotter
PathPlotter object

Path plotter, returned as a PathPlotter object. You can modify this object by changing its property
values. The property names correspond to the name-value pair arguments of the pathPlotter
function.

pPlotter is stored in the Plotters property of the input birdsEyePlot object, bep. To plot the
paths, use the plotPath function.

See Also
birdsEyePlot | clearData | clearPlotterData | findPlotter | plotPath

Introduced in R2017a
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pointCloudPlotter
Package: 

Point cloud plotter for bird's-eye plot

Syntax
pcPlotter = pointCloudPlotter(bep)
pcPlotter = pointCloudPlotter(bep,Name,Value)

Description
pcPlotter = pointCloudPlotter(bep) creates a point cloud plotter object that configures the
display of lidar point cloud data on a bird's-eye plot. The point cloud plotter object is stored in the
Plotters property of the input bird's-eye plot object, bep. To plot the lidar point cloud data, use the
plotPointCloud function.

pcPlotter = pointCloudPlotter(bep,Name,Value) specifies options using one or more name-
value pair arguments. For example, 'DisplayName','Point Cloud' sets the display name that
appears in the bird's-eye-plot legend to "Point Cloud".

Examples

Generate Lidar Point Cloud Data of Multiple Actors

Generate lidar point cloud data for a driving scenario with multiple actors by using the
lidarPointCloudGenerator System object. Create the driving scenario by using
drivingScenario object. It contains an ego-vehicle, pedestrian and two other vehicles.

Create and plot a driving scenario with multiple vehicles

Create a driving scenario.

scenario = drivingScenario;

Add a straight road to the driving scenario. The road has one lane in each direction.

roadCenters = [0 0 0; 70 0 0];
laneSpecification = lanespec([1 1]);
road(scenario,roadCenters,'Lanes',laneSpecification);

Add an ego vehicle to the driving scenario.

egoVehicle = vehicle(scenario,'ClassID',1,'Mesh',driving.scenario.carMesh);
waypoints = [1 -2 0; 35 -2 0];
trajectory(egoVehicle,waypoints,10);

Add a truck, pedestrian, and bicycle to the driving scenario and plot the scenario.

truck = vehicle(scenario,'ClassID',2,'Length', 8.2,'Width',2.5,'Height',3.5, ...
  'Mesh',driving.scenario.truckMesh);
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waypoints = [70 1.7 0; 20 1.9 0];
trajectory(truck,waypoints,15);
pedestrian = actor(scenario,'ClassID',4,'Length',0.24,'Width',0.45,'Height',1.7, ...
  'Mesh',driving.scenario.pedestrianMesh);
waypoints = [23 -4 0; 10.4 -4 0];
trajectory(pedestrian,waypoints,1.5);
bicycle = actor(scenario,'ClassID',3,'Length',1.7,'Width',0.45,'Height',1.7, ...
  'Mesh',driving.scenario.bicycleMesh);
waypoints = [12.7 -3.3 0; 49.3 -3.3 0];
trajectory(bicycle,waypoints,5);
plot(scenario,'Meshes','on')

Generate and plot lidar point cloud data

Create a lidarPointCloudGenerator System object.

lidar = lidarPointCloudGenerator;

Add actor profiles and the ego vehicle actor ID from the driving scenario to the System object.

lidar.ActorProfiles = actorProfiles(scenario);
lidar.EgoVehicleActorID = egoVehicle.ActorID;

Plot the point cloud data.

bep = birdsEyePlot('Xlimits',[0 70],'YLimits',[-30 30]);
plotter = pointCloudPlotter(bep);
legend('off');
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while advance(scenario)
    tgts = targetPoses(egoVehicle);
    rdmesh = roadMesh(egoVehicle);
    [ptCloud,isValidTime] = lidar(tgts,rdmesh,scenario.SimulationTime);
    if isValidTime
        plotPointCloud(plotter,ptCloud);
    end
end
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Input Arguments
bep — Bird’s-eye plot
birdsEyePlot object

Bird’s-eye plot, specified as a birdsEyePlot object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'DisplayName','Point Cloud' sets the display name that appears in the bird's-eye-plot
legend to "Point Cloud".

DisplayName — Plotter name to display in legend
'' (default) | character vector | string scalar

Plotter name to display in legend, specified as the comma-separated pair consisting of
'DisplayName' and character vector or string scalar. If you do not specify a name, the bird's-eye
plot does not display a legend entry for the plotter.
Data Types: char | string

PointSize — Size of marker for points in point cloud
6 (default) | positive integer
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Size of marker for points in a point cloud, specified as the comma-separated pair consisting of
'PointSize' and a positive integer in points.

Color — Point fill color
'none' (default) | RGB triplet | hexadecimal color code | color name | short color name

Point fill color, specified as the comma-separated pair consisting of 'Color' and an RGB triplet, a
hexadecimal color code, a color name, or a short color name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'
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Tag — Tag associated with plotter object
'PlotterN' (default) | character vector | string scalar

Tag associated with the plotter object, specified as the comma-separated pair consisting of 'Tag' and
a character vector or string scalar. The default value is 'PlotterN', where N is an integer that
corresponds to the Nth plotter associated with the input birdsEyePlot object.

Output Arguments
pcPlotter — Point cloud plotter
pointCloudPlotter object

Point cloud plotter, returned as a pointCloudPlotter object. You can modify this object by
changing its property values.

pcPlotter is stored in the Plotters property of the input, bep. To plot the point cloud data, use
the plotPointCloud function.

See Also
birdsEyePlot | clearData | clearPlotterData | findPlotter | plotPointCloud

Introduced in R2020a
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plotCoverageArea
Display sensor coverage area on bird's-eye plot

Syntax
plotCoverageArea(caPlotter,position,range,orientation,fieldOfView)

Description
plotCoverageArea(caPlotter,position,range,orientation,fieldOfView) displays the
coverage area of an ego vehicle sensor on a bird's-eye plot. Specify the position, range, orientation
angle, and field of view of the sensor. The coverage area plotter, caPlotter, is associated with a
birdsEyePlot object and configures the display of sensor coverage areas.

Examples

Display Coverage Area for Radar Sensor

Create a bird's-eye plot with an x-axis range from 0 to 90 meters and a y-axis range from –35 to 35
meters.

bep = birdsEyePlot('XLim',[0 90],'YLim',[-35 35]);
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Create a coverage are plotter for the bird's-eye plot.

caPlotter = coverageAreaPlotter(bep,'DisplayName','Radar coverage area');

Display a coverage area that has a 35-degree field of view and a 60-meter range. Mount the coverage
area sensor 1 meter in front of the origin. Set the orientation angle of the sensor to 0 degrees.

mountPosition = [1 0];
range = 60;
orientation = 0;
fieldOfView = 35;

Plot the coverage area.

plotCoverageArea(caPlotter,mountPosition,range,orientation,fieldOfView);
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Display Sensor Coverage Areas from Four Corners of Vehicle

Create a bird's-eye plot with an x-axis range from –100 to 100 meters and a y-axis range from –100 to
100 meters

bep = birdsEyePlot('XLim',[-100 100],'YLim',[-100 100]);
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Create coverage area plotters with unique display names and fill colors for each sensor location on
the vehicle.

rearLeftPlotter = coverageAreaPlotter(bep,'DisplayName','Rear left','FaceColor','r');
rearRightPlotter = coverageAreaPlotter(bep,'DisplayName','Rear right','FaceColor','b');
frontLeftPlotter = coverageAreaPlotter(bep,'DisplayName','Front left','FaceColor','y');
frontRightPlotter = coverageAreaPlotter(bep,'DisplayName','Front right','FaceColor','g');
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Set the positions, ranges, orientations, and fields of view for the sensors. The sensors have a
maximum range of 90 meters and a field of view of 30 degrees. Plot the coverage areas.

plotCoverageArea(rearLeftPlotter,[0 0.9],90,120,30);
plotCoverageArea(rearRightPlotter,[0 -0.9],90,-120,30);
plotCoverageArea(frontLeftPlotter,[2.8 0.9],90,60,30);
plotCoverageArea(frontRightPlotter,[2.8 -0.9],90,-60,30);
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Input Arguments
caPlotter — Coverage area plotter
CoverageAreaPlotter object

Coverage area plotter, specified as a CoverageAreaPlotter object. This object is stored in the
Plotters property of a birdsEyePlot object and configures the display of coverage areas in the
bird's-eye plot. To create this object, use the coverageAreaPlotter function.

position — Position of sensor
real-valued vector of the form [XOriginOffset YOriginOffset]

Position of the sensor in vehicle coordinates, specified as a real-valued vector of the form [XOriginOffset
YOriginOffset]. Units are in meters.

• XOriginOffset specifies the distance that the sensor is in front of the origin.
• YOriginOffset specifies the distance that the sensor is to the left of the origin.

The origin is located at the center of the rear axle, as shown in this figure of the vehicle coordinate
system.
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range — Range of sensor
positive real scalar

Range of sensor, specified as a positive real scalar. Units are in meters.

orientation — Orientation angle of sensor
real scalar

Orientation angle of the sensor relative to the X-axis of the ego vehicle, specified as a real scalar.
Units are in degrees. orientation is positive in the counterclockwise direction (to the left).

fieldOfView — Field of view of sensor
positive real scalar

Field of view of the sensor coverage area, specified as a positive real scalar. Units are in degrees.

See Also
birdsEyePlot | coverageAreaPlotter

Introduced in R2017a
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plotDetection
Display object detections on bird's-eye plot

Syntax
plotDetection(detPlotter,positions)
plotDetection(detPlotter,positions,velocities)
plotDetection(detPlotter,positions,labels)
plotDetection(detPlotter,positions,velocities,labels)

Description
plotDetection(detPlotter,positions) displays object detections from a list of object positions
on a bird's-eye plot. The detection plotter, detPlotter, is associated with a birdsEyePlot object
and configures the display of the specified detections.

To remove all detections associated with detection plotter detPlotter, call the clearData function
and specify detPlotter as the input argument.

plotDetection(detPlotter,positions,velocities) displays detections and their velocities
on a bird's-eye plot.

plotDetection(detPlotter,positions,labels) displays detections and their labels on a
bird's-eye plot.

plotDetection(detPlotter,positions,velocities,labels) displays detections and their
velocities and labels on a bird's-eye plot. velocities and labels can appear in either order but
must come after detPlotter and positions.

Examples

Create and Display a Bird's-Eye Plot

Create a bird's-eye plot with an x-axis range from 0 to 90 meters and a y-axis range from –35 to 35
meters.

bep = birdsEyePlot('XLim',[0 90],'YLim',[-35 35]);
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Display a coverage area with a 35-degree field of view and a 60-meter range.

caPlotter = coverageAreaPlotter(bep,'DisplayName','Radar coverage area');
mountPosition = [1 0];
range = 60;
orientation = 0;
fieldOfView = 35;
plotCoverageArea(caPlotter,mountPosition,range,orientation,fieldOfView);
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Display radar detections with coordinates at (30, –5), (50, –10), and (40, 7).

radarPlotter = detectionPlotter(bep,'DisplayName','Radar detections');
plotDetection(radarPlotter,[30 -5; 50 -10; 40 7]);

 plotDetection

4-83



Create and Display Labeled Detections on Bird's-Eye Plot

Create a bird's-eye plot with an x-axis range from 0 to 90 meters and a y-axis range from –35 to 35
meters. Create a radar detection plotter that displays detections in blue.

bep = birdsEyePlot('XLim',[0 90],'YLim',[-35 35]);
detPlotter = detectionPlotter(bep,'DisplayName','Radar detections', ...
    'MarkerFaceColor','b');
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Display the positions and velocities of three labeled detections.

positions = [30 5; 30 -10; 30 15];
velocities = [-10 0; -10 3; -10 -4];
labels = {'D1','D2','D3'};
plotDetection(detPlotter,positions,velocities,labels);
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Input Arguments
detPlotter — Detection plotter
DetectionPlotter object

Detection plotter, specified as a DetectionPlotter object. This object is stored in the Plotters
property of a birdsEyePlot object and configures the display of the specified detections in the
bird's-eye plot. To create this object, use the detectionPlotter function.

positions — Positions of detected objects
M-by-2 real-valued matrix

Positions of detected objects in vehicle coordinates, specified as an M-by-2 real-valued matrix of (X, Y)
positions. M is the number of detected objects. The positive X-direction points ahead of the center of
the vehicle. The positive Y-direction points to the left of the origin of the vehicle, which is the center
of the rear axle, as shown in this figure of the vehicle coordinate system.
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velocities — Velocities of detected objects
M-by-2 real-valued matrix

Velocities of detected objects, specified as an M-by-2 real-valued matrix of velocities in the (X, Y)
direction. M is the number of detected objects. The velocities are plotted as line vectors that originate
from the center positions of the detections as they are tracked.

labels — Detection labels
M-length string array | M-length cell array of character vectors

Detection labels, specified as an M-length string array or M-length cell array of character vectors. M
is the number of detected objects. The labels correspond to the locations in the positions matrix.
By default, detections do not have labels. To remove all annotations and labels associated with the
detection plotter, use the clearData function.

See Also
birdsEyePlot | detectionPlotter

Introduced in R2017a
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plotLaneBoundary
Display lane boundaries on bird’s-eye plot

Syntax
plotLaneBoundary(lbPlotter,boundaryCoords)
plotLaneBoundary(lbPlotter,boundaries)

Description
plotLaneBoundary(lbPlotter,boundaryCoords) displays lane boundaries from a list of
boundary coordinates on a bird’s-eye plot. The lane boundary plotter, lbPlotter, is associated with
a birdsEyePlot object and configures the display of the specified lane boundaries.

To remove all lane boundaries associated with lane boundary plotter lbPlotter, call the clearData
function and specify lbPlotter as the input argument.

plotLaneBoundary(lbPlotter,boundaries) displays lane boundaries from a lane boundary
object or an array of lane boundary objects, boundaries.

Examples

Create and Display Road Boundaries

Create a driving scenario containing a figure-8 road specified in the world coordinates of the
scenario. Convert the world coordinates of the scenario to the coordinate system of the ego vehicle.

Create an empty driving scenario.

scenario = drivingScenario;

Add a figure-8 road to the scenario. Display the scenario.

roadCenters = [0  0  1
             20 -20  1
             20  20  1
            -20 -20  1
            -20  20  1
              0   0  1];

roadWidth = 3;
bankAngle = [0 15 15 -15 -15 0];
road(scenario,roadCenters,roadWidth,bankAngle);
plot(scenario)
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Add an ego vehicle to the scenario. Position the vehicle at world coordinates (20, –20) and orient it at
a –15 degree yaw angle.

ego = actor(scenario,'ClassID',1,'Position',[20 -20 0],'Yaw',-15);
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Obtain the road boundaries in ego vehicle coordinates by using the roadBoundaries function.
Specify the ego vehicle as the input argument.

rbEgo1 = roadBoundaries(ego);

Display the result on a bird's-eye plot.

bep = birdsEyePlot;
lbp = laneBoundaryPlotter(bep,'DisplayName','Road');
plotLaneBoundary(lbp,rbEgo1)

4 Objects

4-90



Obtain the road boundaries in world coordinates by using the roadBoundaries function. Specify the
scenario as the input argument.

rbScenario = roadBoundaries(scenario);

Obtain the road boundaries in ego vehicle coordinates by using the
driving.scenario.roadBoundariesToEgo function.

rbEgo2 = driving.scenario.roadBoundariesToEgo(rbScenario,ego);

Display the road boundaries on a bird's-eye plot.

bep = birdsEyePlot;
lbp = laneBoundaryPlotter(bep,'DisplayName','Road boundaries');
plotLaneBoundary(lbp,{rbEgo2})
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Input Arguments
lbPlotter — Lane boundary plotter
LaneBoundaryPlotter object

Lane boundary plotter, specified as a LaneBoundaryPlotter object. This object is stored in the
Plotters property of a birdsEyePlot object and configures the display of the specified lane
boundaries in the bird's-eye plot. To create this object, use the laneBoundaryPlotter function.

boundaryCoords — Lane boundary coordinates
cell array of M-by-2 real-valued matrices

Lane boundary coordinates, specified as a cell array of M-by-2 real-valued matrices. Each matrix
represents the coordinates for a different lane boundary. M is the number of coordinates in a lane
boundary and can be different for each lane boundary. Each row represents the (X, Y) positions of a
curve. The positive X-direction points ahead of the center of the vehicle. The positive Y-direction
points to the left of the origin of the vehicle, which is the center of the rear axle, as shown in this
figure of the vehicle coordinate system.
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boundaries — Lane boundaries
lane boundary object | array of lane boundary objects

Lane boundaries, specified as a lane boundary object or an array of lane boundary objects. Valid lane
boundary objects are parabolicLaneBoundary, cubicLaneBoundary, and
clothoidLaneBoundary. If you specify an array of lane boundary objects, all objects must be of the
same type. Z-data, which represents height, is ignored.

See Also
birdsEyePlot | laneBoundaryPlotter

Introduced in R2017a
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plotLaneMarking
Display lane markings on bird’s-eye plot

Syntax
plotLaneMarking(lmPlotter,lmv,lmf)

Description
plotLaneMarking(lmPlotter,lmv,lmf) displays lane marking vertices, lmv, and lane marking
faces, lmf, on a bird's-eye plot. The lane marking plotter, lmPlotter, is associated with a
birdsEyePlot object and configures the display of the specified lane markings.

To remove all lane markings associated with the lane marking plotter lmPlotter, call the
clearData function and specify lmPlotter as the input argument.

Examples

Display Lane Markings in Car and Pedestrian Scenario

Create a driving scenario containing a car and pedestrian on a straight road. Then, create and display
the lane markings of the road on a bird's-eye plot.

Create an empty driving scenario.

scenario = drivingScenario;

Create a straight, 25-meter road segment with two travel lanes in one direction.

lm = [laneMarking('Solid')
      laneMarking('Dashed','Length',2,'Space',4)
      laneMarking('Solid')];
l = lanespec(2,'Marking',lm);
road(scenario,[0 0 0; 25 0 0],'Lanes',l);

Add to the driving scenario a pedestrian crossing the road at 1 meter per second and a car following
the road at 10 meters per second.

ped = actor(scenario,'ClassID',4,'Length',0.2,'Width',0.4,'Height',1.7);
car = vehicle(scenario,'ClassID',1);
trajectory(ped,[15 -3 0; 15 3 0],1);
trajectory(car,[car.RearOverhang 0 0; 25-car.Length+car.RearOverhang 0 0],10);

Display the scenario and corresponding chase plot.

plot(scenario)
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chasePlot(car)
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Run the simulation.

1 Create a bird's-eye plot.
2 Create an outline plotter, lane boundary plotter, and lane marking plotter for the bird's-eye plot.
3 Obtain the road boundaries and target outlines.
4 Obtain the lane marking vertices and faces.
5 Display the lane boundaries and lane markers.
6 Run the simulation loop.

bep = birdsEyePlot('XLim',[-25 25],'YLim',[-10 10]);
olPlotter = outlinePlotter(bep);
lbPlotter = laneBoundaryPlotter(bep);
lmPlotter = laneMarkingPlotter(bep,'DisplayName','Lanes');
legend('off');
while advance(scenario)
    rb = roadBoundaries(car);
    [position,yaw,length,width,originOffset,color] = targetOutlines(car);
    [lmv,lmf] = laneMarkingVertices(car);
    plotLaneBoundary(lbPlotter,rb);
    plotLaneMarking(lmPlotter,lmv,lmf);
    plotOutline(olPlotter,position,yaw,length,width, ...
        'OriginOffset',originOffset,'Color',color);
end
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Input Arguments
lmPlotter — Lane marking plotter
LaneMarkingPlotter object

Lane marking plotter, specified as a LaneMarkingPlotter object. This object is stored in the
Plotters property of a birdsEyePlot object and configures the display of the specified lane
markings in the bird's-eye plot. To create this object, use the laneMarkingPlotter function.

lmv — Lane marking vertices
L-by-3 real-valued matrix

Lane marking vertices, specified as an L-by-3 real-valued matrix. Each row of lmv represents the x, y,
and z coordinates of one vertex. The plotter uses only the x and y coordinates. To obtain lane marking
vertices and faces from a driving scenario, use the laneMarkingVertices function.

lmf — Lane marking faces
real-valued matrix

Lane marking faces, specified as a real-valued matrix. Each row of lmf is a face that defines the
connection between vertices for one lane marking. To obtain lane marking vertices and faces from a
driving scenario, use the laneMarkingVertices function.

See Also
birdsEyePlot | laneMarkingPlotter | laneMarkingVertices
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plotMesh
Package: 

Display object meshes on bird's-eye plot

Syntax
plotMesh(mPlotter,vertices,faces)
plotMesh(mPlotter,vertices,faces,'Color',colors)

Description
plotMesh(mPlotter,vertices,faces) displays meshes on page 4-105 composed of the specified
vertices and faces on a bird's-eye plot. To obtain the mesh vertices and faces of an object in a driving
scenario, use the targetMeshes function. The mesh plotter, mPlotter, is associated with a
birdsEyePlot object and configures the display of the meshes.

The bird's-eye plot assigns a different color to each actor, based on the default color order of Axes
objects. For more details, see the ColorOrder property for Axes objects.

To remove all meshes associated with mesh plotter mPlotter, call the clearData function and
specify mPlotter as the input argument.

plotMesh(mPlotter,vertices,faces,'Color',colors) specifies the colors of the meshes.

Examples

Display Actor Meshes in Driving Scenario

Display actors in a driving scenario by using their mesh representations instead of their cuboid
representations.

Create a driving scenario, and add a 25-meter straight road to the scenario.

scenario = drivingScenario;
roadcenters = [0 0 0; 25 0 0];
road(scenario,roadcenters);

Add a pedestrian and a vehicle to the scenario. Specify the mesh dimensions of the actors using
prebuilt meshes.

• Specify the pedestrian mesh as a driving.scenario.pedestrianMesh object.
• Specify the vehicle mesh as a driving.scenario.carMesh object.

p = actor(scenario,'ClassID',4, ...
            'Length',0.2,'Width',0.4, ...
            'Height',1.7,'Mesh',driving.scenario.pedestrianMesh);

v = vehicle(scenario,'ClassID',1, ...
            'Mesh',driving.scenario.carMesh);
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Add trajectories for the pedestrian and vehicle.

• Specify for the pedestrian to cross the road at 1 meter per second.
• Specify for the vehicle to follow the road at 10 meters per second.

waypointsP = [15 -3 0; 15 3 0];
speedP = 1;
trajectory(p,waypointsP,speedP);

wayPointsV = [v.RearOverhang 0 0; (25 - v.Length + v.RearOverhang) 0 0];
speedV = 10;
trajectory(v,wayPointsV,speedV)

Add an egocentric plot for the vehicle. Turn the display of meshes on.

chasePlot(v,'Meshes','on')

Create a bird's-eye plot in which to display the meshes. Also create a mesh plotter and lane boundary
plotter. Then run the simulation loop.

1 Obtain the road boundaries of the road the vehicle is on.
2 Obtain the mesh vertices, faces, and colors of the actor meshes, with positions relative to the

vehicle.
3 Plot the road boundaries and actor meshes on the bird's-eye plot.
4 Pause the scenario to allow time for the plots to update. The chase plot updates every time you

advance the scenario.
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bep = birdsEyePlot('XLim',[-25 25],'YLim',[-10 10]);
mPlotter = meshPlotter(bep);
lbPlotter = laneBoundaryPlotter(bep);
legend('off')

while advance(scenario)

   rb = roadBoundaries(v);

   [vertices,faces,colors] = targetMeshes(v);

   plotLaneBoundary(lbPlotter,rb)
   plotMesh(mPlotter,vertices,faces,'Color',colors)

   pause(0.01)
end
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Input Arguments
mPlotter — Mesh plotter
MeshPlotter object

Mesh plotter, specified as a MeshPlotter object. This object is stored in the Plotters property of a
birdsEyePlot object and configures the display of meshes in the bird's-eye plot. To create this
object, use the meshPlotter function.

vertices — Mesh vertices of each actor
N-element cell array

Mesh vertices of each actor, specified as an N-element cell array, where N is the number of actors.

Each element in vertices must be a V-by-3 real-valued matrix containing the vertices of an actor,
where:

• V is the number of vertices.
• Each row defines the 3-D (x,y,z) position of a vertex. When you use the targetMeshes function to

obtain mesh vertices, the vertex positions are relative to the position of the actor that is input to
that function. Units are in meters.

faces — Mesh faces of each actor
N-element cell array

Mesh faces of each actor, specified as an N-element cell array, where N is the number of actors.
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Each element in faces must be an F-by-3 integer-valued matrix containing the faces of an actor,
where:

• F is the number of faces.
• Each row defines a triangle of vertex IDs that make up the face. The vertex IDs correspond to row

numbers within vertices.

Suppose the first face of the ith element of faces has these vertex IDs.

faces{i}(1,:)

ans =

     1     2     3

In the ith element of vertices, rows 1, 2, and 3 contain the (x, y, z) positions of the vertices that
make up this face.

vertices{i}(1:3,:)

ans =

    3.7000    0.9000    0.8574
    3.7000   -0.9000    0.8574
    3.7000   -0.9000    0.3149

colors — Color of mesh faces for each actor
N-by-3 matrix of RGB triplets

Color of the mesh faces for each actor, specified as an N-by-3 matrix of RGB triplets. N is the number
of actors and is equal to the number of elements in vertices and faces.

The ith row of colors is the RGB color value of the faces in the ith element of faces. The function
applies the same color to all mesh faces of an actor.

An RGB triplet is a three-element row vector whose elements specify the intensities of the red, green,
and blue components of the color. The intensities must be in the range [0, 1]. For example, [0.4 0.6
0.7].

More About
Meshes

In driving scenarios, a mesh is a triangle-based 3-D representation of an object. Mesh representations
of objects are more detailed than the default cuboid (box-shaped) representations of objects. Meshes
are useful for generating synthetic point cloud data from a driving scenario.

This table shows the difference between a cuboid representation and a mesh representation of a
vehicle in a driving scenario.
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Cuboid Mesh

See Also
birdsEyePlot | meshPlotter | targetMeshes

Introduced in R2020b
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plotOutline
Display object outlines on bird's-eye plot

Syntax
plotOutline(olPlotter,positions,yaw,length,width)
plotOutline( ___ ,Name,Value)

Description
plotOutline(olPlotter,positions,yaw,length,width) displays the rectangular outlines of
cuboid objects on a bird's-eye plot. Specify the position, yaw angle of rotation, length, and width of
each cuboid. The outline plotter, olPlotter, is associated with a birdsEyePlot object and
configures the display of the specified outlines.

To remove all outlines associated with outline plotter olPlotter, call the clearData function and
specify olPlotter as the input argument.

To display the outlines of actors that are in a driving scenario, first use targetOutlines to get the
dimensions of the actors. Then, after calling outlinePlotter to create a plotter object, use the
plotOutline function to display the outlines of all the actors in a bird's-eye plot.

plotOutline( ___ ,Name,Value) specifies options using one or more Name,Value pair arguments
and the input arguments from the previous syntax.

Examples

Plot Outlines of Targets on Bird's-Eye Plot

Create a driving scenario. Create a 25 m road segment, add a pedestrian and a vehicle, and specify
their trajectories to follow. The pedestrian crosses the road at 1 m/s. The vehicle drives along the
road at 10 m/s.

scenario = drivingScenario;

road(scenario,[0 0 0; 25 0 0]);

p = actor(scenario,'ClassID',4,'Length',0.2,'Width',0.4,'Height',1.7);
v = vehicle(scenario,'ClassID',1);

trajectory(p,[15 -3 0; 15 3 0],1);
trajectory(v,[v.RearOverhang 0 0; 25-v.Length+v.RearOverhang 0 0], 10);

Use a chase plot to display the scenario from the perspective of the vehicle.

chasePlot(v,'Centerline','on')
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Create a bird's-eye plot, outline plotter, and lane boundary plotter.

bep = birdsEyePlot('XLim',[-25 25],'YLim',[-10 10]);
olPlotter = outlinePlotter(bep);
lbPlotter = laneBoundaryPlotter(bep);
legend('off')
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Run the simulation loop. Update the plotter with outlines for the targets.

while advance(scenario)
   % Obtain the road boundaries and rectangular outlines.
   rb = roadBoundaries(v);
   [position,yaw,length,width,originOffset,color] = targetOutlines(v);

   % Update the bird's-eye plotters with the road and actors.
   plotLaneBoundary(lbPlotter,rb);
   plotOutline(olPlotter,position,yaw,length,width, ...
               'OriginOffset',originOffset,'Color',color);

   % Allow time for plot to update.
   pause(0.01)
end
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Input Arguments
olPlotter — Outline plotter
OutlinePlotter object

Outline plotter, specified as an OutlinePlotter object. This object is stored in the Plotters
property of a birdsEyePlot object and configures the display of the specified outlines in the bird's-
eye plot. To create this object, use the outlinePlotter function.

positions — Positions of detected objects
M-by-2 real-valued matrix

Positions of detected objects in vehicle coordinates, specified as an M-by-2 real-valued matrix of (X, Y)
positions. M is the number of detected objects. The positive X-direction points ahead of the center of
the vehicle. The positive Y-direction points to the left of the origin of the vehicle, which is the center
of the rear axle, as shown in this figure of the vehicle coordinate system.
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yaw — Angles of rotation
M-element real-valued vector

Angles of rotation for object outlines, specified as an M-element real-valued vector, where M is the
number of objects.

length — Lengths of outlines
M-element real-valued vector

Lengths of object outlines, specified as an M-element real-valued vector, where M is the number of
objects.

width — Widths of outlines
M-element real-valued vector

Widths of object outlines, specified as an M-element real-valued vector, where M is the number of
objects.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
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Example: 'Marker','x'

OriginOffset — Rotational centers of rectangles relative to origin
M-by-2 real-valued matrix

Rotational centers of rectangles relative to origin, specified as the comma-separated pair consisting
of 'OriginOffset' and an M-by-2 real-valued matrix. M is the number of objects. Each row
corresponds to the rotational center about which to rotate the corresponding rectangle, specified as
an (X,Y) displacement from the geometrical center of that rectangle.

Color — Outline color
M-by-3 matrix of RGB triplets

Outline color, specified as the comma-separated pair consisting of 'Color' and an M-by-3 matrix of
RGB triplets. M is the number of objects. If you do not specify this argument, the function uses the
default colormap for each object.
Example: 'Color',[0 0.5 0.75; 0.8 0.3 0.1]

See Also
birdsEyePlot | outlinePlotter

Introduced in R2017b
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plotPointCloud
Package: 

Display generated point cloud on bird's-eye plot

Syntax
plotPointCloud(pcPlotter,pcObject)
plotPointCloud(pcPlotter,pointCloudMatrix)

Description
plotPointCloud(pcPlotter,pcObject) displays a point cloud generated from a point cloud data
object, pcObject. The point cloud plotter, pcPlotter, is associated with a birdsEyePlot object
and configures the display of the specified point cloud.

To remove the point cloud associated with the point cloud plotter, use the clearData function with
pcPlotter specified as the input argument.

plotPointCloud(pcPlotter,pointCloudMatrix) specifies the point cloud data as a matrix of 2-
D or 3-D points, pointCloudMatrix.

Examples

Generate Lidar Point Cloud Data of Multiple Actors

Generate lidar point cloud data for a driving scenario with multiple actors by using the
lidarPointCloudGenerator System object. Create the driving scenario by using
drivingScenario object. It contains an ego-vehicle, pedestrian and two other vehicles.

Create and plot a driving scenario with multiple vehicles

Create a driving scenario.

scenario = drivingScenario;

Add a straight road to the driving scenario. The road has one lane in each direction.

roadCenters = [0 0 0; 70 0 0];
laneSpecification = lanespec([1 1]);
road(scenario,roadCenters,'Lanes',laneSpecification);

Add an ego vehicle to the driving scenario.

egoVehicle = vehicle(scenario,'ClassID',1,'Mesh',driving.scenario.carMesh);
waypoints = [1 -2 0; 35 -2 0];
trajectory(egoVehicle,waypoints,10);

Add a truck, pedestrian, and bicycle to the driving scenario and plot the scenario.

truck = vehicle(scenario,'ClassID',2,'Length', 8.2,'Width',2.5,'Height',3.5, ...
  'Mesh',driving.scenario.truckMesh);
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waypoints = [70 1.7 0; 20 1.9 0];
trajectory(truck,waypoints,15);
pedestrian = actor(scenario,'ClassID',4,'Length',0.24,'Width',0.45,'Height',1.7, ...
  'Mesh',driving.scenario.pedestrianMesh);
waypoints = [23 -4 0; 10.4 -4 0];
trajectory(pedestrian,waypoints,1.5);
bicycle = actor(scenario,'ClassID',3,'Length',1.7,'Width',0.45,'Height',1.7, ...
  'Mesh',driving.scenario.bicycleMesh);
waypoints = [12.7 -3.3 0; 49.3 -3.3 0];
trajectory(bicycle,waypoints,5);
plot(scenario,'Meshes','on')

Generate and plot lidar point cloud data

Create a lidarPointCloudGenerator System object.

lidar = lidarPointCloudGenerator;

Add actor profiles and the ego vehicle actor ID from the driving scenario to the System object.

lidar.ActorProfiles = actorProfiles(scenario);
lidar.EgoVehicleActorID = egoVehicle.ActorID;

Plot the point cloud data.

bep = birdsEyePlot('Xlimits',[0 70],'YLimits',[-30 30]);
plotter = pointCloudPlotter(bep);
legend('off');
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while advance(scenario)
    tgts = targetPoses(egoVehicle);
    rdmesh = roadMesh(egoVehicle);
    [ptCloud,isValidTime] = lidar(tgts,rdmesh,scenario.SimulationTime);
    if isValidTime
        plotPointCloud(plotter,ptCloud);
    end
end
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Input Arguments
pcPlotter — Point cloud plotter
pointCloudPlotter object

Point cloud plotter, specified as a pointCloudPlotter object. This object is stored in the Plotters
property of a birdsEyePlot object and configures the display of the specified point cloud in the
bird's-eye plot. The property names correspond to the name-value pair arguments of the
pointCloudPlotter function.

pcObject — Point cloud data object
pointCloud object

Point cloud data object, specified as a pointCloud object.

pointCloudMatrix — Point cloud data matrix
N-by-2 or N-by-3 real-valued matrix

Point cloud data matrix, specified as a N-by-2 or N-by-3 real-valued matrix. Each element in the first
column of the matrix corresponds to the x- coordinates of a point in the point cloud. The elements in
the second and third columns correspond to y- and z- coordinates.
Data Types: single | double
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See Also
birdsEyePlot | clearData | clearPlotterData | findPlotter | pointCloudPlotter

Introduced in R2020a
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plotPath
Display actor paths on bird’s-eye plot

Syntax
plotPath(pPlotter,pathCoords)

Description
plotPath(pPlotter,pathCoords) displays the paths of actors from a list of path coordinates on a
bird's-eye plot. The path plotter object, pPlotter, is associated with a birdsEyePlot object and
configures the display of the specified path.

To remove all paths associated with the path plotter pPlotter, call the clearData function and
specify pPlotter as the input argument.

Examples

Plot Path of Ego Vehicle

Create a 3-meter-wide lane.

lb = parabolicLaneBoundary([-0.001,0.01,1.5]);
rb = parabolicLaneBoundary([-0.001,0.01,-1.5]);

Compute the lane boundary model manually from 0 to 30 meters along the x-axis.

xWorld = (0:30)';
yLeft = computeBoundaryModel(lb,xWorld);
yRight = computeBoundaryModel(rb,xWorld);

Create a bird's-eye plot and lane boundary plotter. Display the lane information on the bird's-eye plot.

bep = birdsEyePlot('XLimits',[0 30],'YLimits',[-5 5]);
lanePlotter = laneBoundaryPlotter(bep,'DisplayName','Lane boundaries');
plotLaneBoundary(lanePlotter,{[xWorld,yLeft],[xWorld,yRight]});
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Create a path plotter. Create and display the path of an ego vehicle that travels through the center of
the lane.

yCenter = (yLeft + yRight)/2;
egoPathPlotter = pathPlotter(bep,'DisplayName','Ego vehicle path');
plotPath(egoPathPlotter,{[xWorld,yCenter]});
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Input Arguments
pPlotter — Path plotter
PathPlotter object

Path plotter, specified as a PathPlotter object. This object is stored in the Plotters property of a
birdsEyePlot object and configures the display of the specified actor paths in the bird's-eye plot. To
create this object, use the pathPlotter function.

pathCoords — Path coordinates
cell array of M-by-2 real-valued matrices

Path coordinates, specified as a cell array of M-by-2 real-valued matrices. Each matrix represents the
coordinates for a different path. M is the number of coordinates in a path and can be different for
each path. The first and second columns of each matrix represent the (X, Y) positions of the path
curve. The positive X-direction points ahead of the center of the vehicle. The positive Y-direction
points to the left of the origin of the vehicle, which is the center of the rear axle, as shown in this
figure of the vehicle coordinate system..
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Path coordinates are relative to the ego vehicle.

See Also
birdsEyePlot | pathPlotter

Introduced in R2017a
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plotTrack
Display object tracks on bird's-eye plot

Syntax
plotTrack(tPlotter,positions)
plotTrack(tPlotter,positions,velocities)
plotTrack(tPlotter,positions,labels)
plotTrack(tPlotter,positions,covariances)
plotTrack(tPlotter,positions,velocities,labels,covariances)

Description
plotTrack(tPlotter,positions) displays object tracks from a list of object positions on a bird's-
eye plot. The track plotter, tPlotter, is associated with a birdsEyePlot object and configures the
display of the object tracks.

To remove all tracks associated with track plotter tPlotter, call the clearData function and
specify tPlotter as the input argument.

plotTrack(tPlotter,positions,velocities) displays tracks and their velocities on a bird's-
eye plot.

plotTrack(tPlotter,positions,labels) displays tracks and their labels on a bird's-eye plot.

plotTrack(tPlotter,positions,covariances) displays tracks and the covariances of track
uncertainties on a bird's-eye plot.

plotTrack(tPlotter,positions,velocities,labels,covariances) displays tracks and
their velocities, labels, and covariances on a bird's-eye plot. You can specify one or more of
velocities, labels, and covariances. These arguments can appear in any order but they must
come after tPlotter and positions.

Examples

Create and Display Labeled Tracks on Bird's-Eye Plot

Create a bird's-eye plot with an x-axis range from 0 to 90 meters and a y-axis range from –35 to 35
meters. Create a track plotter that displays up to seven history values for each track and offsets
labels by 3 meters in front of the tracks.

bep = birdsEyePlot('XLim',[0 90],'YLim',[-35 35]);
tPlotter = trackPlotter(bep,'DisplayName','Tracks','HistoryDepth',7,'LabelOffset',[3 0]);
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Set the positions and velocities of three labeled tracks.

positions = [30, 5; 30, 5; 30, 5];
velocities = [3, 0; 3, 2; 3, -3];
labels = {'T1','T2','T3'};

Display the tracks for 10 trials. The bird's-eye plot shows the seven history values specified
previously.

for i=1:10
   plotTrack(tPlotter,positions,velocities,labels);
   positions = positions + velocities;
end
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Input Arguments
tPlotter — Track plotter
TrackPlotter object

Track plotter, specified as a TrackPlotter object. This object is stored in the Plotters property of
a birdsEyePlot object and configures the display of the specified tracks in the bird's-eye plot. To
create this object, use the trackPlotter function.

positions — Positions of tracked objects
M-by-2 real-valued matrix

Positions of tracked objects in vehicle coordinates, specified as an M-by-2 real-valued matrix of (X, Y)
positions. M is the number of tracked objects. The positive X-direction points ahead of the center of
the vehicle. The positive y-direction points to the left of the origin of the vehicle, which is the center
of the rear axle, as shown in this figure of the vehicle coordinate system.
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velocities — Velocities of tracked objects
M-by-2 real-valued matrix

Velocities of tracked objects, specified as an M-by-2 real-valued matrix of velocities in the (X, Y)
direction. M is the number of tracked objects. The velocities are plotted as line vectors that originate
from the center positions of the tracked objects.

labels — Track labels
M-length string array | M-length cell array of character vectors

Track labels, specified as an M-length string array or an M-length cell array of character vectors. M is
the number of tracked objects. The labels correspond to the locations in the positions matrix. By
default, tracks do not have labels. To remove all annotations and labels associated with the track
plotter, use the clearData function.

covariances — Covariances of track uncertainties
2-by-2-by-M real-valued array

Covariances of track uncertainties centered at the track positions, specified as a 2-by-2-by-M real-
valued array. The uncertainties are plotted as an ellipse.
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See Also
birdsEyePlot | trackPlotter

Introduced in R2017a
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trackPlotter
Package: 

Track plotter for bird's-eye plot

Syntax
tPlotter = trackPlotter(bep)
tPlotter = trackPlotter(bep,Name,Value)

Description
tPlotter = trackPlotter(bep) creates a TrackPlotter object that configures the display of
tracks on a bird's-eye plot. The TrackPlotter object is stored in the Plotters property of the input
birdsEyePlot object, bep. To display the tracks, use the plotTrack function.

tPlotter = trackPlotter(bep,Name,Value) sets properties using one or more Name,Value
pair arguments. For example, trackPlotter(bep,'DisplayName','Tracks') sets the display
name that appears in the bird's-eye-plot legend.

Examples

Create and Display Labeled Tracks on Bird's-Eye Plot

Create a bird's-eye plot with an x-axis range from 0 to 90 meters and a y-axis range from –35 to 35
meters. Create a track plotter that displays up to seven history values for each track and offsets
labels by 3 meters in front of the tracks.

bep = birdsEyePlot('XLim',[0 90],'YLim',[-35 35]);
tPlotter = trackPlotter(bep,'DisplayName','Tracks','HistoryDepth',7,'LabelOffset',[3 0]);
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Set the positions and velocities of three labeled tracks.

positions = [30, 5; 30, 5; 30, 5];
velocities = [3, 0; 3, 2; 3, -3];
labels = {'T1','T2','T3'};

Display the tracks for 10 trials. The bird's-eye plot shows the seven history values specified
previously.

for i=1:10
   plotTrack(tPlotter,positions,velocities,labels);
   positions = positions + velocities;
end
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Input Arguments
bep — Bird’s-eye plot
birdsEyePlot object

Bird’s-eye plot, specified as a birdsEyePlot object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: trackPlotter('Marker','*') sets the marker symbol for tracks to an asterisk.

DisplayName — Plotter name to display in legend
'' (default) | character vector | string scalar

Plotter name to display in legend, specified as the comma-separated pair consisting of
'DisplayName' and character vector or string scalar. If you do not specify a name, the bird's-eye
plot does not display a legend entry for the plotter.

HistoryDepth — Number of previous track updates to display
0 (default) | integer in the range [0, 100]
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Number of previous track updates to display, specified as the comma-separated pair consisting of
'HistoryDepth' and an integer in the range [0, 100]. When you set this value to 0, the bird's-eye
plot displays no previous updates.

Marker — Marker symbol for tracks
'square' (default) | '+' | '*' | '.' | 'x' | ...

Marker symbol for tracks, specified as the comma-separated pair consisting of 'Marker' and one of
the markers in this table.

Value Description
'o' Circle
'+' Plus sign
'*' Asterisk
'.' Point
'x' Cross
'_' Horizontal line
'|' Vertical line
'square' or 's' Square
'diamond' or 'd' Diamond
'^' Upward-pointing triangle
'v' Downward-pointing triangle
'>' Right-pointing triangle
'<' Left-pointing triangle
'pentagram' or 'p' Five-pointed star (pentagram)
'hexagram' or 'h' Six-pointed star (hexagram)
'none' No markers

MarkerSize — Size of marker for tracks
10 (default) | positive integer

Size of marker for tracks, specified as the comma-separated pair consisting of 'MarkerSize' and a
positive integer in points.

MarkerEdgeColor — Marker outline color for tracks
[0 0 0] (black) (default) | RGB triplet | hexadecimal color code | color name | short color name

Marker outline color for tracks, specified as the comma-separated pair consisting of
'MarkerEdgeColor' and an RGB triplet, a hexadecimal color code, a color name, or a short color
name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].
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• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

MarkerFaceColor — Marker fill color for tracks
'none' (default) | RGB triplet | hexadecimal color code | color name | short color name

Marker fill color for tracks, specified as the comma-separated pair consisting of
'MarkerFaceColor' and an RGB triplet, a hexadecimal color code, a color name, or a short color
name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.
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Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

FontSize — Font size for labeling tracks
10 points (default) | positive integer

Font size for labeling tracks, specified as the comma-separated pair consisting of 'FontSize' and a
positive integer in font points.

LabelOffset — Gap between label and positional point
[0 0] (default) | real-valued vector of the form [x y]

Gap between label and positional point, specified as the comma-separated pair consisting of
'LabelOffset' and a real-valued vector of the form [x y]. Units are in meters.

VelocityScaling — Scale factor for magnitude length of velocity vectors
1 (default) | positive real scalar

Scale factor for magnitude length of velocity vectors, specified as the comma-separated pair
consisting of 'VelocityScaling' and a positive real scalar. The bird's-eye plot renders the
magnitude vector value as M × VelocityScaling, where M is the magnitude of velocity.
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Tag — Tag associated with plotter object
'PlotterN' (default) | character vector | string scalar

Tag associated with the plotter object, specified as the comma-separated pair consisting of 'Tag' and
a character vector or string scalar. The default value is 'PlotterN', where N is an integer that
corresponds to the Nth plotter associated with the input birdsEyePlot object.

Output Arguments
tPlotter — Track plotter
TrackPlotter object

Track plotter, returned as a TrackPlotter object. You can modify this object by changing its
property values. The property names correspond to the name-value pair arguments of the
trackPlotter function.

tPlotter is stored in the Plotters property of the input birdsEyePlot object, bep. To plot the
tracks, use the plotTrack function.

See Also
birdsEyePlot | clearData | clearPlotterData | findPlotter | plotTrack

Introduced in R2017a
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birdsEyeView
Create bird's-eye view using inverse perspective mapping

Description
Use the birdsEyeView object to create a bird's-eye view of a 2-D scene using inverse perspective
mapping. To transform an image into a bird's-eye view, pass a birdsEyeView object and that image
to the transformImage function. To convert the bird’s-eye-view image coordinates to or from
vehicle coordinates, use the imageToVehicle and vehicleToImage functions. All of these
functions assume that the input image does not have lens distortion. To remove lens distortion, use
the undistortImage function.

Creation
Syntax
birdsEye = birdsEyeView(sensor,outView,outImageSize)

Description

birdsEye = birdsEyeView(sensor,outView,outImageSize) creates a birdsEyeView object
for transforming an image to a bird’s-eye-view.

• sensor is a monoCamera object that defines the configuration of the camera sensor. This input
sets the Sensor property.

• outView defines the portion of the camera view, in vehicle coordinates, that is transformed into a
bird's-eye view. This input sets the OutputView property.

• outImageSize defines the size, in pixels, of the output bird's-eye-view image. This input sets the
ImageSize property.

Properties
Sensor — Camera sensor configuration
monoCamera object

Camera sensor configuration, specified as a monoCamera object. The object contains the intrinsic
camera parameters, the mounting height, and the camera mounting angles. This configuration
defines the vehicle coordinate system of the birdsEyeView object. For more details, see “Vehicle
Coordinate System” on page 4-140.

OutputView — Coordinates of region to transform
four-element vector of form [xmin xmax ymin ymax]

Coordinates of the region to transform into a bird's-eye-view image, specified as a four-element
vector of the form [xmin xmax ymin ymax]. The units are in world coordinates, such as meters or feet,
as determined by the Sensor property. The four coordinates define the output space in the vehicle
coordinate system (XV,YV).
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You can set this property when you create the object. After you create the object, this property is
read-only.

ImageSize — Size of output bird's-eye-view images
two-element vector

Size of output bird's-eye-view images, in pixels, specified as a two-element vector of the form [m n],
where m and n specify the number of rows and columns of pixels for the output image, respectively. If
you specify a value for one dimension, you can set the other dimension to NaN and birdsEyeView
calculates this value automatically. Setting one dimension to NaN maintains the same pixel to world-
unit ratio along the XV-axis and YV-axis.

You can set this property when you create the object. After you create the object, this property is
read-only.

Object Functions
transformImage Transform image to bird's-eye view
imageToVehicle Convert bird's-eye-view image coordinates to vehicle coordinates
vehicleToImage Convert vehicle coordinates to bird's-eye-view image coordinates

Examples

Transform Road Image to Bird's-Eye-View Image

Create a bird's-eye-view image from an image obtained by a front-facing camera mounted on a
vehicle. Display points within the bird's-eye view using the vehicle and image coordinate systems.

Define the camera intrinsics and create an object containing these intrinsics.

focalLength = [309.4362 344.2161];
principalPoint = [318.9034 257.5352];
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imageSize = [480 640];

camIntrinsics = cameraIntrinsics(focalLength,principalPoint,imageSize);

Set the height of the camera to be about 2 meters above the ground. Set the pitch of the camera to 14
degrees toward the ground.

height = 2.1798;
pitch = 14;

Create an object containing the camera configuration.

sensor = monoCamera(camIntrinsics,height,'Pitch',pitch);

Define the area in front of the camera that you want to transform into a bird's-eye view. Set an area
from 3 to 30 meters in front of the camera, with 6 meters to either side of the camera.

distAhead = 30;
spaceToOneSide = 6;
bottomOffset = 3;

outView = [bottomOffset,distAhead,-spaceToOneSide,spaceToOneSide];

Set the output image width to 250 pixels. Compute the output length automatically from the width by
setting the length to NaN.

outImageSize = [NaN,250];

Create an object for performing bird's-eye-view transforms, using the previously defined parameters.

birdsEye = birdsEyeView(sensor,outView,outImageSize);

Load an image that was captured by the sensor.

I = imread('road.png');
figure
imshow(I)
title('Original Image')
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Transform the input image into a bird's-eye-view image.

BEV = transformImage(birdsEye,I);

In the bird's-eye-view image, place a 20-meter marker directly in front of the sensor. Use the
vehicleToImage function to specify the location of the marker in vehicle coordinates. Display the
marker on the bird's-eye-view image.

imagePoint = vehicleToImage(birdsEye,[20 0]);
annotatedBEV = insertMarker(BEV,imagePoint);
annotatedBEV = insertText(annotatedBEV,imagePoint + 5,'20 meters');

figure
imshow(annotatedBEV)
title('Bird''s-Eye-View Image: vehicleToImage')
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Define a location in the original bird's-eye-view image, this time in image coordinates. Use the
imageToVehicle function to convert the image coordinates to vehicle coordinates. Display the
distance between the marker and the front of the vehicle.

imagePoint2 = [120 400];
annotatedBEV = insertMarker(BEV,imagePoint2);

vehiclePoint = imageToVehicle(birdsEye,imagePoint2);
xAhead = vehiclePoint(1);
displayText = sprintf('%.2f meters',xAhead);
annotatedBEV = insertText(annotatedBEV,imagePoint2 + 5,displayText);
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figure
imshow(annotatedBEV)
title('Bird''s-Eye-View Image: imageToVehicle')

More About
Vehicle Coordinate System

In the vehicle coordinate system (XV, YV, ZV) defined by the input monoCamera object:
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• The XV-axis points forward from the vehicle.
• The YV-axis points to the left, as viewed when facing forward.
• The ZV-axis points up from the ground to maintain the right-handed coordinate system.

The default origin of this coordinate system is on the road surface, directly below the camera center.
The focal point of the camera defines this center point.

To change the placement of the origin within the vehicle coordinate system, update the
SensorLocation property of the input monoCamera object.

For more details about the vehicle coordinate system, see “Coordinate Systems in Automated Driving
Toolbox”.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
Functions
monoCamera

Topics
“Coordinate Systems in Automated Driving Toolbox”

Introduced in R2017a
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imageToVehicle
Convert bird's-eye-view image coordinates to vehicle coordinates

Syntax
vehiclePoints = imageToVehicle(birdsEye,imagePoints)

Description
vehiclePoints = imageToVehicle(birdsEye,imagePoints) converts bird’s-eye-view image
coordinates to [x y] vehicle coordinates.

Examples

Transform Road Image to Bird's-Eye-View Image

Create a bird's-eye-view image from an image obtained by a front-facing camera mounted on a
vehicle. Display points within the bird's-eye view using the vehicle and image coordinate systems.

Define the camera intrinsics and create an object containing these intrinsics.

focalLength = [309.4362 344.2161];
principalPoint = [318.9034 257.5352];
imageSize = [480 640];

camIntrinsics = cameraIntrinsics(focalLength,principalPoint,imageSize);

Set the height of the camera to be about 2 meters above the ground. Set the pitch of the camera to 14
degrees toward the ground.

height = 2.1798;
pitch = 14;

Create an object containing the camera configuration.

sensor = monoCamera(camIntrinsics,height,'Pitch',pitch);

Define the area in front of the camera that you want to transform into a bird's-eye view. Set an area
from 3 to 30 meters in front of the camera, with 6 meters to either side of the camera.

distAhead = 30;
spaceToOneSide = 6;
bottomOffset = 3;

outView = [bottomOffset,distAhead,-spaceToOneSide,spaceToOneSide];

Set the output image width to 250 pixels. Compute the output length automatically from the width by
setting the length to NaN.

outImageSize = [NaN,250];

Create an object for performing bird's-eye-view transforms, using the previously defined parameters.

 imageToVehicle

4-143



birdsEye = birdsEyeView(sensor,outView,outImageSize);

Load an image that was captured by the sensor.

I = imread('road.png');
figure
imshow(I)
title('Original Image')

Transform the input image into a bird's-eye-view image.

BEV = transformImage(birdsEye,I);

In the bird's-eye-view image, place a 20-meter marker directly in front of the sensor. Use the
vehicleToImage function to specify the location of the marker in vehicle coordinates. Display the
marker on the bird's-eye-view image.

imagePoint = vehicleToImage(birdsEye,[20 0]);
annotatedBEV = insertMarker(BEV,imagePoint);
annotatedBEV = insertText(annotatedBEV,imagePoint + 5,'20 meters');

figure
imshow(annotatedBEV)
title('Bird''s-Eye-View Image: vehicleToImage')
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Define a location in the original bird's-eye-view image, this time in image coordinates. Use the
imageToVehicle function to convert the image coordinates to vehicle coordinates. Display the
distance between the marker and the front of the vehicle.

imagePoint2 = [120 400];
annotatedBEV = insertMarker(BEV,imagePoint2);

vehiclePoint = imageToVehicle(birdsEye,imagePoint2);
xAhead = vehiclePoint(1);
displayText = sprintf('%.2f meters',xAhead);
annotatedBEV = insertText(annotatedBEV,imagePoint2 + 5,displayText);
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figure
imshow(annotatedBEV)
title('Bird''s-Eye-View Image: imageToVehicle')

Input Arguments
birdsEye — Object for transforming image to bird's-eye view
birdsEyeView object
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Object for transforming image to bird's-eye view, specified as a birdsEyeView object.

imagePoints — Image points
M-by-2 matrix

Image points, specified as an M-by-2 matrix containing M number of [x y] image coordinates.

Output Arguments
vehiclePoints — Vehicle points
M-by-2 matrix

Vehicle points, returned as an M-by-2 matrix containing M number of [x y] vehicle coordinates.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
birdsEyeView

Functions
vehicleToImage

Topics
“Coordinate Systems in Automated Driving Toolbox”

Introduced in R2017a
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transformImage
Transform image to bird's-eye view

Syntax
J = transformImage(birdsEye,I)

Description
J = transformImage(birdsEye,I) transforms the input image, I, to a bird’s-eye-view image, J.
The OutputView and ImageSize properties of the birdsEyeView object, birdsEye, determine the
portion of I to transform and the size of J, respectively.

Examples

Transform Road Image to Bird's-Eye-View Image

Create a bird's-eye-view image from an image obtained by a front-facing camera mounted on a
vehicle. Display points within the bird's-eye view using the vehicle and image coordinate systems.

Define the camera intrinsics and create an object containing these intrinsics.

focalLength = [309.4362 344.2161];
principalPoint = [318.9034 257.5352];
imageSize = [480 640];

camIntrinsics = cameraIntrinsics(focalLength,principalPoint,imageSize);

Set the height of the camera to be about 2 meters above the ground. Set the pitch of the camera to 14
degrees toward the ground.

height = 2.1798;
pitch = 14;

Create an object containing the camera configuration.

sensor = monoCamera(camIntrinsics,height,'Pitch',pitch);

Define the area in front of the camera that you want to transform into a bird's-eye view. Set an area
from 3 to 30 meters in front of the camera, with 6 meters to either side of the camera.

distAhead = 30;
spaceToOneSide = 6;
bottomOffset = 3;

outView = [bottomOffset,distAhead,-spaceToOneSide,spaceToOneSide];

Set the output image width to 250 pixels. Compute the output length automatically from the width by
setting the length to NaN.

outImageSize = [NaN,250];
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Create an object for performing bird's-eye-view transforms, using the previously defined parameters.

birdsEye = birdsEyeView(sensor,outView,outImageSize);

Load an image that was captured by the sensor.

I = imread('road.png');
figure
imshow(I)
title('Original Image')

Transform the input image into a bird's-eye-view image.

BEV = transformImage(birdsEye,I);

In the bird's-eye-view image, place a 20-meter marker directly in front of the sensor. Use the
vehicleToImage function to specify the location of the marker in vehicle coordinates. Display the
marker on the bird's-eye-view image.

imagePoint = vehicleToImage(birdsEye,[20 0]);
annotatedBEV = insertMarker(BEV,imagePoint);
annotatedBEV = insertText(annotatedBEV,imagePoint + 5,'20 meters');

figure
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imshow(annotatedBEV)
title('Bird''s-Eye-View Image: vehicleToImage')

Define a location in the original bird's-eye-view image, this time in image coordinates. Use the
imageToVehicle function to convert the image coordinates to vehicle coordinates. Display the
distance between the marker and the front of the vehicle.

imagePoint2 = [120 400];
annotatedBEV = insertMarker(BEV,imagePoint2);

vehiclePoint = imageToVehicle(birdsEye,imagePoint2);
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xAhead = vehiclePoint(1);
displayText = sprintf('%.2f meters',xAhead);
annotatedBEV = insertText(annotatedBEV,imagePoint2 + 5,displayText);

figure
imshow(annotatedBEV)
title('Bird''s-Eye-View Image: imageToVehicle')
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Input Arguments
birdsEye — Object for transforming image to bird's-eye view
birdsEyeView object

Object for transforming image to bird's-eye view, specified as a birdsEyeView object.

I — Input image
truecolor image | grayscale image

Input image, specified as a truecolor or grayscale image. The OutputView property of birdsEye
determines the portion of I to transform to a bird's-eye view.

I must not contain lens distortion. You can remove lens distortion by using the undistortImage
function. In high-end optics, you can ignore distortion.

Output Arguments
J — Bird’s-eye-view image
truecolor image | grayscale image

Bird’s-eye-view image, returned as a truecolor or grayscale image. The ImageSize property of
birdsEye determines the size of J.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
birdsEyeView

Functions
imageToVehicle | vehicleToImage

Introduced in R2017a
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vehicleToImage
Convert vehicle coordinates to bird's-eye-view image coordinates

Syntax
imagePoints = vehicleToImage(birdsEye,vehiclePoints)

Description
imagePoints = vehicleToImage(birdsEye,vehiclePoints) converts vehicle coordinates to
[x y] bird’s-eye-view image coordinates.

Examples

Transform Road Image to Bird's-Eye-View Image

Create a bird's-eye-view image from an image obtained by a front-facing camera mounted on a
vehicle. Display points within the bird's-eye view using the vehicle and image coordinate systems.

Define the camera intrinsics and create an object containing these intrinsics.

focalLength = [309.4362 344.2161];
principalPoint = [318.9034 257.5352];
imageSize = [480 640];

camIntrinsics = cameraIntrinsics(focalLength,principalPoint,imageSize);

Set the height of the camera to be about 2 meters above the ground. Set the pitch of the camera to 14
degrees toward the ground.

height = 2.1798;
pitch = 14;

Create an object containing the camera configuration.

sensor = monoCamera(camIntrinsics,height,'Pitch',pitch);

Define the area in front of the camera that you want to transform into a bird's-eye view. Set an area
from 3 to 30 meters in front of the camera, with 6 meters to either side of the camera.

distAhead = 30;
spaceToOneSide = 6;
bottomOffset = 3;

outView = [bottomOffset,distAhead,-spaceToOneSide,spaceToOneSide];

Set the output image width to 250 pixels. Compute the output length automatically from the width by
setting the length to NaN.

outImageSize = [NaN,250];

Create an object for performing bird's-eye-view transforms, using the previously defined parameters.
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birdsEye = birdsEyeView(sensor,outView,outImageSize);

Load an image that was captured by the sensor.

I = imread('road.png');
figure
imshow(I)
title('Original Image')

Transform the input image into a bird's-eye-view image.

BEV = transformImage(birdsEye,I);

In the bird's-eye-view image, place a 20-meter marker directly in front of the sensor. Use the
vehicleToImage function to specify the location of the marker in vehicle coordinates. Display the
marker on the bird's-eye-view image.

imagePoint = vehicleToImage(birdsEye,[20 0]);
annotatedBEV = insertMarker(BEV,imagePoint);
annotatedBEV = insertText(annotatedBEV,imagePoint + 5,'20 meters');

figure
imshow(annotatedBEV)
title('Bird''s-Eye-View Image: vehicleToImage')
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Define a location in the original bird's-eye-view image, this time in image coordinates. Use the
imageToVehicle function to convert the image coordinates to vehicle coordinates. Display the
distance between the marker and the front of the vehicle.

imagePoint2 = [120 400];
annotatedBEV = insertMarker(BEV,imagePoint2);

vehiclePoint = imageToVehicle(birdsEye,imagePoint2);
xAhead = vehiclePoint(1);
displayText = sprintf('%.2f meters',xAhead);
annotatedBEV = insertText(annotatedBEV,imagePoint2 + 5,displayText);
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figure
imshow(annotatedBEV)
title('Bird''s-Eye-View Image: imageToVehicle')

Input Arguments
birdsEye — Object for transforming image to bird's-eye view
birdsEyeView object
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Object for transforming image to bird's-eye view, specified as a birdsEyeView object.

vehiclePoints — Vehicle points
M-by-2 matrix

Vehicle points, specified as an M-by-2 matrix containing M number of [x y] vehicle coordinates.

Output Arguments
imagePoints — Image points
M-by-2 matrix

Image points, returned as an M-by-2 matrix containing M number of [x y] image coordinates.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
birdsEyeView

Functions
imageToVehicle

Topics
“Coordinate Systems in Automated Driving Toolbox”

Introduced in R2017a
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driving.connector.Connector class
Package: driving.connector

Interface to connect external tool to Ground Truth Labeler app

Description
The driving.connector.Connector class creates an interface between a custom visualization or
analysis tool and a signal in the Ground Truth Labeler app. You can use the connector with video
and image sequence signals only.

The driving.connector.Connector class is a handle class.

Creation
The Connector class that is inherited from the Connector interface is called a client.

The client can:

• Sync an external tool to each frame change event for a specific signal loaded into the Ground
Truth Labeler. Syncing allows you to control the external tool through the range slider and
playback controls of the app.

• Control the current time in the external tool and the corresponding display in the app.
• Export custom labeled data from an external tool via the app.

To connect an external tool to the Ground Truth Labeler app, follow these steps:

1 Define a client class that inherits from driving.connector.Connector. You can use the
Connector class template to define a class and implement your custom visualization or analysis
tool. At the MATLAB command prompt, enter:

driving.connector.Connector.openTemplateInEditor

Follow the steps found in the template.
2 Save the file to any folder on the MATLAB path. Alternatively, save the file to a folder and add the

folder to MATLAB path by using the addpath function.

Properties
VideoStartTime — Start time of signal
real scalar in seconds

Start time of the signal, specified as a real scalar in seconds.

Attributes:

GetAccess public
SetAccess private
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VideoEndTime — End time of signal
real scalar in seconds

End time of the signal, specified as a real scalar in seconds.

Attributes:

GetAccess public
SetAccess private

StartTime — Start of time interval in app
real scalar in seconds

Start of the time interval in the app, specified as a real scalar in seconds. To set the start time, use
the start flag interval in the app.

Attributes:

GetAccess public
SetAccess private

CurrentTime — Time of frame currently displaying in app
real scalar in seconds

Time of the frame currently displaying in the app for the connected signal, specified as a real scalar
in seconds. If the slider is between two timestamps, then the currently displaying frame is the frame
that is at the previous timestamp. For more details, see “Control Playback of Signal Frames for
Labeling”.

Attributes:

GetAccess public
SetAccess private

EndTime — End of time interval in app
real scalar in seconds

End of the time interval in the app, specified as a real scalar in seconds. To set the end time, use the
end flag interval in the app.

Attributes:

GetAccess public
SetAccess private

TimeVector — Timestamps for connected signal
duration vector

Timestamps for the connected signal, specified as a duration vector. This signal must be the master
signal. If you change the master signal, the TimeVector property updates to the timestamps for new
master signal.

Attributes:

GetAccess public
SetAccess private
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LabelData — Label data imported from external tool
two-column table

Label data imported from the external tool, specified as a two-column table. The first column contains
the timestamps of the connected signal and the second column contains the label information that
you specify for the corresponding timestamp.

Attributes:

GetAccess public
SetAccess private

LabelName — Names of labels
character vector | string scalar | cell array of character vectors | string array

Names of labels, specified as a character vector, a string scalar, a cell array of character vectors, or a
string array. These names must be valid MATLAB variables that correspond to the label names
specified in the second column of LabelData.

Attributes:

GetAccess public
SetAccess public
Dependent true

LabelDescription — Descriptions of labels
' ' (default) | character vector | string scalar | cell array of character vectors | string array

Descriptions of labels, specified as a character vector, a string scalar, a cell array of character
vectors, or a string array. Each description of LabelDescription corresponds to a label specified in
LabelName.

Attributes:

GetAccess public
SetAccess public

Methods
Public Methods
frameChangeListener Update external tool when new frame is displayed in Ground Truth

Labeler app
labelDefinitionLoadListener Update external tool for new label definitions in Ground Truth Labeler

app
labelLoadListener Update external tool for new label data in Ground Truth Labeler app
addLabelData Add custom label data at current time
queryLabelData Query for custom label data at current time
updateLabelerCurrentTime Update current time in Ground Truth Labeler app
close Close external tool connected to Ground Truth Labeler app
disconnect Disconnect external tool from Ground Truth Labeler app
dataSourceChangeListener Update external tool when connecting to signal being loaded into

Ground Truth Labeler app
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Examples

Connect Lidar Display to Ground Truth Labeler

Connect a lidar display tool to the Ground Truth Labeler app. Use the app and tool to display
synchronized lidar and video data.

Specify the name of a video signal to load into the app.

signalName = '01_city_c2s_fcw_10s.mp4';

Add the path to the function handle for the lidar display tool.

path = fullfile(toolboxdir('driving'),'drivingdemos');
addpath(path)

Connect the lidar display to the app.

groundTruthLabeler(signalName,'ConnectorTargetHandle',@LidarDisplay);
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After the app loads the video and lidar display tool, remove the path to the function handle.

rmpath(path)

Tips
• For an example of an external tool, see this driving.connector.Connector class

implementation. This class implements a lidar visualization tool. You can use this code as a
starting point for creating your own tools.

edit LidarDisplay
• To keep an external tool synchronized with the app, specify timestamps that are at the same frame

rate as the signals loaded in the app. If the tool visualizes data at a timestamp that is between two
frames, then the app displays the frame that is at the previous timestamp. For more details, see
“Control Playback of Signal Frames for Labeling”.

4 Objects

4-162



See Also
Apps
Ground Truth Labeler

Introduced in R2017a
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addLabelData
Class: driving.connector.Connector
Package: driving.connector

Add custom label data at current time

Syntax
addLabelData(connectorObj,labelData)

Description
addLabelData(connectorObj,labelData) adds the custom label data related to the current time
that is shown in the Ground Truth Labeler app. The client calls this method using the
connectorObj object.

Note The client class can call this method.

Input Arguments
connectorObj — Connector object
driving.connector.Connector object

Connector object, specified as a driving.connector.Connector object.

labelData — Label data
cell array of character vectors | string array

Label data, specified as a cell array of character vectors or as a string array. Each element of
labelData must correspond to a label stored in the labelData property of the input
driving.connector.Connector object, connectorObj. The app appends label data only to the
signal to which the external tool is connected.

See Also
Ground Truth Labeler | driving.connector.Connector

Introduced in R2017a
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close
Class: driving.connector.Connector
Package: driving.connector

Close external tool connected to Ground Truth Labeler app

Syntax
close(connectorObj)

Description
close(connectorObj) provides the option to close the external tool that is connected to the
Ground Truth Labeler app when the app closes. The app calls this method using the
connectorObj object.

Note The client class can optionally implement this method.

Input Arguments
connectorObj — Connector object
driving.connector.Connector object

Connector object, specified as a driving.connector.Connector object.

See Also
Ground Truth Labeler | driving.connector.Connector

Introduced in R2017a
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dataSourceChangeListener
Class: driving.connector.Connector
Package: driving.connector

Update external tool when connecting to signal being loaded into Ground Truth Labeler app

Syntax
dataSourceChangeListener(connectorObj)

Description
dataSourceChangeListener(connectorObj) provides the option to update the external tool
when a new data source is loaded into the Ground Truth Labeler app. The app calls this method
using the connectorObj object.

You can optionally use this method to react to when the tool connects to a signal that is being loaded
into the app.

Note The client class can optionally implement this method.

Input Arguments
connectorObj — Connector object
driving.connector.Connector object

Connector object, specified as a driving.connector.Connector object.

See Also
Ground Truth Labeler | driving.connector.Connector

Introduced in R2017a
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disconnect
Class: driving.connector.Connector
Package: driving.connector

Disconnect external tool from Ground Truth Labeler app

Syntax
disconnect(connectorObj)

Description
disconnect(connectorObj) disconnects the interface between an external tool and the Ground
Truth Labeler app. The client calls this method using the connectorObj object. After the external
tool is disconnected, the Ground Truth Labeler app no longer calls the frameChangeListener
method in the client class.

Note The client class can call this method.

Input Arguments
connectorObj — Connector object
driving.connector.Connector object

Connector object, specified as a driving.connector.Connector object.

See Also
Ground Truth Labeler | driving.connector.Connector

Introduced in R2017a
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frameChangeListener
Class: driving.connector.Connector
Package: driving.connector

Update external tool when new frame is displayed in Ground Truth Labeler app

Syntax
frameChangeListener(connectorObj)

Description
frameChangeListener(connectorObj) provides an option to synchronize an external tool with
the frame changes in the Ground Truth Labeler app. The app calls this method when a new frame is
displayed in the app. If the slider is between two timestamps, then the app displays the frame that is
at the previous timestamp. For more details, see “Control Playback of Signal Frames for Labeling”.

Note The client class must implement this method.

Input Arguments
connectorObj — Connector object
driving.connector.Connector object

Connector object, specified as a driving.connector.Connector object.

See Also
Ground Truth Labeler | driving.connector.Connector

Introduced in R2017a
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labelDefinitionLoadListener
Class: driving.connector.Connector
Package: driving.connector

Update external tool for new label definitions in Ground Truth Labeler app

Syntax
labelDefinitionLoadListener(connectorObj)

Description
labelDefinitionLoadListener(connectorObj) provides an option to update the external tool
that is connected to the Ground Truth Labeler app when new set of label definitions is imported
into the app. The app calls this method using the connectorObj object. You can optionally use this
method to react to the event of connecting a new data source to the app.

Note The client class can optionally implement this method.

Input Arguments
connectorObj — Connector object
driving.connector.Connector object

Connector object, specified as a driving.connector.Connector object.

See Also
Ground Truth Labeler | driving.connector.Connector

Introduced in R2017a
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labelLoadListener
Class: driving.connector.Connector
Package: driving.connector

Update external tool for new label data in Ground Truth Labeler app

Syntax
labelLoadListener(connectorObj)

Description
labelLoadListener(connectorObj) provides the option to update the external tool that is
connected to the Ground Truth Labeler app when a new set of label data or new session with label
data is imported into the app. The app calls this method using the connectorObj object. Use this
method to react to the event of loading a new label data into the app.

Note The client class can optionally implement this method.

Input Arguments
connectorObj — Connector object
driving.connector.Connector object

Connector object, specified as a driving.connector.Connector object.

See Also
Ground Truth Labeler | driving.connector.Connector

Introduced in R2017a
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queryLabelData
Class: driving.connector.Connector
Package: driving.connector

Query for custom label data at current time

Syntax
queryLabelData(connectorObj)

Description
queryLabelData(connectorObj) queries for label data related to the current time in the Ground
Truth Labeler app. The client calls this method using the connectorObj.

Note The client class can call this method.

Input Arguments
connectorObj — Connector object
driving.connector.Connector object

Connector object, specified as a driving.connector.Connector object.

See Also
Ground Truth Labeler | driving.connector.Connector

Introduced in R2017a
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updateLabelerCurrentTime
Class: driving.connector.Connector
Package: driving.connector

Update current time in Ground Truth Labeler app

Syntax
updateLabelerCurrentTime(connectorObj,newTime)

Description
updateLabelerCurrentTime(connectorObj,newTime) updates the current time in the Ground
Truth Labeler app to newTime. The client calls this method using the connectorObj object.

Note The client class can call this method.

Input Arguments
connectorObj — Connector object
driving.connector.Connector object

Connector object, specified as a driving.connector.Connector object.

newTime — Current time for app
real scalar in seconds

Current time for app, specified as a real scalar in seconds. The newTime value sets the current time
in the Ground Truth Labeler app.

See Also
Ground Truth Labeler | driving.connector.Connector

Introduced in R2017a

4 Objects

4-172



radarDetectionGenerator

Generate radar detections for driving scenario

Description
The radarDetectionGenerator System object generates detections from a radar sensor mounted
on an ego vehicle. All detections are referenced to the coordinate system of the ego vehicle. You can
use the radarDetectionGenerator object in a scenario containing actors and trajectories, which
you can create by using a drivingScenario object. The object can simulate real detections with
added random noise and also generate false alarm detections. In addition, you can use the
radarDetectionGenerator object to create input to a multiObjectTracker. When building
scenarios using the Driving Scenario Designer app, the radar sensors mounted on the ego vehicle
are output as radarDetectionGenerator objects.

To generate radar detections:

1 Create the radarDetectionGenerator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?.

Creation

Syntax
sensor = radarDetectionGenerator
sensor = radarDetectionGenerator(Name,Value)

Description

sensor = radarDetectionGenerator creates a radar detection generator object with default
property values.

sensor = radarDetectionGenerator(Name,Value) sets properties on page 4-173 using one or
more name-value pairs. For example,
radarDetectionGenerator('DetectionCoordinates','Sensor
Cartesian','MaxRange',200) creates a radar detection generator that reports detections in the
sensor Cartesian coordinate system and has a maximum detection range of 200 meters. Enclose each
property name in quotes.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

 radarDetectionGenerator

4-173



For more information on changing property values, see System Design in MATLAB Using System
Objects.

SensorIndex — Unique sensor identifier
positive integer

Unique sensor identifier, specified as a positive integer. This property distinguishes detections that
come from different sensors in a multisensor system.
Example: 5
Data Types: double

UpdateInterval — Required time interval between sensor updates
0.1 (default) | positive real scalar

Required time interval between sensor updates, specified as a positive real scalar. The
drivingScenario object calls the radar detection generator at regular time intervals. The radar
detector generates new detections at intervals defined by the UpdateInterval property. The value
of the UpdateInterval property must be an integer multiple of the simulation time interval.
Updates requested from the sensor between update intervals contain no detections. Units are in
seconds.
Example: 5
Data Types: double

SensorLocation — Sensor location
[3.4 0] (default) | [x y] vector

Location of the radar sensor center, specified as an [x y] vector. The SensorLocation and Height
properties define the coordinates of the radar sensor with respect to the ego vehicle coordinate
system. The default value corresponds to a radar mounted at the center of the front grill of a sedan.
Units are in meters.
Example: [4 0.1]
Data Types: double

Height — Radar sensor height above ground plane
0.2 (default) | positive real scalar

Radar sensor height above the ground plane, specified as a positive real scalar. The height is defined
with respect to the vehicle ground plane. The SensorLocation and Height properties define the
coordinates of the radar sensor with respect to the ego vehicle coordinate system. The default value
corresponds to a radar mounted at the center of the front grill of a sedan. Units are in meters.
Example: 0.3
Data Types: double

Yaw — Yaw angle of sensor
0 (default) | real scalar

Yaw angle of radar sensor, specified as a real scalar. The yaw angle is the angle between the center
line of the ego vehicle and the downrange axis of the radar sensor. A positive yaw angle corresponds
to a clockwise rotation when looking in the positive direction of the z-axis of the ego vehicle
coordinate system. Units are in degrees.
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Example: -4
Data Types: double

Pitch — Pitch angle of sensor
0 (default) | real scalar

Pitch angle of sensor, specified as a real scalar. The pitch angle is the angle between the downrange
axis of the radar sensor and the x-y plane of the ego vehicle coordinate system. A positive pitch angle
corresponds to a clockwise rotation when looking in the positive direction of the y-axis of the ego
vehicle coordinate system. Units are in degrees.
Example: 3
Data Types: double

Roll — Roll angle of sensor
0 (default) | real scalar

Roll angle of the radar sensor, specified as a real scalar. The roll angle is the angle of rotation of the
downrange axis of the radar around the x-axis of the ego vehicle coordinate system. A positive roll
angle corresponds to a clockwise rotation when looking in the positive direction of the x-axis of the
coordinate system. Units are in degrees.
Example: -4
Data Types: double

FieldOfView — Azimuth and elevation fields of view of radar sensor
[20 5] | real-valued 1-by-2 vector of positive values

Azimuth and elevation fields of view of radar sensor, specified as a real-valued 1-by-2 vector of
positive values, [azfov elfov]. The field of view defines the angular extent spanned by the sensor.
Each component must lie in the interval (0,180]. Targets outside of the field of view of the radar are
not detected. Units are in degrees.
Example: [14 7]
Data Types: double

MaxRange — Maximum detection range
150 | positive real scalar

Maximum detection range, specified as a positive real scalar. The radar cannot detect a target beyond
this range. Units are in meters.
Example: 200
Data Types: double

RangeRateLimits — Minimum and maximum detection range rates
[-100 100] | real-valued 1-by-2 vector

Minimum and maximum detection range rates, specified as a real-valued 1-by-2 vector. The radar
cannot detect a target out this range rate interval. Units are in meters per second.
Example: [-20 100]
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Dependencies

To enable this property, set the HasRangeRate property to true.
Data Types: double

DetectionProbability — Probability of detecting a target
0.9 | positive real scalar less than or equal to 1

Probability of detecting a target, specified as a positive real scalar less than or equal to one. This
quantity defines the probability of detecting target that has a radar cross-section, ReferenceRCS, at
the reference detection range, ReferenceRange.

FalseAlarmRate — False alarm rate
1e-6 (default) | positive real scalar

False alarm rate within a radar resolution cell, specified as a positive real scalar in the range [10–7,10–
3]. Units are dimensionless.
Example: 1e-5
Data Types: double

ReferenceRange — Reference range for given probability of detection
100 (default) | positive real scalar

Reference range for a given probability of detection, specified as a positive real scalar. The reference
range is the range when a target having a radar cross-section specified by ReferenceRCS is detected
with a probability of specified by DetectionProbability. Units are in meters.
Data Types: double

ReferenceRCS — Reference radar cross-section for given probability of detection
0 (default) | nonnegative real scalar

Reference radar cross-section (RCS) for given probability of detection, specified as a nonnegative real
scalar. The reference RCS is the value at which a target is detected with probability specified by
DetectionProbability. Units are in dBsm.
Data Types: double

RadarLoopGain — Radar loop gain
real scalar

This property is read-only.

Radar loop gain, specified as a real scalar. Radar loop gain is related to the reported signal-to-noise
ratio of the radar, SNR, the target radar cross section, RCS, and target range, R by

SNR = RadarLoopGain + RCS - 40*log10(R)

SNR and RCS units are in dB and dBsm, respectively and range units are in meters. RadarLoopGain
depends on the DetectionProbability, ReferenceRange, ReferenceRCS, and
FalseAlarmRate property values. Units are in dB.
Data Types: double
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AzimuthResolution — Azimuth resolution of radar
4 (default) | positive real scalar

Azimuth resolution of the radar, specified as a positive real scalar. The azimuth resolution defines the
minimum separation in azimuth angle at which the radar can distinguish two targets. The azimuth
resolution is typically the 3dB-downpoint in azimuth angle beamwidth of the radar. Units are in
degrees.
Data Types: double

ElevationResolution — Elevation resolution of radar
10 (default) | positive real scalar

Elevation resolution of the radar, specified as a positive real scalar. The elevation resolution defines
the minimum separation in elevation angle at which the radar can distinguish two targets. The
elevation resolution is typically the 3dB-downpoint in elevation angle beamwidth of the radar. Units
are in degrees.

Dependencies

To enable this property, set the HasElevation property to true.
Data Types: double

RangeResolution — Range resolution of radar
2.5 (default) | positive real scalar

Range resolution of the radar, specified as a positive real scalar. The range resolution defines the
minimum separation in range at which the radar can distinguish between two targets. Units are in
meters.
Data Types: double

RangeRateResolution — Range rate resolution of radar
0.5 (default) | positive real scalar

Range rate resolution of the radar, specified as a positive real scalar. The range rate resolution
defines the minimum separation in range rate at which the radar can distinguish between two
targets. Units are in meters per second.

Dependencies

To enable this property, set the HasRangeRate property to true.
Data Types: double

AzimuthBiasFraction — Azimuth bias fraction
0.1 (default) | nonnegative real scalar

Azimuth bias fraction of the radar, specified as a nonnegative real scalar. The azimuth bias is
expressed as a fraction of the azimuth resolution specified in AzimuthResolution. Units are
dimensionless.
Data Types: double

ElevationBiasFraction — Elevation bias fraction
0.1 (default) | nonnegative real scalar
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Elevation bias fraction of the radar, specified as a nonnegative real scalar. Elevation bias is expressed
as a fraction of the elevation resolution specified in ElevationResolution. Units are
dimensionless.

Dependencies

To enable this property, set the HasElevation property to true.
Data Types: double

RangeBiasFraction — Range bias fraction
0.05 (default) | nonnegative real scalar

Range bias fraction of the radar, specified as a nonnegative real scalar. Range bias is expressed as a
fraction of the range resolution specified in RangeResolution. Units are dimensionless.
Data Types: double

RangeRateBiasFraction — Range rate bias fraction
0.05 (default) | nonnegative real scalar

Range rate bias fraction of the radar, specified as a nonnegative real scalar. Range rate bias is
expressed as a fraction of the range rate resolution specified in RangeRateResolution. Units are
dimensionless.

Dependencies

To enable this property, set the HasRangeRate property to true.
Data Types: double

HasElevation — Enable radar to measure elevation
false (default) | true

Enable the radar to measure target elevation angles, specified as false or true. Set this property to
true to model a radar sensor that can estimate target elevation. Set this property to false to model
a radar sensor that cannot measure elevation.
Data Types: logical

HasRangeRate — Enable radar to measure range rate
false (default) | true

Enable the radar to measure target range rates, specified as false or true. Set this property to
true to model a radar sensor which can estimate target range rate. Set this property to false to
model a radar sensor that cannot measure range rate.
Data Types: logical

HasNoise — Enable adding noise to radar sensor measurements
true (default) | false

Enable adding noise to radar sensor measurements, specified as true or false. Set this property to
true to add noise to the radar measurements. Otherwise, the measurements have no noise. Even if
you set HasNoise to false, the object still computes the MeasurementNoise property of each
detection.
Data Types: logical
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HasFalseAlarms — Enable creating false alarm radar detections
true (default) | false

Enable reporting false alarm radar measurements, specified as true or false. Set this property to
true to report false alarms. Otherwise, only actual detections are reported.
Data Types: logical

HasOcclusion — Enable line-of-sight occlusion
true (default) | false

Enable line-of-sight occlusion, specified as true or false. To generate detections only from objects
for which the radar has a direct line of sight, set this property to true. For example, with this
property enabled, the radar does not generate a detection for a vehicle that is behind another vehicle
and blocked from view.
Data Types: logical

MaxNumDetectionsSource — Source of maximum number of detections reported
'Auto' (default) | 'Property'

Source of maximum number of detections reported by the sensor, specified as 'Auto' or
'Property'. When this property is set to 'Auto', the sensor reports all detections. When this
property is set to 'Property', the sensor reports no more than the number of detections specified
by the MaxNumDetections property.
Data Types: char | string

MaxNumDetections — Maximum number of reported detections
50 (default) | positive integer

Maximum number of detections reported by the sensor, specified as a positive integer. Detections are
reported in order of distance to the sensor until the maximum number is reached.

Dependencies

To enable this property, set the MaxNumDetectionsSource property to 'Property'.
Data Types: double

DetectionCoordinates — Coordinate system of reported detections
'Ego Cartesian' (default) | 'Sensor Cartesian' | 'Sensor Spherical'

Coordinate system of reported detections, specified as one of these values:

• 'Ego Cartesian' — Detections are reported in the ego vehicle Cartesian coordinate system.
• 'Sensor Cartesian' — Detections are reported in the sensor Cartesian coordinate system.
• 'Sensor Spherical' — Detections are reported in a spherical coordinate system. This

coordinate system is centered at the radar and aligned with the orientation of the radar on the ego
vehicle.

Data Types: char | string

ActorProfiles — Actor profiles
structure | array of structures
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Actor profiles, specified as structure or as an array of structures. Each structure contains the physical
and radar characteristics of an actor.

• If ActorProfiles is a single structure, all actors passed into the radarDetectionGenerator
object use this profile.

• If ActorProfiles is an array, each actor passed into the object must have a unique actor profile.

To generate an array of structures for your driving scenario, use the actorProfiles function. The
table shows the valid structure fields. If you do not specify a field, the fields are set to their default
values. If no actors are passed into the object, then the ActorID field is not included.

Field Description
ActorID Scenario-defined actor identifier, specified as a

positive integer.
ClassID Classification identifier, specified as a

nonnegative integer. 0 is reserved for an object of
an unknown or unassigned class.

Length Length of actor, specified as a positive real scalar.
The default is 4.7. Units are in meters.

Width Width of actor, specified as a positive real scalar.
The default is 1.8. Units are in meters.

Height Height of actor, specified as a positive real scalar.
The default is 1.4. Units are in meters.

OriginOffset Offset of actor's rotational center from its
geometric center, specified as an [x,y, z] real-
valued vector. The rotational center, or origin, is
located at the bottom center of the actor. For
vehicles, the rotational center is the point on the
ground beneath the center of the rear axle. The
default is [0 0 0]. Units are in meters.

RCSPattern Radar cross-section pattern of actor, specified as
a numel(RCSElevationAngles)-by-
numel(RCSAzimuthAngles) real-valued matrix.
The default is [10 10; 10 10]. Units are in
decibels per square meter.

RCSAzimuthAngles Azimuth angles corresponding to rows of
RCSPattern, specified as a vector of real values
in the range [–180, 180]. The default is [-180
180]. Units are in degrees.

RCSElevationAngles Elevation angles corresponding to rows of
RCSPattern, specified as a vector of real values
in the range [–90, 90]. The default is [-90 90].
Units are in degrees.

For full definitions of the structure fields, see the actor and vehicle functions.
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Usage

Syntax
dets = sensor(actors,time)
[dets,numValidDets] = sensor(actors,time)
[dets,numValidDets,isValidTime] = sensor(actors,time)

Description

dets = sensor(actors,time) creates radar detections, dets, from sensor measurements taken
of actors at the current simulation time. The object can generate sensor detections for multiple
actors simultaneously. Do not include the ego vehicle as one of the actors.

[dets,numValidDets] = sensor(actors,time) also returns the number of valid detections
reported, numValidDets.

[dets,numValidDets,isValidTime] = sensor(actors,time) also returns a logical value,
isValidTime, indicating that the UpdateInterval time has elapsed.

Input Arguments

actors — Scenario actor poses
structure | structure array

Scenario actor poses, specified as a structure or structure array. Each structure corresponds to an
actor. You can generate these structures using the actorPoses function. You can also create these
structures manually.

Field Description
ActorID Scenario-defined actor identifier, specified as a

positive integer.
Position Position of actor, specified as a real-valued vector

of the form [x, y, z]. Units are in meters.
Velocity Velocity (v) of actor in the x-, y-, and z-direction,

specified as a real-valued vector of the form [vx,
vy, vz]. Units are in meters per second.

Roll Roll angle of actor, specified as a real-valued
scalar. Units are in degrees.

Pitch Pitch angle of actor, specified as a real-valued
scalar. Units are in degrees.

Yaw Yaw angle of actor, specified as a real-valued
scalar. Units are in degrees.

AngularVelocity Angular velocity (ω) of actor in the x-, y-, and z-
direction, specified as a real-valued vector of the
form [ωx, ωy, ωz]. Units are in degrees per second.

For full definitions of the structure fields, see the actor and vehicle functions.

time — Current simulation time
nonnegative real scalar
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Current simulation time, specified as a nonnegative real scalar. The drivingScenario object calls
the radar detection generator at regular time intervals. The radar detector generates new detections
at intervals defined by the UpdateInterval property. The value of the UpdateInterval property
must be an integer multiple of the simulation time interval. Updates requested from the sensor
between update intervals contain no detections. Units are in seconds.
Example: 10.5
Data Types: double

Output Arguments

dets — Radar sensor detections
cell array of objectDetection objects

Radar sensor detections, returned as a cell array of objectDetection objects. Each object contains
these fields:

Property Definition
Time Measurement time
Measurement Object measurements
MeasurementNoise Measurement noise covariance matrix
SensorIndex Unique ID of the sensor
ObjectClassID Object classification
ObjectAttributes Additional information passed to tracker
MeasurementParameters Parameters used by initialization functions of

nonlinear Kalman tracking filters

For Cartesian coordinates, Measurement, MeasurementNoise, and MeasurementParameters are
reported in the coordinate system specified by the DetectionCoordinates property of the
radarDetectionGenerator.

For spherical coordinates, Measurement and MeasurementNoise are reported in the spherical
coordinate system based on the sensor Cartesian coordinate system. MeasurementParameters are
reported in sensor Cartesian coordinates.
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Measurement

DetectionCoordinates Property Measurement and Measurement Noise
Coordinates

'Ego Cartesian' Coordinate Dependence on HasRangeRate

HasRangeRate Coordinates
true [x;y;z;vx;vy;vz]
false [x;y;z]

'Sensor Cartesian'

'Sensor Spherical' Coordinate Dependence on HasRangeRate
and HasElevation

HasRangeRat
e

HasElevation Coordinates

true true [az;el;rng;
rr]

true false [az;rng;rr]
false true [az;el;rng]
false false [az;rng]

MeasurementParameters

Parameter Definition
Frame Enumerated type indicating the frame used to

report measurements. When Frame is set to
'rectangular', detections are reported in
Cartesian coordinates. When Frame is set
'spherical', detections are reported in
spherical coordinates.

OriginPosition 3-D vector offset of the sensor origin from the ego
vehicle origin. The vector is derived from the
SensorLocation and Height properties
specified in the radarDetectionGenerator.

Orientation Orientation of the vision sensor coordinate
system with respect to the ego vehicle coordinate
system. The orientation is derived from the Yaw,
Pitch, and Roll properties of the
radarDetectionGenerator.

HasVelocity Indicates whether measurements contain velocity
or range rate components.

HasElevation Indicates whether measurements contain
elevation components.
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ObjectAttributes

Attribute Definition
TargetIndex Identifier of the actor, ActorID, that generated

the detection. For false alarms, this value is
negative.

SNR Detection signal-to-noise ratio in dB.

numValidDets — Number of detections
nonnegative integer

Number of detections, returned as a nonnegative integer.

• When the MaxNumDetectionsSource property is set to 'Auto', numValidDets is set to the
length of dets.

• When the MaxNumDetectionsSource property is set to 'Property', dets is a cell array with
length determined by the MaxNumDetections property. No more than MaxNumDetections
number of detections are returned. If the number of detections is fewer than
MaxNumDetections, the first numValidDets elements of dets hold valid detections. The
remaining elements of dets are set to the default value.

Data Types: double

isValidTime — Valid detection time
0 | 1

Valid detection time, returned as 0 or 1. isValidTime is 0 when detection updates are requested at
times that are between update intervals specified by UpdateInterval.
Data Types: logical

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to radarDetectionGenerator
isLocked Determine if System object is in use

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples
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Generate Radar Detections of Multiple Vehicles

Generate detections using a forward-facing automotive radar mounted on an ego vehicle. Assume
that there are three targets:

• Vehicle 1 is in the center lane, directly in front of the ego vehicle, and driving at the same speed.
• Vehicle 2 is in the left lane and driving faster than the ego vehicle by 12 kilometers per hour.
• Vehicle 3 is in the right lane and driving slower than the ego vehicle by 5 kilometers per hour.

All positions, velocities, and measurements are relative to the ego vehicle. Run the simulation for ten
steps.

dt = 0.1;
pos1 = [150 0 0];
pos2 = [160 10 0];
pos3 = [130 -10 0];
vel1 = [0 0 0];
vel2 = [12*1000/3600 0 0];
vel3 = [-5*1000/3600 0 0];
car1 = struct('ActorID',1,'Position',pos1,'Velocity',vel1);
car2 = struct('ActorID',2,'Position',pos2,'Velocity',vel2);
car3 = struct('ActorID',3,'Position',pos3,'Velocity',vel3);

Create an automotive radar sensor that is offset from the ego vehicle. By default, the sensor location
is at (3.4,0) meters from the vehicle center and 0.2 meters above the ground plane. Turn off the range
rate computation so that the radar sensor measures position only.

radar = radarDetectionGenerator('DetectionCoordinates','Sensor Cartesian', ...
    'MaxRange',200,'RangeResolution',10,'AzimuthResolution',10, ...
    'FieldOfView',[40 15],'UpdateInterval',dt,'HasRangeRate',false);
tracker = multiObjectTracker('FilterInitializationFcn',@initcvkf, ...
    'ConfirmationThreshold',[3 4],'DeletionThreshold',[6 6]);

Generate detections with the radar from the non-ego vehicles. The output detections form a cell array
and can be passed directly in to the multiObjectTracker.

simTime = 0;
nsteps = 10;
for k = 1:nsteps
    dets = radar([car1 car2 car3],simTime);
    [confirmedTracks,tentativeTracks,allTracks] = updateTracks(tracker,dets,simTime);

Move the cars one time step and update the multi-object tracker.

    simTime = simTime + dt;
    car1.Position = car1.Position + dt*car1.Velocity;
    car2.Position = car2.Position + dt*car2.Velocity;
    car3.Position = car3.Position + dt*car3.Velocity;
end

Use birdsEyePlot to create an overhead view of the detections. Plot the sensor coverage area.
Extract the X and Y positions of the targets by converting the Measurement fields of the cell array
into a MATLAB array. Display the detections on the bird's-eye plot.

BEplot = birdsEyePlot('XLim',[0 220],'YLim',[-75 75]);
caPlotter = coverageAreaPlotter(BEplot,'DisplayName','Radar coverage area');
plotCoverageArea(caPlotter,radar.SensorLocation,radar.MaxRange, ...
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    radar.Yaw,radar.FieldOfView(1))
detPlotter = detectionPlotter(BEplot,'DisplayName','Radar detections');
detPos = cellfun(@(d)d.Measurement(1:2),dets,'UniformOutput',false);
detPos = cell2mat(detPos')';
if ~isempty(detPos)
    plotDetection(detPlotter,detPos)
end

Generate Radar Detections of Occluded Targets

Model the effects of occlusion when generating radar detections from a
radarDetectionGenerator System object™.

Create two cars. Position the first car 40 meters away from the sensor. Position the second car 10
meters directly behind the first car.

car1 = struct('ActorID',1,'Position',[40 0 0]);
car2 = struct('ActorID',2,'Position',[50 0 0]);

Create a radar detection generator System object, radarSensor, with default values. Use the
System object to generate detections.

radarSensor = radarDetectionGenerator;
simTime = 0; % start of simulation
[dets,numValidDets] = radarSensor([car1 car2],simTime);
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Display the coverage area of the radar detection generator on a bird's-eye plot.

bep = birdsEyePlot('XLim',[0 60],'YLim',[-15 15]);
caPlotter = coverageAreaPlotter(bep,'DisplayName', ...
    'Radar coverage area');
plotCoverageArea(caPlotter,radarSensor.SensorLocation, ...
    radarSensor.MaxRange,radarSensor.Yaw, ...
    radarSensor.FieldOfView(1));

Extract the (X,Y) positions of the targets by converting the (X,Y) values of the Measurement field of
the cell array into a MATLAB array. Then, display the detections.

if numValidDets > 0
    detPlotter = detectionPlotter(bep,'DisplayName','Radar detections');
    detPos = cellfun(@(d)d.Measurement(1:2),dets,'UniformOutput',false);
    detPos = cell2mat(detPos')';
    plotDetection(detPlotter,detPos)
end
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By default, the radar detection generator excludes targets that are occluded by other objects.
Therefore, the radar detects the nearest target but not the target directly behind it. To include the
occluded target in the detections, release the radar detection generator, disable line-of-sight
occlusion, and generate detections again. Display the detections.

release(radarSensor)
radarSensor.HasOcclusion = false;
[detsNoOcclusion,numValidDets] = radarSensor([car1 car2],simTime);
if numValidDets > 0
    detPos = cellfun(@(d)d.Measurement(1:2),detsNoOcclusion,'UniformOutput',false);
    detPos = cell2mat(detPos')';
    plotDetection(detPlotter, detPos)
end
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Release the radar detection generator.

release(radarSensor)

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
drivingScenario | lidarPointCloudGenerator | multiObjectTracker | objectDetection |
visionDetectionGenerator

Functions
actorPoses | actorProfiles

Apps
Driving Scenario Designer
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Topics
“Model Radar Sensor Detections”
“Track-Level Fusion of Radar and Lidar Data”
“Coordinate Systems in Automated Driving Toolbox”

Introduced in R2017a
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visionDetectionGenerator

Generate vision detections for driving scenario

Description
The visionDetectionGenerator System object generates detections from a monocular camera
sensor mounted on an ego vehicle. All detections are referenced to the coordinate system of the ego
vehicle or the vehicle-mounted sensor. You can use the visionDetectionGenerator object in a
scenario containing actors and trajectories, which you can create by using a drivingScenario
object. Using a statistical mode, the generator can simulate real detections with added random noise
and also generate false alarm detections. In addition, you can use the visionDetectionGenerator
object to create input to a multiObjectTracker. When building scenarios using the Driving
Scenario Designer app, the camera sensors mounted on the ego vehicle are output as
visionDetectionGenerator objects.

To generate visual detections:

1 Create the visionDetectionGenerator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?.

Creation

Syntax
sensor = visionDetectionGenerator
sensor = visionDetectionGenerator(cameraConfig)
sensor = visionDetectionGenerator(Name,Value)

Description

sensor = visionDetectionGenerator creates a vision detection generator object with default
property values.

sensor = visionDetectionGenerator(cameraConfig) creates a vision detection generator
object using the monoCamera configuration object, cameraConfig.

sensor = visionDetectionGenerator(Name,Value) sets properties on page 4-192 using one
or more name-value pairs. For example,
visionDetectionGenerator('DetectionCoordinates','Sensor
Cartesian','MaxRange',200) creates a vision detection generator that reports detections in the
sensor Cartesian coordinate system and has a maximum detection range of 200 meters. Enclose each
property name in quotes.

 visionDetectionGenerator

4-191



Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

DetectorOutput — Types of detections generated by sensor
'Objects only' (default) | 'Lanes only' | 'Lanes with occlusion' | 'Lanes and
objects'

Types of detections generated by the sensor, specified as 'Objects only', 'Lanes only', 'Lanes
with occlusion', or 'Lanes and objects'.

• When set to 'Objects only', only actors are detected.
• When set to 'Lanes only', only lanes are detected.
• When set to 'Lanes with occlusion', only lanes are detected but actors in the camera field of

view can impair the sensor ability to detect lanes.
• When set to 'Lanes and objects', the sensor generates both object detections and occluded

lane detections.

Example: 'Lanes with occlusion'
Data Types: char | string

SensorIndex — Unique sensor identifier
positive integer

Unique sensor identifier, specified as a positive integer. This property distinguishes detections that
come from different sensors in a multi-sensor system.
Example: 5
Data Types: double

UpdateInterval — Required time interval between sensor updates
0.1 | positive real scalar

Required time interval between sensor updates, specified as a positive real scalar. The
drivingScenario object calls the vision detection generator at regular time intervals. The vision
detector generates new detections at intervals defined by the UpdateInterval property. The value
of the UpdateInterval property must be an integer multiple of the simulation time interval.
Updates requested from the sensor between update intervals contain no detections. Units are in
seconds.
Example: 5
Data Types: double

SensorLocation — Sensor location
[3.4 0] | [x y] vector

Location of the vision sensor center, specified as an [x y]. The SensorLocation and Height
properties define the coordinates of the vision sensor with respect to the ego vehicle coordinate
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system. The default value corresponds to a forward-facing sensor mounted on a vehicle dashboard.
Units are in meters.
Example: [4 0.1]
Data Types: double

Height — Sensor height above ground plane
1.1 | positive real scalar

Sensor height above the vehicle ground plane, specified as a positive real scalar. The default value
corresponds to a forward-facing vision sensor mounted on the dashboard of a sedan. Units are in
meters.
Example: 1.5
Data Types: double

Yaw — Yaw angle of vision sensor
0 | real scalar

Yaw angle of vision sensor, specified as a real scalar. The yaw angle is the angle between the center
line of the ego vehicle and the down-range axis of the vision sensor. A positive yaw angle corresponds
to a clockwise rotation when looking in the positive direction of the z-axis of the ego vehicle
coordinate system. Units are in degrees.
Example: -4
Data Types: double

Pitch — Pitch angle of vision sensor
0 | real scalar

Pitch angle of vision sensor, specified as a real scalar. The pitch angle is the angle between the down-
range axis of the vision sensor and the x-y plane of the ego vehicle coordinate system. A positive pitch
angle corresponds to a clockwise rotation when looking in the positive direction of the y-axis of the
ego vehicle coordinate system. Units are in degrees.
Example: 3
Data Types: double

Roll — Roll angle of vision sensor
0 | real scalar

Roll angle of the vision sensor, specified as a real scalar. The roll angle is the angle of rotation of the
down-range axis of the vision sensor around the x-axis of the ego vehicle coordinate system. A
positive roll angle corresponds to a clockwise rotation when looking in the positive direction of the x-
axis of the coordinate system. Units are in degrees.
Example: -4
Data Types: double

Intrinsics — Intrinsic calibration parameters of vision sensor
cameraIntrinsics([800 800],[320 240],[480 640]) (default) | cameraIntrinsics object

Intrinsic calibration parameters of vision sensor, specified as a cameraIntrinsics object.

 visionDetectionGenerator

4-193



FieldOfView — Angular field of view of vision sensor
real-valued 1-by-2 vector of positive values

This property is read-only.

Angular field of view of vision sensor, specified as a real-valued 1-by-2 vector of positive values,
[azfov,elfov]. The field of view defines the azimuth and elevation extents of the sensor image.
Each component must lie in the interval from 0 degrees to 180 degrees. The field of view is derived
from the intrinsic parameters of the vision sensor. Targets outside of the angular field of view of the
sensor are not detected. Units are in degrees.
Data Types: double

MaxRange — Maximum detection range
150 | positive real scalar

Maximum detection range, specified as a positive real scalar. The sensor cannot detect a target
beyond this range. Units are in meters.
Example: 200
Data Types: double

MaxSpeed — Maximum detectable object speed
100 (default) | nonnegative real scalar

Maximum detectable object speed, specified as a nonnegative real scalar. Units are in meters per
second.
Example: 10.0
Data Types: double

MaxAllowedOcclusion — Maximum allowed occlusion of an object
0.5 (default) | real scalar in the range (0 1]

Maximum allowed occlusion of an object, specified as a real scalar in the range [0 1]. Occlusion is the
fraction of the total surface area of an object not visible to the sensor. A value of one indicates that
the object is fully occluded. Units are dimensionless.
Example: 0.2
Data Types: double

DetectionProbability — Probability of detection
0.9 (default) | positive real scalar less than or equal to 1

Probability of detecting a target, specified as a positive real scalar less than or equal to 1. This
quantity defines the probability that the sensor detects a detectable object. A detectable object is an
object that satisfies the minimum detectable size, maximum range, maximum speed, and maximum
allowed occlusion constraints.
Example: 0.95
Data Types: double

FalsePositivesPerImage — Number of false detections per image
0.1 (default) | nonnegative real scalar
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Number of false detections that the vision sensor generates for each image, specified as a
nonnegative real scalar.
Example: 2
Data Types: double

MinObjectImageSize — Minimum image size of detectable object
[15 15] (default) | 1-by-2 vector of positive values

Minimum height and width of an object that the vision sensor detects within an image, specified as a
[minHeight,minWidth] vector of positive values. The 2-D projected height of an object must be
greater than or equal to minHeight. The projected width of an object must be greater than or equal
to minWidth. Units are in pixels.
Example: [30 20]
Data Types: double

BoundingBoxAccuracy — Bounding box accuracy
5 (default) | positive real scalar

Bounding box accuracy, specified as a positive real scalar. This quantity defines the accuracy with
which the detector can match a bounding box to a target. Units are in pixels.
Example: 4
Data Types: double

ProcessNoiseIntensity — Noise intensity used for filtering position and velocity
measurements
5 (default) | positive real scalar

Noise intensity used for filtering position and velocity measurements, specified as a positive real
scalar. Noise intensity defines the standard deviation of the process noise of the internal constant-
velocity Kalman filter used in a vision sensor. The filter models the process noise using a piecewise-
constant white noise acceleration model. Noise intensity is typically of the order of the maximum
acceleration magnitude expected for a target. Units are in m/s2.
Example: 2.5
Data Types: double

HasNoise — Enable adding noise to vision sensor measurements
true (default) | false

Enable adding noise to vision sensor measurements, specified as true or false. Set this property to
true to add noise to the sensor measurements. Otherwise, the measurements have no noise. Even if
you set HasNoise to false, the object still computes the MeasurementNoise property of each
detection.
Data Types: logical

MaxNumDetectionsSource — Source of maximum number of detections reported
'Auto' (default) | 'Property'

Source of maximum number of detections reported by the sensor, specified as 'Auto' or
'Property'. When this property is set to 'Auto', the sensor reports all detections. When this
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property is set to 'Property', the sensor reports no more than the number of detections specified
by the MaxNumDetections property.
Data Types: char | string

MaxNumDetections — Maximum number of reported detections
50 (default) | positive integer

Maximum number of detections reported by the sensor, specified as a positive integer. The detections
closest to the sensor are reported.
Dependencies

To enable this property, set the MaxNumDetectionsSource property to 'Property'.
Data Types: double

DetectionCoordinates — Coordinate system of reported detections
'Ego Cartesian' (default) | 'Sensor Cartesian'

Coordinate system of reported detections, specified as one of these values:

• 'Ego Cartesian' — Detections are reported in the ego vehicle Cartesian coordinate system.
• 'Sensor Cartesian' — Detections are reported in the sensor Cartesian coordinate system.

Data Types: char | string

LaneUpdateInterval — Required time interval between lane detection updates
0.1 (default) | positive real scalar

Required time interval between lane detection updates, specified as a positive real scalar. The
drivingScenario object calls the vision detection generator at regular time intervals. The vision
detector generates new lane detections at intervals defined by this property which must be an integer
multiple of the simulation time interval. Updates requested from the sensor between update intervals
contain no lane detections. Units are in seconds.
Example: 0.4
Data Types: double

MinLaneImageSize — Minimum lane size in image
[20 5] (default) | 1-by-2 real-valued vector

Minimum size of a projected lane marking that can be detected by the sensor after accounting for
curvature, specified as a 1-by-2 real-valued vector, [minHeight minWidth]. Lane markings must
exceed both of these values to be detected. This property is used only when detecting lanes. Units are
in pixels.
Example: [5,7]
Data Types: double

LaneBoundaryAccuracy — Accuracy of lane boundaries
3 | positive real scalar

Accuracy of lane boundaries, specified as a positive real scalar. This property defines the accuracy
with which the lane sensor can place a lane boundary. Units are in pixels. This property is used only
when detecting lanes.
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MaxNumLanesSource — Source of maximum number of reported lanes
'Property' (default) | 'Auto'

Source of maximum number of reported lanes, specified as 'Auto' or 'Property'. When specified
as 'Auto', the maximum number of lanes is computed automatically. When specified as
'Property', use the MaxNumLanes property to set the maximum number or lanes.
Data Types: char | string

MaxNumLanes — Maximum number of reported lanes
30 (default) | positive integer

Maximum number of reported lanes, specified as a positive integer.

Dependencies

To enable this property, set the MaxNumLanesSource property to 'Property'.
Data Types: char | string

ActorProfiles — Actor profiles
structure | array of structures

Actor profiles, specified as structure or as an array of structures. Each structure contains the physical
and radar characteristics of an actor.

• If ActorProfiles is a single structure, all actors passed into the visionDetectionGenerator
object use this profile.

• If ActorProfiles is an array, each actor passed into the object must have a unique actor profile.

To generate an array of structures for your driving scenario, use the actorProfiles function. The
table shows the valid structure fields. If you do not specify a field, the fields are set to their default
values. If no actors are passed into the object, then the ActorID field is not included.

Field Description
ActorID Scenario-defined actor identifier, specified as a

positive integer.
ClassID Classification identifier, specified as a

nonnegative integer. 0 is reserved for an object of
an unknown or unassigned class.

Length Length of actor, specified as a positive real scalar.
The default is 4.7. Units are in meters.

Width Width of actor, specified as a positive real scalar.
The default is 1.8. Units are in meters.

Height Height of actor, specified as a positive real scalar.
The default is 1.4. Units are in meters.
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Field Description
OriginOffset Offset of actor's rotational center from its

geometric center, specified as an [x,y, z] real-
valued vector. The rotational center, or origin, is
located at the bottom center of the actor. For
vehicles, the rotational center is the point on the
ground beneath the center of the rear axle. The
default is [0 0 0]. Units are in meters.

RCSPattern Radar cross-section pattern of actor, specified as
a numel(RCSElevationAngles)-by-
numel(RCSAzimuthAngles) real-valued matrix.
The default is [10 10; 10 10]. Units are in
decibels per square meter.

RCSAzimuthAngles Azimuth angles corresponding to rows of
RCSPattern, specified as a vector of real values
in the range [–180, 180]. The default is [-180
180]. Units are in degrees.

RCSElevationAngles Elevation angles corresponding to rows of
RCSPattern, specified as a vector of real values
in the range [–90, 90]. The default is [-90 90].
Units are in degrees.

For full definitions of the structure fields, see the actor and vehicle functions.

Usage

Syntax
dets = sensor(actors,time)
lanedets = sensor(laneboundaries,time)
lanedets = sensor(actors,laneboundaries,time)
[ ___ ,numValidDets] = sensor( ___ )
[ ___ ,numValidDetsisValidTime] = sensor( ___ )
[dets,numValidDets,isValidTime,lanedets,numValidLaneDets,isValidLaneTime] =
sensor(actors,laneboundaries,time)

Description

dets = sensor(actors,time) creates visual detections, dets, from sensor measurements taken
of actors at the current simulation time. The object can generate sensor detections for multiple
actors simultaneously. Do not include the ego vehicle as one of the actors.

To enable this syntax, set DetectionOutput to 'Objects only'.

lanedets = sensor(laneboundaries,time) generates lane detections, lanedets, from lane
boundary structures, laneboundaries.

To enable this syntax set DetectionOutput to 'Lanes only'. The lane detector generates lane
boundaries at intervals specified by the LaneUpdateInterval property.
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lanedets = sensor(actors,laneboundaries,time) generates lane detections, lanedets,
from lane boundary structures, laneboundaries.

To enable this syntax, set DetectionOutput to 'Lanes with occlusion'. The lane detector
generates lane boundaries at intervals specified by the LaneUpdateInterval property.

[ ___ ,numValidDets] = sensor( ___ ) also returns the number of valid detections reported,
numValidDets.

[ ___ ,numValidDetsisValidTime] = sensor( ___ ) also returns a logical value, isValidTime,
indicating that the UpdateInterval time to generate detections has elapsed.

[dets,numValidDets,isValidTime,lanedets,numValidLaneDets,isValidLaneTime] =
sensor(actors,laneboundaries,time) returns both object detections, dets, and lane
detections lanedets. This syntax also returns the number of valid lane detections reported,
numValidLaneDets, and a flag, isValidLaneTime, indicating whether the required simulation
time to generate lane detections has elapsed.

To enable this syntax, set DetectionOutput to 'Lanes and objects'.

Input Arguments

actors — Scenario actor poses
structure | structure array

Scenario actor poses, specified as a structure or structure array. Each structure corresponds to an
actor. You can generate this structure using the actorPoses function. You can also create these
structures manually. The table shows the fields that the object uses to generate detections. All other
fields are ignored.

Field Description
ActorID Scenario-defined actor identifier, specified as a

positive integer.
Position Position of actor, specified as a real-valued vector

of the form [x, y, z]. Units are in meters.
Velocity Velocity (v) of actor in the x-, y-, and z-direction,

specified as a real-valued vector of the form [vx,
vy, vz]. Units are in meters per second.

Roll Roll angle of actor, specified as a real-valued
scalar. Units are in degrees.

Pitch Pitch angle of actor, specified as a real-valued
scalar. Units are in degrees.

Yaw Yaw angle of actor, specified as a real-valued
scalar. Units are in degrees.

AngularVelocity Angular velocity (ω) of actor in the x-, y-, and z-
direction, specified as a real-valued vector of the
form [ωx, ωy, ωz]. Units are in degrees per second.

For full definitions of the structure fields, see the actor and vehicle functions.
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Dependencies

To enable this argument, set the DetectorOutput property to 'Objects only', 'Lanes with
occlusion', or 'Lanes and objects'.

laneboundaries — Lane boundaries
array of lane boundary structures

Lane boundaries, specified as an array of lane boundary structures. The table shows the fields for
each structure.

Field Description
Coordinates Lane boundary coordinates, specified as a real-

valued N-by-3 matrix, where N is the number of
lane boundary coordinates. Lane boundary
coordinates define the position of points on the
boundary at specified longitudinal distances away
from the ego vehicle, along the center of the
road.

• In MATLAB, specify these distances by using
the 'XDistance' name-value pair argument
of the laneBoundaries function.

• In Simulink, specify these distances by using
the Distances from ego vehicle for
computing boundaries (m) parameter of
the Scenario Reader block or the Distance
from parent for computing lane
boundaries parameter of the Simulation 3D
Vision Detection Generator block.

This matrix also includes the boundary
coordinates at zero distance from the ego vehicle.
These coordinates are to the left and right of the
ego-vehicle origin, which is located under the
center of the rear axle. Units are in meters.

Curvature Lane boundary curvature at each row of the
Coordinates matrix, specified as a real-valued
N-by-1 vector. N is the number of lane boundary
coordinates. Units are in radians per meter.

CurvatureDerivative Derivative of lane boundary curvature at each
row of the Coordinates matrix, specified as a
real-valued N-by-1 vector. N is the number of lane
boundary coordinates. Units are in radians per
square meter.

HeadingAngle Initial lane boundary heading angle, specified as
a real scalar. The heading angle of the lane
boundary is relative to the ego vehicle heading.
Units are in degrees.
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LateralOffset Distance of the lane boundary from the ego
vehicle position, specified as a real scalar. An
offset to a lane boundary to the left of the ego
vehicle is positive. An offset to the right of the
ego vehicle is negative. Units are in meters.

BoundaryType Type of lane boundary marking, specified as one
of these values:

• 'Unmarked' — No physical lane marker
exists

• 'Solid' — Single unbroken line
• 'Dashed' — Single line of dashed lane

markers
• 'DoubleSolid' — Two unbroken lines
• 'DoubleDashed' — Two dashed lines
• 'SolidDashed' — Solid line on the left and a

dashed line on the right
• 'DashedSolid' — Dashed line on the left

and a solid line on the right
Strength Saturation strength of the lane boundary

marking, specified as a real scalar from 0 to 1. A
value of 0 corresponds to a marking whose color
is fully unsaturated. The marking is gray. A value
of 1 corresponds to a marking whose color is fully
saturated.

Width Lane boundary width, specified as a positive real
scalar. In a double-line lane marker, the same
width is used for both lines and for the space
between lines. Units are in meters.

Length Length of dash in dashed lines, specified as a
positive real scalar. In a double-line lane marker,
the same length is used for both lines.

Space Length of space between dashes in dashed lines,
specified as a positive real scalar. In a dashed
double-line lane marker, the same space is used
for both lines.

Dependencies

To enable this argument, set the DetectorOutput property to 'Lanes only', 'Lanes with
occlusion', or 'Lanes and objects'.
Data Types: struct

time — Current simulation time
positive real scalar

Current simulation time, specified as a positive real scalar. The drivingScenario object calls the
vision detection generator at regular time intervals. The vision detector generates new detections at
intervals defined by the UpdateInterval property. The values of the UpdateInterval and
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LanesUpdateInterval properties must be an integer multiple of the simulation time interval.
Updates requested from the sensor between update intervals contain no detections. Units are in
seconds.
Example: 10.5
Data Types: double

Output Arguments

dets — Object detections
cell array of objectDetection objects

Object detections, returned as a cell array of objectDetection objects. Each object contains these
fields:

Property Definition
Time Measurement time
Measurement Object measurements
MeasurementNoise Measurement noise covariance matrix
SensorIndex Unique ID of the sensor
ObjectClassID Object classification
ObjectAttributes Additional information passed to tracker
MeasurementParameters Parameters used by initialization functions of

nonlinear Kalman tracking filters

Measurement, MeasurementNoise, and MeasurementParameters are reported in the coordinate
system specified by the DetectionCoordinates property of the visionDetectionGenerator.

Measurement

DetectionCoordinates Property Measurement and Measurement Noise
Coordinates

'Ego Cartesian' [x;y;z;vx;vy;vz]
'Sensor Cartesian'
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MeasurementParameters

Parameter Definition
Frame Enumerated type indicating the frame used to

report measurements. When Frame is set to
'rectangular', detections are reported in
Cartesian coordinates. When Frame is set
'spherical', detections are reported in
spherical coordinates.

OriginPosition 3-D vector offset of the sensor origin from the ego
vehicle origin. The vector is derived from the
SensorLocation and Height properties
specified in the visionDetectionGenerator.

Orientation Orientation of the vision sensor coordinate
system with respect to the ego vehicle coordinate
system. The orientation is derived from the Yaw,
Pitch, and Roll properties of the
visionDetectionGenerator.

HasVelocity Indicates whether measurements contain velocity
or range rate components.

ObjectAttributes

Attribute Definition
TargetIndex Identifier of the actor, ActorID, that generated

the detection. For false alarms, this value is
negative.

numValidDets — Number of detections
nonnegative integer

Number of detections returned, defined as a nonnegative integer.

• When the MaxNumDetectionsSource property is set to 'Auto', numValidDets is set to the
length of dets.

• When the MaxNumDetectionsSource is set to 'Property', dets is a cell array with length
determined by the MaxNumDetections property. No more than MaxNumDetections number of
detections are returned. If the number of detections is fewer than MaxNumDetections, the first
numValidDets elements of dets hold valid detections. The remaining elements of dets are set
to the default value.

.
Data Types: double

isValidTime — Valid detection time
0 | 1

Valid detection time, returned as 0 or 1. isValidTime is 0 when detection updates are requested at
times that are between update intervals specified by UpdateInterval.
Data Types: logical
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lanedets — Lane boundary detections
lane boundary detection structure

Lane boundary detections, returned as an array structures. The fields of the structure are:

Lane Boundary Detection Structure

Field Description
Time Lane detection time
SensorIndex Unique identifier of sensor
LaneBoundaries Array of clothoidLaneBoundary objects.

numValidLaneDets — Number of detections
nonnegative integer

Number of lane detections returned, defined as a nonnegative integer.

• When the MaxNumLanesSource property is set to 'Auto', numValidLaneDets is set to the
length of lanedets.

• When the MaxNumLanesSource is set to 'Property', lanedets is a cell array with length
determined by the MaxNumLanes property. No more than MaxNumLanes number of lane
detections are returned. If the number of detections is fewer than MaxNumLanes, the first
numValidLaneDetections elements of lanedets hold valid lane detections. The remaining
elements of lanedets are set to the default value.

.
Data Types: double

isValidLaneTime — Valid lane detection time
0 | 1

Valid lane detection time, returned as 0 or 1. isValidLaneTime is 0 when lane detection updates
are requested at times that are between update intervals specified by LaneUpdateInterval.
Data Types: logical

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to visionDetectionGenerator
isLocked Determine if System object is in use

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object
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Examples

Generate Visual Detections of Multiple Vehicles

Generate detections using a forward-facing automotive vision sensor mounted on an ego vehicle.
Assume that there are two target vehicles:

• Vehicle 1 is directly in front of the ego vehicle and moving at the same speed.
• Vehicle 2 vehicle is driving faster than the ego vehicle by 12 kph in the left lane.

All positions, velocities, and measurements are relative to the ego vehicle. Run the simulation for ten
steps.

dt = 0.1;
car1 = struct('ActorID',1,'Position',[100 0 0],'Velocity', [5*1000/3600 0 0]);
car2 = struct('ActorID',2,'Position',[150 10 0],'Velocity',[12*1000/3600 0 0]);

Create an automotive vision sensor having a location offset from the ego vehicle. By default, the
sensor location is at (3.4,0) meters from the vehicle center and 1.1 meters above the ground plane..

sensor = visionDetectionGenerator('DetectionProbability',1, ...
    'MinObjectImageSize',[5 5],'MaxRange',200,'DetectionCoordinates','Sensor Cartesian');
tracker = multiObjectTracker('FilterInitializationFcn',@initcvkf, ...
    'ConfirmationParameters',[3 4],'NumCoastingUpdates',6);

Generate visual detections for the non-ego actors as they move. The output detections form a cell
array. Extract only position information from the detections to pass to the multiObjectTracker,
which expects only position information. The Update the tracker for each new set of detections.

simTime = 0;
nsteps = 10;
for k = 1:nsteps
    dets = sensor([car1 car2],simTime);
    n = size(dets,1);
    for k = 1:n
        meas = dets{k}.Measurement(1:3);
        dets{k}.Measurement = meas;
        measmtx = dets{k}.MeasurementNoise(1:3,1:3);
        dets{k}.MeasurementNoise = measmtx;
    end
    [confirmedTracks,tentativeTracks,allTracks] = updateTracks(tracker,dets,simTime);
    simTime = simTime + dt;
    car1.Position = car1.Position + dt*car1.Velocity;
    car2.Position = car2.Position + dt*car2.Velocity;
end

Use birdsEyePlot to create an overhead view of the detections. Plot the sensor coverage area.
Extract the x and y positions of the targets by converting the Measurement fields of the cell into a
MATLAB® array. Then, plot the detections using birdsEyePlot functions.

BEplot = birdsEyePlot('XLim',[0 220],'YLim',[-75 75]);
caPlotter = coverageAreaPlotter(BEplot,'DisplayName','Vision Coverage Area');
plotCoverageArea(caPlotter,sensor.SensorLocation,sensor.MaxRange, ...
    sensor.Yaw,sensor.FieldOfView(1))
detPlotter = detectionPlotter(BEplot,'DisplayName','Vision Detections');
detPos = cellfun(@(d)d.Measurement(1:2),dets,'UniformOutput',false);
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detPos = cell2mat(detPos')';
if ~isempty(detPos)
    plotDetection(detPlotter,detPos)
end

Generate Visual Detections from Monocular Camera

Create a vision sensor by using a monocular camera configuration, and generate detections from that
sensor.

Specify the intrinsic parameters of the camera and create a monoCamera object from these
parameters. The camera is mounted on top of an ego vehicle at a height of 1.5 meters above the
ground and a pitch of 1 degree toward the ground.

focalLength = [800 800];
principalPoint = [320 240];
imageSize = [480 640];
intrinsics = cameraIntrinsics(focalLength,principalPoint,imageSize);

height = 1.5;
pitch = 1;
monoCamConfig = monoCamera(intrinsics,height,'Pitch',pitch);

Create a vision detection generator using the monocular camera configuration.
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visionSensor = visionDetectionGenerator(monoCamConfig);

Generate a driving scenario with an ego vehicle and two target cars. Position the first target car 30
meters directly in front of the ego vehicle. Position the second target car 20 meters in front of the ego
vehicle but offset to the left by 3 meters.

scenario = drivingScenario;
egoVehicle = vehicle(scenario,'ClassID',1);
targetCar1 = vehicle(scenario,'ClassID',1,'Position',[30 0 0]);
targetCar2 = vehicle(scenario,'ClassID',1,'Position',[20 3 0]);

Use a bird's-eye plot to display the vehicle outlines and sensor coverage area.

figure
bep = birdsEyePlot('XLim',[0 50],'YLim',[-20 20]);

olPlotter = outlinePlotter(bep);
[position,yaw,length,width,originOffset,color] = targetOutlines(egoVehicle);
plotOutline(olPlotter,position,yaw,length,width);

caPlotter = coverageAreaPlotter(bep,'DisplayName','Coverage area','FaceColor','blue');
plotCoverageArea(caPlotter,visionSensor.SensorLocation,visionSensor.MaxRange, ...
    visionSensor.Yaw,visionSensor.FieldOfView(1))

Obtain the poses of the target cars from the perspective of the ego vehicle. Use these poses to
generate detections from the sensor.
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poses = targetPoses(egoVehicle);
[dets,numValidDets] = visionSensor(poses,scenario.SimulationTime);

Display the (X,Y) positions of the valid detections. For each detection, the (X,Y) positions are the first
two values of the Measurement field.

for i = 1:numValidDets
    XY = dets{i}.Measurement(1:2);
    detXY = sprintf('Detection %d: X = %.2f meters, Y = %.2f meters',i,XY);
    disp(detXY)
end

Detection 1: X = 19.09 meters, Y = 2.79 meters
Detection 2: X = 27.81 meters, Y = 0.08 meters

Generate Object and Lane Boundary Detections

Create a driving scenario containing an ego vehicle and a target vehicle traveling along a three-lane
road. Detect the lane boundaries by using a vision detection generator.

scenario = drivingScenario;

Create a three-lane road by using lane specifications.

roadCenters = [0 0 0; 60 0 0; 120 30 0];
lspc = lanespec(3);
road(scenario,roadCenters,'Lanes',lspc);

Specify that the ego vehicle follows the center lane at 30 m/s.

egovehicle = vehicle(scenario,'ClassID',1);
egopath = [1.5 0 0; 60 0 0; 111 25 0];
egospeed = 30;
trajectory(egovehicle,egopath,egospeed);

Specify that the target vehicle travels ahead of the ego vehicle at 40 m/s and changes lanes close to
the ego vehicle.

targetcar = vehicle(scenario,'ClassID',1);
targetpath = [8 2; 60 -3.2; 120 33];
targetspeed = 40;
trajectory(targetcar,targetpath,targetspeed);

Display a chase plot for a 3-D view of the scenario from behind the ego vehicle.

chasePlot(egovehicle)
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Create a vision detection generator that detects lanes and objects. The pitch of the sensor points one
degree downward.

visionSensor = visionDetectionGenerator('Pitch',1.0);
visionSensor.DetectorOutput = 'Lanes and objects';
visionSensor.ActorProfiles = actorProfiles(scenario);

Run the simulation.

1 Create a bird's-eye plot and the associated plotters.
2 Display the sensor coverage area.
3 Display the lane markings.
4 Obtain ground truth poses of targets on the road.
5 Obtain ideal lane boundary points up to 60 m ahead.
6 Generate detections from the ideal target poses and lane boundaries.
7 Display the outline of the target.
8 Display object detections when the object detection is valid.
9 Display the lane boundary when the lane detection is valid.

bep = birdsEyePlot('XLim',[0 60],'YLim',[-35 35]);
caPlotter = coverageAreaPlotter(bep,'DisplayName','Coverage area', ...
    'FaceColor','blue');
detPlotter = detectionPlotter(bep,'DisplayName','Object detections');
lmPlotter = laneMarkingPlotter(bep,'DisplayName','Lane markings');

 visionDetectionGenerator

4-209



lbPlotter = laneBoundaryPlotter(bep,'DisplayName', ...
    'Lane boundary detections','Color','red');
olPlotter = outlinePlotter(bep);
plotCoverageArea(caPlotter,visionSensor.SensorLocation,...
    visionSensor.MaxRange,visionSensor.Yaw, ...
    visionSensor.FieldOfView(1));
while advance(scenario)
    [lmv,lmf] = laneMarkingVertices(egovehicle);
    plotLaneMarking(lmPlotter,lmv,lmf)
    tgtpose = targetPoses(egovehicle);
    lookaheadDistance = 0:0.5:60;
    lb = laneBoundaries(egovehicle,'XDistance',lookaheadDistance,'LocationType','inner');
    [obdets,nobdets,obValid,lb_dets,nlb_dets,lbValid] = ...
        visionSensor(tgtpose,lb,scenario.SimulationTime);
    [objposition,objyaw,objlength,objwidth,objoriginOffset,color] = targetOutlines(egovehicle);
    plotOutline(olPlotter,objposition,objyaw,objlength,objwidth, ...
        'OriginOffset',objoriginOffset,'Color',color)
    if obValid
        detPos = cellfun(@(d)d.Measurement(1:2),obdets,'UniformOutput',false);
        detPos = vertcat(zeros(0,2),cell2mat(detPos')');
        plotDetection(detPlotter,detPos)
    end
    if lbValid
        plotLaneBoundary(lbPlotter,vertcat(lb_dets.LaneBoundaries))
    end
end
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Configure Ideal Vision Sensor

Generate detections from an ideal vision sensor and compare these detections to ones from a noisy
sensor. An ideal sensor is one that always generates detections, with no false positives and no added
random noise.

Create a Driving Scenario

Create a driving scenario in which the ego vehicle is positioned in front of a diagonal array of target
cars. With this configuration, you can later plot the measurement noise covariances of the detected
targets without having the target cars occlude one another.

scenario = drivingScenario;
egoVehicle = vehicle(scenario,'ClassID',1);

numTgts = 6;
x = linspace(20,50,numTgts)';
y = linspace(-20,0,numTgts)';
x = [x;x(1:end-1)];
y = [y;-y(1:end-1)];
numTgts = numel(x);

for m = 1:numTgts
    vehicle(scenario,'ClassID',1,'Position',[x(m) y(m) 0]);
end
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Plot the driving scenario in a bird's-eye plot.

bep = birdsEyePlot('XLim',[0 60]);
legend('hide')

olPlotter = outlinePlotter(bep);
[position,yaw,length,width,originOffset,color] = targetOutlines(egoVehicle);
plotOutline(olPlotter,position,yaw,length,width, ...
    'OriginOffset',originOffset,'Color',color)

Create an Ideal Vision Sensor

Create a vision sensor by using the visionDetectionGenerator System object™. To generate
ideal detections, set DetectionProbability to 1, FalsePositivesPerImage to 0, and
HasNoise to false.

• DetectionProbability = 1 — The sensor always generates detections for a target, as long as
the target is not occluded and meets the range, speed, and image size constraints.

• FalsePositivesPerImage = 0 — The sensor generates detections from only real targets in
the driving scenario.

• HasNoise = false — The sensor does not add random noise to the reported position and
velocity of the target. However, the objectDetection objects returned by the sensor have
measurement noise values set to the noise variance that would have been added if HasNoise
were true. With these noise values, you can process ideal detections using the
multiObjectTracker. This technique is useful for analyzing maneuver lag without needing to
run time-consuming Monte Carlo simulations.
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idealSensor = visionDetectionGenerator( ...
    'SensorIndex',1, ...
    'UpdateInterval',scenario.SampleTime, ...
    'SensorLocation',[0.75*egoVehicle.Wheelbase 0], ...
    'Height',1.1, ...
    'Pitch',0, ...
    'Intrinsics',cameraIntrinsics(800,[320 240],[480 640]), ...
    'BoundingBoxAccuracy',50, ... % Make the noise large for illustrative purposes
    'ProcessNoiseIntensity',5, ...
    'MaxRange',60, ...
    'DetectionProbability',1, ...
    'FalsePositivesPerImage',0, ...
    'HasNoise',false, ...
    'ActorProfiles',actorProfiles(scenario))

idealSensor = 
  visionDetectionGenerator with properties:

               SensorIndex: 1
            UpdateInterval: 0.0100

            SensorLocation: [2.1000 0]
                    Height: 1.1000
                       Yaw: 0
                     Pitch: 0
                      Roll: 0
                Intrinsics: [1x1 cameraIntrinsics]

            DetectorOutput: 'Objects only'
               FieldOfView: [43.6028 33.3985]
                  MaxRange: 60
                  MaxSpeed: 100
       MaxAllowedOcclusion: 0.5000
        MinObjectImageSize: [15 15]

      DetectionProbability: 1
    FalsePositivesPerImage: 0

  Show all properties

Plot the coverage area of the ideal vision sensor.

legend('show')
caPlotter = coverageAreaPlotter(bep,'DisplayName','Coverage area','FaceColor','blue');
mountPosition = idealSensor.SensorLocation;
range = idealSensor.MaxRange;
orientation = idealSensor.Yaw;
fieldOfView = idealSensor.FieldOfView(1);
plotCoverageArea(caPlotter,mountPosition,range,orientation,fieldOfView);
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Simulate Ideal Vision Detections

Obtain the positions of the targets. The positions are in ego vehicle coordinates.

gTruth = targetPoses(egoVehicle);

Generate timestamped vision detections. These detections are returned as a cell array of
objectDetection objects.

time = scenario.SimulationTime;
dets = idealSensor(gTruth,time);

Inspect the measurement and measurement noise variance of the first (leftmost) detection. Even
though the detection is ideal and therefore has no added random noise, the MeasurementNoise
property shows the values as if the detection did have noise.

dets{1}.Measurement

ans = 6×1

   31.0000
  -11.2237
         0
         0
         0
         0
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dets{1}.MeasurementNoise

ans = 6×6

    1.5427   -0.5958         0         0         0         0
   -0.5958    0.2422         0         0         0         0
         0         0  100.0000         0         0         0
         0         0         0    0.5398   -0.1675         0
         0         0         0   -0.1675    0.1741         0
         0         0         0         0         0  100.0000

Plot the ideal detections and ellipses for the 2-sigma contour of the measurement noise covariance.

pos = cell2mat(cellfun(@(d)d.Measurement(1:2)',dets, ...
    'UniformOutput',false));
cov = reshape(cell2mat(cellfun(@(d)d.MeasurementNoise(1:2,1:2),dets, ...
    'UniformOutput',false))',2,2,[]);
plotter = trackPlotter(bep,'DisplayName','Ideal detections', ...
    'MarkerEdgeColor','blue','MarkerFaceColor','blue');
sigma = 2;
plotTrack(plotter,pos,sigma^2*cov)

Simulate Noisy Detections for Comparison

Create a noisy sensor based on the properties of the ideal sensor.
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noisySensor = clone(idealSensor);
release(noisySensor)
noisySensor.HasNoise = true;

Reset the driving scenario back to its original state.

restart(scenario)

Collect statistics from the noisy detections.

numMonte = 1e3;
pos = [];
for itr = 1:numMonte
    time = scenario.SimulationTime;
    dets = noisySensor(gTruth,time);

    % Save noisy measurements
    pos = [pos;cell2mat(cellfun(@(d)d.Measurement(1:2)',dets,'UniformOutput',false))];

    advance(scenario);
end

Plot the noisy detections.

plotter = detectionPlotter(bep,'DisplayName','Noisy detections', ...
    'Marker','.','MarkerEdgeColor','red','MarkerFaceColor','red');
plotDetection(plotter,pos)
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
drivingScenario | laneMarking | lanespec | lidarPointCloudGenerator | monoCamera |
multiObjectTracker | objectDetection | radarDetectionGenerator

Functions
actorPoses | actorProfiles | laneBoundaries | road

Apps
Driving Scenario Designer

Topics
“Model Vision Sensor Detections”
“Coordinate Systems in Automated Driving Toolbox”
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Introduced in R2017a
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lidarPointCloudGenerator
Generate lidar point cloud data for driving scenario

Description
The lidarPointCloudGenerator System object generates detections from a lidar sensor mounted
on an ego vehicle. All detections are referenced to the coordinate system of the ego vehicle or the
vehicle-mounted sensor. You can use the lidarPointCloudGenerator object in a scenario
containing actors and trajectories, which you can create by using a drivingScenario object. Using
a statistical sensor model, lidarPointCloudGenerator object can simulate real detections with
added random noise.

To generate lidar point clouds:

1 Create the lidarPointCloudGenerator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?.

Creation

Syntax
lidar = lidarPointCloudGenerator
lidar = lidarPointCloudGenerator(Name,Value)

Description

lidar = lidarPointCloudGenerator creates a lidarPointCloudGenerator object with
default property values to generate a point cloud for a lidar sensor.

lidar = lidarPointCloudGenerator(Name,Value) sets properties on page 4-219 using one or
more name-value pairs. For example,
lidarPointCloudGenerator('DetectionCoordinates','Sensor
Cartesian','MaxRange',200) creates a lidar point cloud generator that reports detections in the
sensor Cartesian coordinate system and has a maximum detection range of 200 meters. Enclose each
property name in quotes.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.
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SensorLocation — Sensor location
[1.5 0] (default) | [x y] vector

Location of the lidar sensor center, specified as a [x y] vector. The SensorLocation and Height
properties define the coordinates of the lidar sensor with respect to the ego vehicle coordinate
system. The default value corresponds to a lidar sensor mounted on a sedan, at the center of the
roof's front edge. Units are in meters.
Example: [4 0.1]
Data Types: double

SensorIndex — Unique sensor identifier
1 (default) | positive integer

Unique sensor identifier, specified as a positive integer. This property distinguishes detections that
come from different sensors in a multisensor system.
Example: 5
Data Types: double

UpdateInterval — Required time interval between sensor updates
0.1 (default) | positive real scalar

Required time interval between sensor updates, specified as a positive real scalar. The
drivingScenario object calls the lidar point cloud generator at regular time intervals.
lidarPointCloudGenerator object generates new detections at intervals defined by the
UpdateInterval property. The value of the UpdateInterval property must be an integer multiple
of the simulation time interval. Updates requested from the sensor between update intervals contain
no detections. Units are in seconds.
Example: 5
Data Types: double

Height — Sensor height above ground plane
1.6 (default) | positive real scalar

Sensor height above the vehicle ground plane, specified as a positive real scalar. The default value
corresponds to a lidar sensor mounted on a sedan, at the center of the roof's front edge. Units are in
meters.
Example: 1.5
Data Types: double

Yaw — Yaw angle of lidar sensor
0 (default) | real scalar

Yaw angle of the lidar sensor, specified as a real scalar. The yaw angle is the angle between the center
line of the ego vehicle and the downrange axis of the lidar sensor. A positive yaw angle corresponds
to a clockwise rotation when looking in the positive direction of the z-axis of the ego vehicle
coordinate system. Units are in degrees.
Example: -4
Data Types: double
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Pitch — Pitch angle of lidar sensor
0 (default) | real scalar

Pitch angle of the lidar sensor, specified as a real scalar. The pitch angle is the angle between the
downrange axis of the lidar sensor and the x-y plane of the ego vehicle coordinate system. A positive
pitch angle corresponds to a clockwise rotation when looking in the positive direction of the y-axis of
the ego vehicle coordinate system. Units are in degrees.
Example: 3
Data Types: double

Roll — Roll angle of lidar sensor
0 (default) | real scalar

Roll angle of the lidar sensor, specified as a real scalar. The roll angle is the angle of rotation of the
downrange axis of the lidar sensor around the x-axis of the ego vehicle coordinate system. A positive
roll angle corresponds to a clockwise rotation when looking in the positive direction of the x-axis of
the coordinate system. Units are in degrees.
Example: -4
Data Types: double

MaxRange — Maximum detection range
120 (default) | positive real scalar

Maximum detection range, specified as a positive real scalar. The sensor cannot detect roads and
actors beyond this range. Units are in meters.
Example: 200
Data Types: double

RangeAccuracy — Accuracy of range measurements
0.002 (default) | positive real scalar

Accuracy of range measurements, specified as a positive real scalar. Units are in meters.
Example: 0.01
Data Types: single | double

AzimuthResolution — Azimuth resolution of lidar
0.16 (default) | positive real scalar

Azimuth resolution of the lidar, specified as a positive real scalar. The azimuth resolution defines the
minimum separation in azimuth angle at which the lidar can distinguish two targets. Units are in
degrees.
Example: 0.5
Data Types: single | double

ElevationResolution — Elevation resolution of lidar
1.25 (default) | positive real scalar

Elevation resolution of the lidar, specified as a positive real scalar. The elevation resolution defines
the minimum separation in elevation angle at which the lidar can distinguish two targets. Units are in
degrees.
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Example: 0.5
Data Types: single | double

AzimuthLimits — Azimuth limits of lidar
[-180 180] (default) | 1-by-2 real-valued vector

Azimuth limits of lidar, specified as a 1-by-2 real-valued vector of the form [min, max]. Units are in
degrees.
Example: [-100 50]
Data Types: single | double

ElevationLimits — Elevation limits of lidar
[-20 20] (default) | 1-by-2 real-valued vector

Elevation limits of lidar, specified as a 1-by-2 real-valued vector of the form [min, max]. Units are in
degrees.
Example: [-10 10]
Data Types: single | double

HasNoise — Enable adding noise to lidar sensor measurements
true (default) | false

Enable adding noise to lidar sensor measurements, specified as true or false. Set this property to
true to add noise to the sensor measurements. Otherwise, the measurements have no noise.
Data Types: logical

HasOrganizedOutput — Output organized point cloud
true (default) | false

Output the generated data as an organized point cloud, specified as true or false. Set this property
to true to output an organized point cloud. Otherwise, the output is unorganized.
Data Types: logical

HasEgoVehicle — Include ego vehicle in point cloud
true (default) | false

Include ego vehicle in the generated point cloud, specified as true or false. Set this property to
true to include the ego vehicle in the output. Otherwise, the output point cloud has no ego vehicle.
Data Types: logical

HasRoadInputPort — Add roads to point cloud
true (default) | false

Add roads in the generated point cloud, specified as true or false. Set this property to true to add
roads in the output. Otherwise, the output point cloud has no roads.
Data Types: logical

EgoVehicleActorID — ActorID of ego vehicle
1 (default) | positive integer

4 Objects

4-222



ActorID of ego vehicle, specified as a positive integer scalar. ActorID is the unique identifier for an
actor.
Example: 4
Data Types: single | double

DetectionCoordinates — Coordinate system of reported detections
'Ego Cartesian' (default) | 'Sensor Cartesian'

Coordinate system of reported detections, specified as one of these values:

• 'Ego Cartesian' — Detections are reported in the ego vehicle Cartesian coordinate system.
• 'Sensor Cartesian' — Detections are reported in the sensor Cartesian coordinate system.

Data Types: char | string

ActorProfiles — Actor profiles
structure | array of structures

Actor profiles, specified as a structure or as an array of structures. Each structure contains the
physical and radar characteristics of an actor.

• If ActorProfiles is a single structure, all actors passed into the lidarPointCloudGenerator
object use this profile.

• If ActorProfiles is an array, each actor passed into the object must have a unique actor profile.

To generate an array of structures for your driving scenario, use the actorProfiles function. The
table shows the valid structure fields. If you do not specify a field, the fields are set to their default
values. If no actors are passed into the object, then the ActorID field is not included.

Field Description
ActorID Scenario-defined actor identifier, specified as a

positive integer.
ClassID Classification identifier, specified as a

nonnegative integer. 0 represents an object of an
unknown or unassigned class.

Length Length of actor, specified as a positive real-valued
scalar. Units are in meters.

Width Width of actor, specified as a positive real-valued
scalar. Units are in meters.

Height Height of actor, specified as a positive real-valued
scalar. Units are in meters.

OriginOffset Offset of actor's rotational center from its
geometric center, specified as a real-valued
vector of the form [x, y, z]. The rotational center,
or origin, is located at the bottom center of the
actor. For vehicles, the rotational center is the
point on the ground beneath the center of the
rear axle. Units are in meters.
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Field Description
MeshVertices Mesh vertices of actor, specified as an n-by-3 real-

valued matrix of vertices. Each row in the matrix
defines a point in 3-D space.

MeshFaces Mesh faces of actor, specified as an m-by-3 matrix
of integers. Each row of MeshFaces represents a
triangle defined by the vertex IDs, which are the
row numbers of vertices.

RCSPattern Radar cross-section (RCS) pattern of actor,
specified as a numel(RCSElevationAngles)-
by-numel(RCSAzimuthAngles) real-valued
matrix. Units are in decibels per square meter.

RCSAzimuthAngles Azimuth angles corresponding to rows of
RCSPattern, specified as a vector of values in
the range [–180, 180]. Units are in degrees.

RCSElevationAngles Elevation angles corresponding to rows of
RCSPattern, specified as a vector of values in
the range [–90, 90]. Units are in degrees.

For full definitions of the structure fields, see the actor and vehicle functions.

Usage

Syntax
ptCloud = step(lidar,actors,simTime)
ptCloud = step(lidar,actors,simTime,rdMesh)
[ptCloud,isValidTime,clusters] = step(lidar,actors,simTime,rdMesh)

Description

ptCloud = step(lidar,actors,simTime) creates a statistical sensor model to generate a lidar
point cloud, ptCloud, from sensor measurements taken of actors at the current simulation
simTime. An extendedObjectMesh object, rdMesh, contains road data around the ego vehicle.

ptCloud = step(lidar,actors,simTime,rdMesh) additionally inputs rdMesh, an
extendedObjectMesh object, which contains road data around the ego vehicle.

[ptCloud,isValidTime,clusters] = step(lidar,actors,simTime,rdMesh) additionally
returns isValidTime and clusters. isValidTime specifies if the point cloud has been generated.
clusters specifies the classification data of the generated point cloud.

Input Arguments

actors — Scenario actor poses
structure | structure array

Scenario actor poses, specified as a structure or structure array. Each structure corresponds to an
actor. You can generate this structure using the actorPoses function. You can also create these
structures manually. The table shows the properties that the object uses to generate detections. All
other actor properties are ignored.
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Field Description
ActorID Scenario-defined actor identifier, specified as a

positive integer.
Position Position of actor, specified as a real-valued vector

of the form [x, y, z]. Units are in meters.
Velocity Velocity (v) of actor in the x-, y-, and z-direction,

specified as a real-valued vector of the form [vx,
vy, vz]. Units are in meters per second.

Roll Roll angle of actor, specified as a real-valued
scalar. Units are in degrees.

Pitch Pitch angle of actor, specified as a real-valued
scalar. Units are in degrees.

Yaw Yaw angle of actor, specified as a real-valued
scalar. Units are in degrees.

AngularVelocity Angular velocity (ω) of actor in the x-, y-, and z-
direction, specified as a real-valued vector of the
form [ωx, ωy, ωz]. Units are in degrees per second.

For full definitions of the structure fields, see the actor and vehicle functions.
Data Types: struct

rdMesh — Mesh representation of roads near to actor
extendedObjectMesh object

Mesh representation of roads near to the actor, specified as an extendedObjectMesh object.

simTime — Current simulation time
positive real scalar

Current simulation time, specified as a positive real scalar. The drivingScenario object calls the
lidar point cloud generator at regular time intervals to generate new point clouds at intervals defined
by the UpdateInterval property. The value of the UpdateInterval property must be an integer
multiple of the simulation time interval. Updates requested from the sensor between update intervals
do not generate a point cloud. Units are in seconds.
Example: 10.5
Data Types: double

Output Arguments

ptCloud — Point cloud data
pointCloud object

Point cloud data, returned as a pointCloud object.

isValidTime — Valid time to generate point cloud
0 | 1

Valid time to generate point cloud, returned as 0 or 1. isValidTime is 0 when updates are
requested at times that are between update intervals specified by UpdateInterval.
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Data Types: logical

clusters — Classification data of generated point cloud
N-by-2 vector

Classification data of the generated point cloud, returned as an N-by-2 vector. The vector defines the
IDs of the target from which the point cloud was generated. N is equal to the Count property of the
pointCloud object. The vector contains ActorID in the first column and ClassID in the second
column.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to lidarPointCloudGenerator
isLocked Determine if System object is in use

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Generate Lidar Point Cloud Data of Multiple Actors

Generate lidar point cloud data for a driving scenario with multiple actors by using the
lidarPointCloudGenerator System object. Create the driving scenario by using
drivingScenario object. It contains an ego-vehicle, pedestrian and two other vehicles.

Create and plot a driving scenario with multiple vehicles

Create a driving scenario.

scenario = drivingScenario;

Add a straight road to the driving scenario. The road has one lane in each direction.

roadCenters = [0 0 0; 70 0 0];
laneSpecification = lanespec([1 1]);
road(scenario,roadCenters,'Lanes',laneSpecification);

Add an ego vehicle to the driving scenario.

egoVehicle = vehicle(scenario,'ClassID',1,'Mesh',driving.scenario.carMesh);
waypoints = [1 -2 0; 35 -2 0];
trajectory(egoVehicle,waypoints,10);

Add a truck, pedestrian, and bicycle to the driving scenario and plot the scenario.
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truck = vehicle(scenario,'ClassID',2,'Length', 8.2,'Width',2.5,'Height',3.5, ...
  'Mesh',driving.scenario.truckMesh);
waypoints = [70 1.7 0; 20 1.9 0];
trajectory(truck,waypoints,15);
pedestrian = actor(scenario,'ClassID',4,'Length',0.24,'Width',0.45,'Height',1.7, ...
  'Mesh',driving.scenario.pedestrianMesh);
waypoints = [23 -4 0; 10.4 -4 0];
trajectory(pedestrian,waypoints,1.5);
bicycle = actor(scenario,'ClassID',3,'Length',1.7,'Width',0.45,'Height',1.7, ...
  'Mesh',driving.scenario.bicycleMesh);
waypoints = [12.7 -3.3 0; 49.3 -3.3 0];
trajectory(bicycle,waypoints,5);
plot(scenario,'Meshes','on')

Generate and plot lidar point cloud data

Create a lidarPointCloudGenerator System object.

lidar = lidarPointCloudGenerator;

Add actor profiles and the ego vehicle actor ID from the driving scenario to the System object.

lidar.ActorProfiles = actorProfiles(scenario);
lidar.EgoVehicleActorID = egoVehicle.ActorID;

Plot the point cloud data.

bep = birdsEyePlot('Xlimits',[0 70],'YLimits',[-30 30]);
plotter = pointCloudPlotter(bep);
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legend('off');
while advance(scenario)
    tgts = targetPoses(egoVehicle);
    rdmesh = roadMesh(egoVehicle);
    [ptCloud,isValidTime] = lidar(tgts,rdmesh,scenario.SimulationTime);
    if isValidTime
        plotPointCloud(plotter,ptCloud);
    end
end
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See Also
Objects
drivingScenario | extendedObjectMesh | laneMarking | lanespec | monoCamera |
multiObjectTracker | objectDetection | radarDetectionGenerator |
visionDetectionGenerator

Functions
actorPoses | actorProfiles | laneBoundaries | road | roadMesh

Blocks
Lidar Point Cloud Generator

Apps
Driving Scenario Designer

Topics
“Track-Level Fusion of Radar and Lidar Data”
“Coordinate Systems in Automated Driving Toolbox”

Introduced in R2020a
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roadMesh
Mesh representation of roads near actor

Syntax
mesh = roadMesh(ac)
mesh = roadMesh(ac,maxRadius)

Description
mesh = roadMesh(ac) creates a mesh representation of roads nearest to the specified actor ac.
The function returns the mesh as an extendedObjectMesh object. By default, the function searches
for roads within a 120 m radius of the input actor.

mesh = roadMesh(ac,maxRadius)specifies the maximum search radius.

Examples

Generate Lidar Point Cloud Data of Multiple Actors

Generate lidar point cloud data for a driving scenario with multiple actors by using the
lidarPointCloudGenerator System object. Create the driving scenario by using
drivingScenario object. It contains an ego-vehicle, pedestrian and two other vehicles.

Create and plot a driving scenario with multiple vehicles

Create a driving scenario.

scenario = drivingScenario;

Add a straight road to the driving scenario. The road has one lane in each direction.

roadCenters = [0 0 0; 70 0 0];
laneSpecification = lanespec([1 1]);
road(scenario,roadCenters,'Lanes',laneSpecification);

Add an ego vehicle to the driving scenario.

egoVehicle = vehicle(scenario,'ClassID',1,'Mesh',driving.scenario.carMesh);
waypoints = [1 -2 0; 35 -2 0];
trajectory(egoVehicle,waypoints,10);

Add a truck, pedestrian, and bicycle to the driving scenario and plot the scenario.

truck = vehicle(scenario,'ClassID',2,'Length', 8.2,'Width',2.5,'Height',3.5, ...
  'Mesh',driving.scenario.truckMesh);
waypoints = [70 1.7 0; 20 1.9 0];
trajectory(truck,waypoints,15);
pedestrian = actor(scenario,'ClassID',4,'Length',0.24,'Width',0.45,'Height',1.7, ...
  'Mesh',driving.scenario.pedestrianMesh);
waypoints = [23 -4 0; 10.4 -4 0];
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trajectory(pedestrian,waypoints,1.5);
bicycle = actor(scenario,'ClassID',3,'Length',1.7,'Width',0.45,'Height',1.7, ...
  'Mesh',driving.scenario.bicycleMesh);
waypoints = [12.7 -3.3 0; 49.3 -3.3 0];
trajectory(bicycle,waypoints,5);
plot(scenario,'Meshes','on')

Generate and plot lidar point cloud data

Create a lidarPointCloudGenerator System object.

lidar = lidarPointCloudGenerator;

Add actor profiles and the ego vehicle actor ID from the driving scenario to the System object.

lidar.ActorProfiles = actorProfiles(scenario);
lidar.EgoVehicleActorID = egoVehicle.ActorID;

Plot the point cloud data.

bep = birdsEyePlot('Xlimits',[0 70],'YLimits',[-30 30]);
plotter = pointCloudPlotter(bep);
legend('off');
while advance(scenario)
    tgts = targetPoses(egoVehicle);
    rdmesh = roadMesh(egoVehicle);
    [ptCloud,isValidTime] = lidar(tgts,rdmesh,scenario.SimulationTime);
    if isValidTime
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        plotPointCloud(plotter,ptCloud);
    end
end
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Input Arguments
ac — Actor
Actor object | Vehicle object

Actor belonging to a drivingScenario object, specified as an Actor or Vehicle object. To create
these objects, use the actor and vehicle functions, respectively.

maxRadius — Maximum radius of search area
120 (default) | integer in the range [1, 500]

Maximum radius of search area, specified as an integer in the range [1, 500].
Data Types: single | double | int16 | int32 | int64 | uint16 | uint32 | uint64

Output Arguments
mesh — Mesh representation of roads near to actor
extendedObjectMesh object

Mesh representation of roads near to the actor, returned as an extendedObjectMesh object.
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See Also
Objects
extendedObjectMesh | lidarPointCloudGenerator

Functions
driving.scenario.bicycleMesh | driving.scenario.carMesh |
driving.scenario.pedestrianMesh | driving.scenario.truckMesh

Introduced in R2020a
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driving.Path
Planned vehicle path

Description
The driving.Path object represents a vehicle path composed of a sequence of path segments.
These segments can be either driving.DubinsPathSegment objects or
driving.ReedsSheppPathSegment objects and are stored in the PathSegments property of
driving.Path.

To check the validity of the path against a vehicleCostmap object, use the checkPathValidity
function. To interpolate poses along the length of the path, use the interpolate function.

Creation
To create a driving.Path object, use the plan function, specifying a pathPlannerRRT object as
input.

Properties
StartPose — Initial pose of vehicle
[x, y, Θ] vector

This property is read-only.

Initial pose of the vehicle, specified as an [x, y, Θ] vector. x and y are in world units, such as meters. Θ
is in degrees.

GoalPose — Goal pose of vehicle
[x, y, Θ] vector

This property is read-only.

Goal pose of the vehicle, specified as an [x, y, Θ] vector. x and y are in world units, such as meters. Θ
is in degrees.

PathSegments — Segments along path
array of driving.DubinsPathSegment objects | array of driving.ReedsSheppPathSegment
objects

This property is read-only.

Segments along the path, specified as an array of driving.DubinsPathSegment objects or
driving.ReedsSheppPathSegment objects.

Length — Length of path
positive real scalar

This property is read-only.
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Length of the path, in world units, specified as a positive real scalar.

Object Functions
interpolate Interpolate poses along planned vehicle path
plot Plot planned vehicle path

Examples

Plan Path and Check Its Validity

Plan a vehicle path through a parking lot by using the optimal rapidly exploring random tree (RRT*)
algorithm. Check that the path is valid, and then plot the transition poses along the path.

Load a costmap of a parking lot. Plot the costmap to see the parking lot and inflated areas for the
vehicle to avoid.

data = load('parkingLotCostmap.mat');
costmap = data.parkingLotCostmap;
plot(costmap)

Define start and goal poses for the vehicle as [x, y, Θ] vectors. World units for the (x,y) locations are
in meters. World units for the Θ orientation angles are in degrees.

startPose = [4, 4, 90]; % [meters, meters, degrees]
goalPose = [30, 13, 0];
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Use a pathPlannerRRT object to plan a path from the start pose to the goal pose.

planner = pathPlannerRRT(costmap);
refPath = plan(planner,startPose,goalPose);

Check that the path is valid.

isPathValid = checkPathValidity(refPath,costmap)

isPathValid = logical
   1

Interpolate the transition poses along the path.

transitionPoses = interpolate(refPath);

Plot the planned path and the transition poses on the costmap.

hold on
plot(refPath,'DisplayName','Planned Path')
scatter(transitionPoses(:,1),transitionPoses(:,2),[],'filled', ...
    'DisplayName','Transition Poses')
hold off
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Plan Path and Interpolate Along Path

Plan a vehicle path through a parking lot by using the rapidly exploring random tree (RRT*)
algorithm. Interpolate the poses of the vehicle at points along the path.

Load a costmap of a parking lot. Plot the costmap to see the parking lot and inflated areas for the
vehicle to avoid.

data = load('parkingLotCostmap.mat');
costmap = data.parkingLotCostmap;
plot(costmap)

Define start and goal poses for the vehicle as [x, y, Θ] vectors. World units for the (x,y) locations are
in meters. World units for the Θ orientation angles are in degrees.

startPose = [4, 4, 90]; % [meters, meters, degrees]
goalPose = [30, 13, 0]; 

Use a pathPlannerRRT object to plan a path from the start pose to the goal pose.

planner = pathPlannerRRT(costmap);
refPath = plan(planner,startPose,goalPose);

Interpolate the vehicle poses every 1 meter along the entire path.

lengths = 0 : 1 : refPath.Length;
poses = interpolate(refPath,lengths);
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Plot the interpolated poses on the costmap.

plot(costmap)
hold on
scatter(poses(:,1),poses(:,2),'DisplayName','Interpolated Poses')
hold off

Compatibility Considerations
connectingPoses function and driving.Path object properties KeyPoses and NumSegments
are not recommended
Not recommended starting in R2018b

The connectingPoses function and the KeyPoses and NumSegments properties of the
driving.Path object are not recommended. Instead, use the interpolate function, which returns
key poses, connecting poses, transition poses, and direction changes. The KeyPoses and
NumSegments properties are no longer relevant. KeyPoses, NumSegments, and connectingPoses
will be removed in a future release.

In R2018a, connectingPoses enabled you to obtain intermediate poses either along the entire path
or along the path segments that are between key poses (as specified by KeyPoses). Using the
interpolate function, you can now obtain intermediate poses at any specified point along the path.
The interpolate function also provides transition poses at which changes in direction occur.
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Update Code

Remove all instances of KeyPoses and NumSegments and replace all instances of
connectingPoses with interpolate. The table shows typical usages of connectingPoses and
how to update your code to use interpolate instead. Here, path is a driving.Path object
returned by pathPlannerRRT.

Discouraged Usage Recommended Replacement
poses = connectingPoses(path); poses = interpolate(path);
segID = 1;
posesSegment = connectingPoses(path,segID);

interpolate does not have a direct syntax for
obtaining segment poses. However, you can
sample poses of a segment using a specified step
time. For example:

step = 0.1;
samples = 0 : step : path.PathSegments(1).Length;
segmentPoses = interpolate(path,samples); 

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
checkPathValidity | interpolate | plan | plot | smoothPathSpline

Objects
driving.DubinsPathSegment | driving.ReedsSheppPathSegment | pathPlannerRRT |
vehicleCostmap

Topics
“Automated Parking Valet”

Introduced in R2018a
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connectingPoses
Package: driving

(Not recommended) Obtain connecting poses along vehicle path

Note connectingPoses is not recommended. Use interpolate instead. For more information,
see “Compatibility Considerations”

Syntax
poses = connectingPoses(path)
poses = connectingPoses(path,segID)
poses = connectingPoses( ___ ,'NumSamples',numSamples)

Description
poses = connectingPoses(path) returns the connecting poses that are between the key poses of
a vehicle path.

poses = connectingPoses(path,segID) returns the connecting poses that are along the path
segment specified by segID.

poses = connectingPoses( ___ ,'NumSamples',numSamples) specifies the number of
connecting poses to compute between successive key poses, using either of the preceding syntaxes.

Input Arguments
path — Planned vehicle path
driving.Path object

Planned vehicle path from which to obtain connecting poses, specified as a driving.Path object.

segID — ID of path segment
positive integer

ID of the path segment from which to obtain connecting poses, specified as a positive integer. Each
path segment has two successive key poses as its endpoints. segID must be less than the number of
segments in the input path.

numSamples — Number of connecting poses to sample
100 (default) | integer greater than 1

Number of connecting poses to sample from each segment, specified as an integer greater than 1.
Example: 'NumSamples',50
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Output Arguments
poses — Connecting poses
m-by-3 matrix of [x, y, Θ] poses

Connecting poses, returned as an m-by-3 matrix of [x, y, Θ] poses. Each row corresponds to a
separate pose. x and y are specified in world coordinates and Θ is in degrees. poses includes all key
poses.

Compatibility Considerations
connectingPoses function and driving.Path object properties KeyPoses and NumSegments
are not recommended
Not recommended starting in R2018b

The connectingPoses function and the KeyPoses and NumSegments properties of the
driving.Path object are not recommended. Instead, use the interpolate function, which returns
key poses, connecting poses, transition poses, and direction changes. The KeyPoses and
NumSegments properties are no longer relevant. KeyPoses, NumSegments, and connectingPoses
will be removed in a future release.

In R2018a, connectingPoses enabled you to obtain intermediate poses either along the entire path
or along the path segments that are between key poses (as specified by KeyPoses). Using the
interpolate function, you can now obtain intermediate poses at any specified point along the path.
The interpolate function also provides transition poses at which changes in direction occur.

Update Code

Remove all instances of KeyPoses and NumSegments and replace all instances of
connectingPoses with interpolate. The table shows typical usages of connectingPoses and
how to update your code to use interpolate instead. Here, path is a driving.Path object
returned by pathPlannerRRT.

Discouraged Usage Recommended Replacement
poses = connectingPoses(path); poses = interpolate(path);
segID = 1;
posesSegment = connectingPoses(path,segID);

interpolate does not have a direct syntax for
obtaining segment poses. However, you can
sample poses of a segment using a specified step
time. For example:

step = 0.1;
samples = 0 : step : path.PathSegments(1).Length;
segmentPoses = interpolate(path,samples); 

See Also
Functions
checkPathValidity | interpolate | plan

Objects
driving.Path | pathPlannerRRT
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Topics
“Automated Parking Valet”

Introduced in R2018a
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plot
Package: driving

Plot planned vehicle path

Syntax
plot(refPath)
plot(refPath,Name,Value)

Description
plot(refPath) plots the planned vehicle path.

plot(refPath,Name,Value) specifies options using one or more name-value pair arguments. For
example, plot(path,'Vehicle','off') plots the path without displaying the vehicle.

Examples

Plan Path and Check Its Validity

Plan a vehicle path through a parking lot by using the optimal rapidly exploring random tree (RRT*)
algorithm. Check that the path is valid, and then plot the transition poses along the path.

Load a costmap of a parking lot. Plot the costmap to see the parking lot and inflated areas for the
vehicle to avoid.

data = load('parkingLotCostmap.mat');
costmap = data.parkingLotCostmap;
plot(costmap)
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Define start and goal poses for the vehicle as [x, y, Θ] vectors. World units for the (x,y) locations are
in meters. World units for the Θ orientation angles are in degrees.

startPose = [4, 4, 90]; % [meters, meters, degrees]
goalPose = [30, 13, 0];

Use a pathPlannerRRT object to plan a path from the start pose to the goal pose.

planner = pathPlannerRRT(costmap);
refPath = plan(planner,startPose,goalPose);

Check that the path is valid.

isPathValid = checkPathValidity(refPath,costmap)

isPathValid = logical
   1

Interpolate the transition poses along the path.

transitionPoses = interpolate(refPath);

Plot the planned path and the transition poses on the costmap.

hold on
plot(refPath,'DisplayName','Planned Path')
scatter(transitionPoses(:,1),transitionPoses(:,2),[],'filled', ...
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    'DisplayName','Transition Poses')
hold off

Input Arguments
refPath — Planned vehicle path
driving.Path object

Planned vehicle path, specified as a driving.Path object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Inflation','off'

Parent — Axes object
axes object

Axes object in which to draw the plot, specified as the comma-separated pair consisting of 'Parent'
and an axes object. If you do not specify Parent, a new figure is created.

Vehicle — Display vehicle
'on' (default) | 'off'
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Display vehicle, specified as the comma-separated pair consisting of 'Vehicle' and 'on' or 'off'.
Setting this argument to 'on' displays the vehicle along the path.

VehicleDimensions — Dimensions of vehicle
vehicleDimensions object

Dimensions of the vehicle, specified as the comma-separated pair consisting of
'VehicleDimensions' and a vehicleDimensions object.

DisplayName — Name of entry in legend
'' (default) | character vector | string scalar

Name of the entry in the legend, specified as the comma-separated pair consisting of
'DisplayName' and a character vector or string scalar.

Color — Path color
color name | short color name | RGB triplet

Path color, specified as the comma-separated pair consisting of 'Color' and a color name, short
color name, or RGB triplet.

For a custom color, specify an RGB triplet. An RGB triplet is a three-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1]; for example, [0.4 0.6 0.7]. Alternatively, you can specify some
common colors by name. This table lists the named color options and the equivalent RGB triplet
values.

Color Name Color Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Example: 'Color',[1 0 1]
Example: 'Color','m'
Example: 'Color','magenta'

Tag — Tag to identify path
'' (default) | character vector | string scalar

Tag to identify path, specified as the comma-separated pair consisting of 'Tag' and a character
vector or string scalar.
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See Also
Functions
checkPathValidity | interpolate | plan

Objects
driving.Path | pathPlannerRRT | vehicleDimensions

Topics
“Automated Parking Valet”

Introduced in R2018a
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interpolate
Package: driving

Interpolate poses along planned vehicle path

Syntax
poses = interpolate(refPath)
poses = interpolate(refPath,lengths)
[poses,directions] = interpolate( ___ )

Description
poses = interpolate(refPath) interpolates along the length of a reference path, returning
transition poses. For more information, see Transition Poses on page 4-254.

poses = interpolate(refPath,lengths) interpolates poses at specified points along the length
of the path. In addition to including poses corresponding to specified lengths, poses also includes the
transition poses.

[poses,directions] = interpolate( ___ ) also returns the motion directions of the vehicle at
each pose, using inputs from any of the preceding syntaxes.

Examples

Plan Path and Check Its Validity

Plan a vehicle path through a parking lot by using the optimal rapidly exploring random tree (RRT*)
algorithm. Check that the path is valid, and then plot the transition poses along the path.

Load a costmap of a parking lot. Plot the costmap to see the parking lot and inflated areas for the
vehicle to avoid.

data = load('parkingLotCostmap.mat');
costmap = data.parkingLotCostmap;
plot(costmap)
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Define start and goal poses for the vehicle as [x, y, Θ] vectors. World units for the (x,y) locations are
in meters. World units for the Θ orientation angles are in degrees.

startPose = [4, 4, 90]; % [meters, meters, degrees]
goalPose = [30, 13, 0];

Use a pathPlannerRRT object to plan a path from the start pose to the goal pose.

planner = pathPlannerRRT(costmap);
refPath = plan(planner,startPose,goalPose);

Check that the path is valid.

isPathValid = checkPathValidity(refPath,costmap)

isPathValid = logical
   1

Interpolate the transition poses along the path.

transitionPoses = interpolate(refPath);

Plot the planned path and the transition poses on the costmap.

hold on
plot(refPath,'DisplayName','Planned Path')
scatter(transitionPoses(:,1),transitionPoses(:,2),[],'filled', ...
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    'DisplayName','Transition Poses')
hold off

Plan Path and Interpolate Along Path

Plan a vehicle path through a parking lot by using the rapidly exploring random tree (RRT*)
algorithm. Interpolate the poses of the vehicle at points along the path.

Load a costmap of a parking lot. Plot the costmap to see the parking lot and inflated areas for the
vehicle to avoid.

data = load('parkingLotCostmap.mat');
costmap = data.parkingLotCostmap;
plot(costmap)
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Define start and goal poses for the vehicle as [x, y, Θ] vectors. World units for the (x,y) locations are
in meters. World units for the Θ orientation angles are in degrees.

startPose = [4, 4, 90]; % [meters, meters, degrees]
goalPose = [30, 13, 0]; 

Use a pathPlannerRRT object to plan a path from the start pose to the goal pose.

planner = pathPlannerRRT(costmap);
refPath = plan(planner,startPose,goalPose);

Interpolate the vehicle poses every 1 meter along the entire path.

lengths = 0 : 1 : refPath.Length;
poses = interpolate(refPath,lengths);

Plot the interpolated poses on the costmap.

plot(costmap)
hold on
scatter(poses(:,1),poses(:,2),'DisplayName','Interpolated Poses')
hold off
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Input Arguments
refPath — Planned vehicle path
driving.Path object

Planned vehicle path, specified as a driving.Path object.

lengths — Points along length of path
real-valued vector

Points along the length of the path, specified as a real-valued vector. Values must be in the range from
0 to the length of the path, as determined by the Length property of refPath. The interpolate
function interpolates poses at these specified points. lengths is in world units, such as meters.
Example: poses = interpolate(refPath,0:0.1:refPath.Length) interpolates poses every
0.1 meter along the entire length of the path.

Output Arguments
poses — Vehicle poses
m-by-3 matrix of [x, y, Θ] vectors

Vehicle poses along the path, returned as an m-by-3 matrix of [x, y, Θ] vectors. m is the number of
returned poses.
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x and y specify the location of the vehicle in world units, such as meters. Θ specifies the orientation
angle of the vehicle in degrees.

poses always includes the transition poses, even if you interpolate only at specified points along the
path. If you do not specify the lengths input argument, then poses includes only the transition
poses.

directions — Motion directions
m-by-1 vector of 1s (forward motion) and –1s (reverse motion)

Motion directions of vehicle poses, returned as an m-by-1 vector of 1s (forward motion) and –1s
(reverse motion). m is the number of returned poses. Each element of directions corresponds to a
row of poses.

More About
Transition Poses

A path is composed of multiple segments that are combinations of motions (for example, left turn,
straight, and right turn). Transition poses are vehicle poses corresponding to the end of one motion
and the beginning of another motion. They represent points along the path corresponding to a change
in the direction or orientation of the vehicle. The interpolate function always returns transition
poses, even if you interpolate only at specified points along the path.

The path length between transition poses is given by the MotionLengths property of the path
segments. For example, consider the following path, which is a driving.Path object composed of a
single Dubins path segment. This segment consists of three motions, as described by the
MotionLengths and MotionTypes properties of the segment.

The interpolate function interpolates the following transition poses in this order:

4 Objects

4-254



1 The initial pose of the vehicle, StartPose.
2 The pose after the vehicle turns left ("L") for 4.39 meters at its maximum steering angle.
3 The pose after the vehicle goes straight ("S") for 6.32 meters.
4 The pose after the vehicle turns right ("R") for 4.39 meters at its maximum steering angle. This

pose is also the goal pose, because it is the last pose of the entire path.

The plot shows these transition poses, which are [x, y, Θ] vectors. x and y specify the location of the
vehicle in world units, such as meters. Θ specifies the orientation angle of the vehicle in degrees.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
Functions
checkPathValidity | smoothPathSpline

Objects
driving.Path | pathPlannerRRT

Topics
“Automated Parking Valet”

Introduced in R2018b
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driving.DubinsPathSegment
Dubins path segment

Description
A driving.DubinsPathSegment object represents a segment of a planned vehicle path that was
connected using the Dubins connection method [1]. A Dubins path segment is composed of a
sequence of three motions. Each motion is one of these types:

• Straight
• Left turn at the maximum steering angle of the vehicle
• Right turn at the maximum steering angle of the vehicle

A vehicle path composed of Dubins path segments allows motion in the forward direction only.

The driving.DubinsPathSegment objects that represent a path are stored in the PathSegments
property of a driving.Path object. These paths are planned by a pathPlannerRRT object whose
ConnectionMethod property is set to 'Dubins'.

Properties
StartPose — Initial pose of vehicle
[x, y, Θ] vector

This property is read-only.

Initial pose of the vehicle at the start of the path segment, specified as an [x, y, Θ] vector. x and y are
in world units, such as meters. Θ is in degrees.

GoalPose — Goal pose of vehicle
[x, y, Θ] vector

This property is read-only.

Goal pose of the vehicle at the end of the path segment, specified as an [x, y, Θ] vector. x and y are in
world units, such as meters. Θ is in degrees.

MinTurningRadius — Minimum turning radius of vehicle
positive real scalar

This property is read-only.

Minimum turning radius of the vehicle, in world units, specified as a positive real scalar. This value
corresponds to the radius of the turning circle at the maximum steering angle of the vehicle.

MotionLengths — Length of each motion
three-element real-valued vector

This property is read-only.
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Length of each motion in the path segment, in world units, specified as a three-element real-valued
vector. Each motion length corresponds to a motion type specified in MotionTypes.

MotionTypes — Type of each motion
three-element string array

This property is read-only.

Type of each motion in the path segment, specified as a three-element string array. Valid values are
shown in this table.

Motion Type Description
"S" Straight
"L" Left turn at the maximum steering angle of the

vehicle
"R" Right turn at the maximum steering angle of the

vehicle

Each motion type corresponds to a motion length specified in MotionLengths.
Example: ["R" "S" "R"]

Length — Length of path segment
positive real scalar

This property is read-only.

Length of the path segment, in world units, specified as a positive real scalar.

References
[1] Shkel, Andrei M., and Vladimir Lumelsky. "Classification of the Dubins Set." Robotics and

Autonomous Systems. Vol. 34, Number 4, 2001, pp. 179–202.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Only one-dimensional indexing is supported.

See Also
Objects
driving.Path | driving.ReedsSheppPathSegment | pathPlannerRRT

Topics
“Automated Parking Valet”
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Introduced in R2018b
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driving.ReedsSheppPathSegment
Reeds-Shepp path segment

Description
A driving.ReedsSheppPathSegment object represents a segment of a planned vehicle path that
was connected using the Reeds-Shepp connection method [1]. A Reeds-Shepp path segment is
composed of a sequence of three to five motions. Each motion is one of these types:

• Straight (forward or reverse)
• Left turn at the maximum steering angle of the vehicle (forward or reverse)
• Right turn at the maximum steering angle of the vehicle (forward or reverse)

The driving.ReedsSheppPathSegment objects that represent a path are stored in the
PathSegments property of a driving.Path object. These paths are planned by a pathPlannerRRT
object whose ConnectionMethod property is set to 'Dubins'.

Properties
StartPose — Initial pose of vehicle
[x, y, Θ] vector

This property is read-only.

Initial pose of the vehicle at the start of the path segment, specified as an [x, y, Θ] vector. x and y are
in world units, such as meters. Θ is in degrees.

GoalPose — Goal pose of vehicle
[x, y, Θ] vector

This property is read-only.

Goal pose of the vehicle at the end of the path segment, specified as an [x, y, Θ] vector. x and y are in
world units, such as meters. Θ is in degrees.

MinTurningRadius — Minimum turning radius of vehicle
positive real scalar

This property is read-only.

Minimum turning radius of the vehicle, in world units, specified as a positive real scalar. This value
corresponds to the radius of the turning circle at the maximum steering angle of the vehicle.

MotionLengths — Length of each motion
five-element real-valued vector

This property is read-only.
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Length of each motion in the path segment, in world units, specified as a five-element real-valued
vector. Each motion length corresponds to a motion type specified in MotionTypes and a motion
direction specified in MotionDirections.

When a path segment requires fewer than five motions, the remaining MotionLengths elements are
set to 0. The remaining MotionTypes elements are set to "N" (no motion).

MotionTypes — Type of each motion
five-element string array

This property is read-only.

Type of each motion in the path segment, specified as a five-element string array. Valid values are
shown in this table.

Motion Type Description
"S" Straight (forward or reverse)
"L" Left turn at the maximum steering angle of the

vehicle (forward or reverse)
"R" Right turn at the maximum steering angle of the

vehicle (forward or reverse)
"N" No motion

MotionTypes contains a minimum of three motions, specified as a combination of "S", "L", and "R"
elements. If a path segment has fewer than five motions, the remaining elements of MotionTypes
are "N" (no motion).

Each motion type corresponds to a motion length specified in MotionLengths and a motion
direction specified in MotionDirections.
Example: ["R" "S" "R" "L" "N"]

MotionDirections — Direction of each motion
five-element vector of 1s (forward motion) and –1s (reverse motion)

This property is read-only.

Direction of each motion in the path segment, specified as a five-element vector of 1s (forward
motion) and –1s (reverse motion). Each motion direction corresponds to a motion length specified in
MotionLengths and a motion type specified in MotionTypes.

When no motion occurs, that is, when a MotionTypes value is "N", then the corresponding
MotionDirections element is 1.
Example: [-1 1 -1 1 1]

Length — Length of path segment
positive real scalar

This property is read-only.

Length of the path segment, in world units, specified as a positive real scalar.

 driving.ReedsSheppPathSegment

4-261



References
[1] Reeds, J. A., and L. A. Shepp. "Optimal Paths for a Car That Goes Both Forwards and Backwards."

Pacific Journal of Mathematics. Vol. 145, Number 2, 1990, pp. 367–393.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Only one-dimensional indexing is supported.

See Also
Objects
driving.DubinsPathSegment | driving.Path | pathPlannerRRT

Topics
“Automated Parking Valet”

Introduced in R2018b
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drivingScenario
Create driving scenario

Description
The drivingScenario object represents a 3-D arena containing roads, vehicles, pedestrians, and
other aspects of a driving scenario. Use this object to model realistic traffic scenarios and to generate
synthetic detections for testing controllers or sensor fusion algorithms.

• To add roads, use the road function. To specify lanes in the roads, create a lanespec object. You
can also import roads from a third-party road network by using the roadNetwork function.

• To add actors (cars, pedestrians, bicycles, and so on), use the actor function. To add actors with
properties designed specifically for vehicles, use the vehicle function. All actors, including
vehicles, are modeled as cuboids (box shapes).

• To simulate a scenario, call the advance function in a loop, which advances the simulation one
time step at a time.

You can also create driving scenarios interactively by using the Driving Scenario Designer app. In
addition, you can export drivingScenario objects from the app to produce scenario variations for
use in either the app or in Simulink. For more details, see “Create Driving Scenario Variations
Programmatically”.

Creation

Syntax
scenario = drivingScenario
scenario = drivingScenario(Name,Value)

Description

scenario = drivingScenario creates an empty driving scenario.

scenario = drivingScenario(Name,Value) sets the SampleTime and StopTime properties
using name-value pairs. For example, drivingScenario('SampleTime',0.1','StopTime',10)
samples the scenario every 0.1 seconds for 10 seconds. Enclose each property name in quotes.

Properties
SampleTime — Time interval between scenario simulation steps
0.01 (default) | positive real scalar

Time interval between scenario simulation steps, specified as a positive real scalar. Units are in
seconds.
Example: 1.5
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StopTime — End time of simulation
Inf (default) | positive real scalar

End time of simulation, specified as a positive real scalar. Units are in seconds. The default StopTime
of Inf causes the simulation to end when the first actor reaches the end of its trajectory.
Example: 60.0

SimulationTime — Current time of simulation
positive real scalar

This property is read-only.

Current time of the simulation, specified as a positive real scalar. To reset the time to zero, call the
restart function. Units are in seconds.

IsRunning — Simulation state
true | false

This property is read-only.

Simulation state, specified as true or false. If the simulation is running, IsRunning is true.

Actors — Actors and vehicles contained in scenario
heterogeneous array of Actor and Vehicle objects

This property is read-only.

Actors and vehicles contained in the scenario, specified as a heterogeneous array of Actor and
Vehicle objects. To add actors and vehicles to a driving scenario, use the actor and vehicle
functions.

GeoReference — Geographic coordinates of road network origin
three-element numeric row vector of form [lat, lon, alt]

This property is read-only.

Geographic coordinates of the road network origin, specified as a three-element numeric row vector
of the form [lat, lon, alt], where:

• lat is the latitude of the coordinate in degrees.
• lon is the longitude of the coordinate in degrees.
• alt is the altitude of the coordinate in meters.

These values are with respect to the WGS84 reference ellipsoid, which is a standard ellipsoid used by
GPS data.

The road network origin corresponds to the first set of geographic coordinates specified as input to
the roadNetwork function. If you specify to import roads by region, then this point corresponds to
the center point of the specified rectangular region.

In drivingScenario objects generated from the Driving Scenario Designer app, if you imported
the road network from a map, then the road network origin corresponds to the first (or only) set of
geographic coordinates specified.
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By specifying these coordinates as the origin in the latlon2local function, you can the convert
geographic coordinates of a driving route into the local coordinates of a driving scenario. Then, you
can specify this converted route as a vehicle trajectory in the scenario.

Dependencies

To enable this property, import roads from the HERE HD Live Map3 web service into a driving
scenario by using the roadNetwork function or the Driving Scenario Designer app.

Object Functions

Scenarios
advance Advance driving scenario simulation by one time step
plot Create driving scenario plot
record Run driving scenario and record actor states
restart Restart driving scenario simulation from beginning
updatePlots Update driving scenario plots
export Export road network to OpenDRIVE

Actors
actor Add actor to driving scenario
actorPoses Positions, velocities, and orientations of actors in driving

scenario
actorProfiles Physical and radar characteristics of actors in driving scenario
vehicle Add vehicle to driving scenario
chasePlot Ego-centric projective perspective plot
trajectory Create actor or vehicle trajectory in driving scenario
targetPoses Target positions and orientations relative to ego vehicle
targetOutlines Outlines of targets viewed by actor
driving.scenario.targetsToEgo Convert target poses from scenario to ego coordinates
driving.scenario.targetsToScenario Convert target poses from ego to scenario coordinates

Roads
road Add road to driving scenario
roadNetwork Add road network to driving scenario
roadBoundaries Get road boundaries
driving.scenario.roadBoundariesToEgo Convert road boundaries to ego vehicle coordinates

Lanes
currentLane Get current lane of actor
lanespec Create road lane specifications
laneMarking Create road lane marking object
laneMarkingVertices Lane marking vertices and faces in driving scenario
laneBoundaries Get lane boundaries of actor lane
clothoidLaneBoundary Clothoid-shaped lane boundary model
computeBoundaryModel Compute lane boundary points from clothoid lane boundary model
laneType Create road lane type object

3. You need to enter into a separate agreement with HERE in order to gain access to the HDLM services and to get the
required credentials (access_key_id and access_key_secret) for using the HERE Service.
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Examples

Create Driving Scenario with Multiple Actors and Roads

Create a driving scenario containing a curved road, two straight roads, and two actors: a car and a
bicycle. Both actors move along the road for 60 seconds.

Create the driving scenario object.

scenario = drivingScenario('SampleTime',0.1','StopTime',60);

Create the curved road using road center points following the arc of a circle with an 800-meter
radius. The arc starts at 0°, ends at 90°, and is sampled at 5° increments.

angs = [0:5:90]';
R = 800;
roadcenters = R*[cosd(angs) sind(angs) zeros(size(angs))];
roadwidth = 10;
road(scenario,roadcenters,roadwidth);

Add two straight roads with the default width, using road center points at each end.

roadcenters = [700 0 0; 100 0 0];
road(scenario,roadcenters)

ans = 
  Road with properties:

           Name: ""
         RoadID: 2
    RoadCenters: [2x3 double]
      RoadWidth: 6
      BankAngle: [2x1 double]

roadcenters = [400 400 0; 0 0 0];
road(scenario,roadcenters)

ans = 
  Road with properties:

           Name: ""
         RoadID: 3
    RoadCenters: [2x3 double]
      RoadWidth: 6
      BankAngle: [2x1 double]

Get the road boundaries.

rbdry = roadBoundaries(scenario);

Add a car and a bicycle to the scenario. Position the car at the beginning of the first straight road.

car = vehicle(scenario,'ClassID',1,'Position',[700 0 0], ...
    'Length',3,'Width',2,'Height',1.6);

Position the bicycle farther down the road.
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bicycle = actor(scenario,'ClassID',3,'Position',[706 376 0]', ...
    'Length',2,'Width',0.45,'Height',1.5);

Plot the scenario.

plot(scenario,'Centerline','on','RoadCenters','on');
title('Scenario');

Display the actor poses and profiles.

poses = actorPoses(scenario)

poses=2×1 struct array with fields:
    ActorID
    Position
    Velocity
    Roll
    Pitch
    Yaw
    AngularVelocity

profiles = actorProfiles(scenario)

profiles=2×1 struct array with fields:
    ActorID
    ClassID
    Length

 drivingScenario

4-267



    Width
    Height
    OriginOffset
    MeshVertices
    MeshFaces
    RCSPattern
    RCSAzimuthAngles
    RCSElevationAngles

Show Target Outlines in Driving Scenario Simulation

Create a driving scenario and show how target outlines change as the simulation advances.

Create a driving scenario consisting of two intersecting straight roads. The first road segment is 45
meters long. The second straight road is 32 meters long and intersects the first road. A car traveling
at 12.0 meters per second along the first road approaches a running pedestrian crossing the
intersection at 2.0 meters per second.

scenario = drivingScenario('SampleTime',0.1,'StopTime',1);
road(scenario,[-10 0 0; 45 -20 0]);
road(scenario,[-10 -10 0; 35 10 0]);
ped = actor(scenario,'ClassID',4,'Length',0.4,'Width',0.6,'Height',1.7);
car = vehicle(scenario,'ClassID',1);
pedspeed = 2.0;
carspeed = 12.0;
trajectory(ped,[15 -3 0; 15 3 0],pedspeed);
trajectory(car,[-10 -10 0; 35 10 0],carspeed);

Create an ego-centric chase plot for the vehicle.

chasePlot(car,'Centerline','on')
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Create an empty bird's-eye plot and add an outline plotter and lane boundary plotter. Then, run the
simulation. At each simulation step:

• Update the chase plot to display the road boundaries and target outlines.
• Update the bird's-eye plot to display the updated road boundaries and target outlines. The plot

perspective is always with respect to the ego vehicle.

bepPlot = birdsEyePlot('XLim',[-50 50],'YLim',[-40 40]);
outlineplotter = outlinePlotter(bepPlot);
laneplotter = laneBoundaryPlotter(bepPlot);
legend('off')

while advance(scenario)
    rb = roadBoundaries(car);
    [position,yaw,length,width,originOffset,color] = targetOutlines(car);    
    plotLaneBoundary(laneplotter,rb)
    plotOutline(outlineplotter,position,yaw,length,width, ...
        'OriginOffset',originOffset,'Color',color)
    pause(0.01)
end
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Generate Object and Lane Boundary Detections

Create a driving scenario containing an ego vehicle and a target vehicle traveling along a three-lane
road. Detect the lane boundaries by using a vision detection generator.

scenario = drivingScenario;

Create a three-lane road by using lane specifications.

roadCenters = [0 0 0; 60 0 0; 120 30 0];
lspc = lanespec(3);
road(scenario,roadCenters,'Lanes',lspc);

Specify that the ego vehicle follows the center lane at 30 m/s.

egovehicle = vehicle(scenario,'ClassID',1);
egopath = [1.5 0 0; 60 0 0; 111 25 0];
egospeed = 30;
trajectory(egovehicle,egopath,egospeed);

Specify that the target vehicle travels ahead of the ego vehicle at 40 m/s and changes lanes close to
the ego vehicle.

targetcar = vehicle(scenario,'ClassID',1);
targetpath = [8 2; 60 -3.2; 120 33];
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targetspeed = 40;
trajectory(targetcar,targetpath,targetspeed);

Display a chase plot for a 3-D view of the scenario from behind the ego vehicle.

chasePlot(egovehicle)

Create a vision detection generator that detects lanes and objects. The pitch of the sensor points one
degree downward.

visionSensor = visionDetectionGenerator('Pitch',1.0);
visionSensor.DetectorOutput = 'Lanes and objects';
visionSensor.ActorProfiles = actorProfiles(scenario);

Run the simulation.

1 Create a bird's-eye plot and the associated plotters.
2 Display the sensor coverage area.
3 Display the lane markings.
4 Obtain ground truth poses of targets on the road.
5 Obtain ideal lane boundary points up to 60 m ahead.
6 Generate detections from the ideal target poses and lane boundaries.
7 Display the outline of the target.
8 Display object detections when the object detection is valid.
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9 Display the lane boundary when the lane detection is valid.

bep = birdsEyePlot('XLim',[0 60],'YLim',[-35 35]);
caPlotter = coverageAreaPlotter(bep,'DisplayName','Coverage area', ...
    'FaceColor','blue');
detPlotter = detectionPlotter(bep,'DisplayName','Object detections');
lmPlotter = laneMarkingPlotter(bep,'DisplayName','Lane markings');
lbPlotter = laneBoundaryPlotter(bep,'DisplayName', ...
    'Lane boundary detections','Color','red');
olPlotter = outlinePlotter(bep);
plotCoverageArea(caPlotter,visionSensor.SensorLocation,...
    visionSensor.MaxRange,visionSensor.Yaw, ...
    visionSensor.FieldOfView(1));
while advance(scenario)
    [lmv,lmf] = laneMarkingVertices(egovehicle);
    plotLaneMarking(lmPlotter,lmv,lmf)
    tgtpose = targetPoses(egovehicle);
    lookaheadDistance = 0:0.5:60;
    lb = laneBoundaries(egovehicle,'XDistance',lookaheadDistance,'LocationType','inner');
    [obdets,nobdets,obValid,lb_dets,nlb_dets,lbValid] = ...
        visionSensor(tgtpose,lb,scenario.SimulationTime);
    [objposition,objyaw,objlength,objwidth,objoriginOffset,color] = targetOutlines(egovehicle);
    plotOutline(olPlotter,objposition,objyaw,objlength,objwidth, ...
        'OriginOffset',objoriginOffset,'Color',color)
    if obValid
        detPos = cellfun(@(d)d.Measurement(1:2),obdets,'UniformOutput',false);
        detPos = vertcat(zeros(0,2),cell2mat(detPos')');
        plotDetection(detPlotter,detPos)
    end
    if lbValid
        plotLaneBoundary(lbPlotter,vertcat(lb_dets.LaneBoundaries))
    end
end
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Algorithms
Specify Actor Motion in Driving Scenarios

To specify the motion of actors in a driving scenario, you can either define trajectories for the actors
or specify their motion manually.

Specify Motion Using Trajectory

The trajectory function determines actor pose properties based on a set of waypoints and the
speeds at which the actor travels between those waypoints. Actor pose properties are position,
velocity, roll, pitch, yaw, and angular velocity. With this approach, motion is defined by speed, not
velocity, because the trajectory determines the direction of motion.

The actor moves along the trajectory each time the advance function is called. You can manually
update actor pose properties at any time during a simulation. However, these properties are
overwritten with updated values at the next call to advance.

Specify Motion Manually

When you specify actor motion manually, setting the velocity or angular velocity properties does not
automatically move the actor in successive calls to the advance function. Therefore, you must use
your own motion model to update the position, velocity, and other pose parameters at each simulation
time step.
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See Also
Apps
Driving Scenario Designer

Objects
lidarPointCloudGenerator | multiObjectTracker | radarDetectionGenerator |
visionDetectionGenerator

Topics
“Create Driving Scenario Variations Programmatically”
“Create Driving Scenario Programmatically”
“Define Road Layouts Programmatically”
“Create Actor and Vehicle Trajectories Programmatically”
“Scenario Generation from Recorded Vehicle Data”
“Coordinate Systems in Automated Driving Toolbox”

Introduced in R2017a
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advance
Advance driving scenario simulation by one time step

Syntax
isRunning = advance(scenario)

Description
isRunning = advance(scenario) advances a driving scenario simulation by one time step. To
specify the step time, use the SampleTime property of the input drivingScenario object,
scenario. The function returns the status, isRunning, of the simulation.

Examples

Advance Driving Scenario Simulation

Create a driving scenario. Use the default sample time of 0.01 second.

scenario = drivingScenario;

Add a straight, 30-meter road to the scenario. The road has two lanes.

roadCenters = [0 0; 30 0];
road(scenario,roadCenters,'Lanes',lanespec(2));

Add a vehicle that travels in the left lane at a constant speed of 30 meters per second. Plot the
scenario before running the simulation.

v = vehicle(scenario,'ClassID',1);
waypoints = [5 2; 25 2];
speed = 30; % m/s
trajectory(v,waypoints,speed)

plot(scenario)
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Call the advance function in a loop to advance the simulation one time step at a time. Pause every
0.01 second to observe the motion of the vehicle on the plot.

while advance(scenario)
    pause(0.01)
end

4 Objects

4-278



Show Target Outlines in Driving Scenario Simulation

Create a driving scenario and show how target outlines change as the simulation advances.

Create a driving scenario consisting of two intersecting straight roads. The first road segment is 45
meters long. The second straight road is 32 meters long and intersects the first road. A car traveling
at 12.0 meters per second along the first road approaches a running pedestrian crossing the
intersection at 2.0 meters per second.

scenario = drivingScenario('SampleTime',0.1,'StopTime',1);
road(scenario,[-10 0 0; 45 -20 0]);
road(scenario,[-10 -10 0; 35 10 0]);
ped = actor(scenario,'ClassID',4,'Length',0.4,'Width',0.6,'Height',1.7);
car = vehicle(scenario,'ClassID',1);
pedspeed = 2.0;
carspeed = 12.0;
trajectory(ped,[15 -3 0; 15 3 0],pedspeed);
trajectory(car,[-10 -10 0; 35 10 0],carspeed);

Create an ego-centric chase plot for the vehicle.

chasePlot(car,'Centerline','on')
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Create an empty bird's-eye plot and add an outline plotter and lane boundary plotter. Then, run the
simulation. At each simulation step:

• Update the chase plot to display the road boundaries and target outlines.
• Update the bird's-eye plot to display the updated road boundaries and target outlines. The plot

perspective is always with respect to the ego vehicle.

bepPlot = birdsEyePlot('XLim',[-50 50],'YLim',[-40 40]);
outlineplotter = outlinePlotter(bepPlot);
laneplotter = laneBoundaryPlotter(bepPlot);
legend('off')

while advance(scenario)
    rb = roadBoundaries(car);
    [position,yaw,length,width,originOffset,color] = targetOutlines(car);    
    plotLaneBoundary(laneplotter,rb)
    plotOutline(outlineplotter,position,yaw,length,width, ...
        'OriginOffset',originOffset,'Color',color)
    pause(0.01)
end
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Simulate Car Traveling on S-Curve

Simulate a driving scenario with one car traveling on an S-curve. Create and plot the lane
boundaries.

Create the driving scenario with one road having an S-curve.

scenario = drivingScenario('StopTime',3);
roadcenters = [-35 20 0; -20 -20 0; 0 0 0; 20 20 0; 35 -20 0];

Create the lanes and add them to the road.

lm = [laneMarking('Solid','Color','w'); ...
    laneMarking('Dashed','Color','y'); ...
    laneMarking('Dashed','Color','y'); ...
    laneMarking('Solid','Color','w')];
ls = lanespec(3,'Marking',lm);
road(scenario,roadcenters,'Lanes',ls);

Add an ego vehicle and specify its trajectory from its waypoints. By default, the car travels at a speed
of 30 meters per second.

car = vehicle(scenario, ...
    'ClassID',1, ...
    'Position',[-35 20 0]);
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waypoints = [-35 20 0; -20 -20 0; 0 0 0; 20 20 0; 35 -20 0];
trajectory(car,waypoints);

Plot the scenario and corresponding chase plot.

plot(scenario)

chasePlot(car)
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Run the simulation loop.

1 Initialize a bird's-eye plot and create an outline plotter, left-lane and right-lane boundary plotters,
and a road boundary plotter.

2 Obtain the road boundaries and rectangular outlines.
3 Obtain the lane boundaries to the left and right of the vehicle.
4 Advance the simulation and update the plotters.

bep = birdsEyePlot('XLim',[-40 40],'YLim',[-30 30]);
olPlotter = outlinePlotter(bep);
lblPlotter = laneBoundaryPlotter(bep,'Color','r','LineStyle','-');
lbrPlotter = laneBoundaryPlotter(bep,'Color','g','LineStyle','-');
rbsEdgePlotter = laneBoundaryPlotter(bep);
legend('off');
while advance(scenario)
    rbs = roadBoundaries(car);
    [position,yaw,length,width,originOffset,color] = targetOutlines(car);
    lb = laneBoundaries(car,'XDistance',0:5:30,'LocationType','Center', ...
        'AllBoundaries',false);
    plotLaneBoundary(rbsEdgePlotter,rbs)
    plotLaneBoundary(lblPlotter,{lb(1).Coordinates})
    plotLaneBoundary(lbrPlotter,{lb(2).Coordinates})
    plotOutline(olPlotter,position,yaw,length,width, ...
        'OriginOffset',originOffset,'Color',color)
end
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Input Arguments
scenario — Driving scenario
drivingScenario object

Driving scenario, specified as a drivingScenario object.

Output Arguments
isRunning — Run state of simulation
1 | 0

Run state of the simulation, returned as logical 1 (true) or 0 (false).

• If isRunning is 1, the simulation is running.
• If isRunning is 0, the simulation has stopped running.

A simulation runs until at least one of these conditions are met:

• The simulation time exceeds the simulation stop time. To specify the stop time, use the StopTime
property of scenario.

• Any actor or vehicle reaches the end of its assigned trajectory. The assigned trajectory is specified
by the most recent call to the trajectory function.
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The advance function updates actors and vehicles only if they have an assigned trajectory. To update
actors and vehicles that have no assigned trajectories, you can set the Position, Velocity, Roll,
Pitch, Yaw, or AngularVelocity properties at any time during simulation.

See Also
Objects
drivingScenario

Functions
chasePlot | plot | record | restart | trajectory

Topics
“Create Driving Scenario Programmatically”
“Create Actor and Vehicle Trajectories Programmatically”

Introduced in R2017a
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export
Export road network to OpenDRIVE

Syntax
export(scenario,'OpenDRIVE',filename)

Description
export(scenario,'OpenDRIVE',filename) exports the roads, lanes, and junctions in a driving
scenario to the OpenDRIVE 1.4H file format. There may be variations between the original scenario
and the exported scenario. For details, see “Limitations” on page 4-294.

Examples

Export OpenStreetMap Road Network to OpenDRIVE File

Create a driving scenario.

inputScenario = drivingScenario;

Import a OpenStreetMap road network into the driving scenario. For more information about the osm
file, see [1] on page 4-0 .

fileName = 'chicago.osm';
roadNetwork(inputScenario,'OpenStreetMap',fileName);

Export to OpenDRIVE file.

fileName = 'chicago.xodr';
export(inputScenario,'OpenDRIVE',fileName);

Warning: There may be minor variation between the actual driving scenario and the exported OpenDRIVE road networks. For more information, see <a href="matlab:helpview(fullfile(docroot,'toolbox','driving','helptargets.map'),'exportOpenDriveCLI')">export</a>.

Read the exported OpenDRIVE file by using the roadNetwork function.

scenario = drivingScenario;
roadNetwork(scenario,'OpenDRIVE',fileName);

Plot the exported scenario. Notice that the display for the exported road network is flipped along the
x and y dimensions and does not have the border lines.

figure
plot(inputScenario)
zoom(2);
title('Actual Scenario')
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figure
plot(scenario)
zoom(2);
title('Exported Scenario')
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Appendix

[1] The osm file is downloaded from https://www.openstreetmap.org, which provides access to crowd-
sourced map data all over the world. The data is licensed under the Open Data Commons Open
Database License (ODbL), https://opendatacommons.org/licenses/odbl/.

Create S-Curve Road and Export to OpenDRIVE Format

Create the driving scenario with one road having an S-curve.

scenario = drivingScenario;
roadcenters = [-35 20 0; -20 -20 0; 0 0 0; 20 20 0; 35 -20 0];

Create the lanes and add them to the road.

lm = [laneMarking('Solid','Color','w') ...
     laneMarking('Dashed','Color','y') ...
     laneMarking('Dashed','Color','y') ...
     laneMarking('Solid','Color','w')];
ls = lanespec(3,'Marking',lm);
road(scenario,roadcenters,'Lanes',ls);

Plot the scenario.

plot(scenario)

 export
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Export the road network in the scenario to OpenDRIVE file.

fileName = 'scurveroad.xodr';
export(scenario,'OpenDRIVE',fileName)

Warning: There may be minor variation between the actual driving scenario and the exported OpenDRIVE road networks. For more information, see <a href="matlab:helpview(fullfile(docroot,'toolbox','driving','helptargets.map'),'exportOpenDriveCLI')">export</a>.

You can import the OpenDRIVE file to MATLAB workspace by using the roadNetwork function.

scenario = drivingScenario;
roadNetwork(scenario,'OpenDRIVE',fileName)
plot(scenario)
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Input Arguments
scenario — Driving scenario
drivingScenario object

Driving scenario, specified as a drivingScenario object. The driving scenario must contain one or
more road networks in order to export it to the OpenDRIVE file format.

If the driving scenario does not have lane specifications, then the export function assigns a default
lane specification while exporting to the OpenDRIVE file format.

filename — Name of destination OpenDRIVE file
character vector | string scalar

Name of the destination OpenDRIVE file, specified as a character vector or string scalar. You can
specify the file name with or without the file extension. If you choose to specify a file extension, the
file extension must be either .xodr or .xml. The function uses .xodr as the default. If the specified
file name, including the file extension already exists, then the function overwrites the data in the
existing file with the road network specified in the scenario argument.
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Data Types: char | string

Limitations
• The export function does not export the actors and their properties from the original scenario to

the OpenDRIVE format.
• The cubic polynomial and the parametric cubic polynomial geometry types in the scenario are

exported as spiral geometry types. This causes some variations in the exported road geometry if
the road is a curved road. For example, in the figure below, notice that the sharp corners in the
input road became relatively smooth when exported to the OpenDRIVE format.

Input Road Exported OpenDRIVE Road

• The junctions of the road network are processed without lane connection information and so, the
junction shapes may not be accurate in the exported scenario.

Input Road Exported OpenDRIVE Road
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• The limitations in OpenDRIVE import applies to OpenDRIVE export, if you export a driving
scenario object that contains an imported OpenDRIVE scenario. You can import an OpenDRIVE
scenario to a drivingScenario object by using the roadNetwork function. For information on
limitations in OpenDRIVE import, see roadNetwork.

See Also
Objects
drivingScenario

Topics
“Export Driving Scenario to OpenDRIVE File”

Introduced in R2020b
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plot
Create driving scenario plot

Syntax
plot(scenario)
plot(scenario,Name,Value)

Description
plot(scenario) creates a 3-D plot with orthonormal perspective, as seen from immediately above
the driving scenario, scenario.

plot(scenario,Name,Value) specifies options using one or more name-value pairs. For example,
you can use these options to display road centers and actor waypoints on the plot.

Examples

Create and Display Road Boundaries

Create a driving scenario containing a figure-8 road specified in the world coordinates of the
scenario. Convert the world coordinates of the scenario to the coordinate system of the ego vehicle.

Create an empty driving scenario.

scenario = drivingScenario;

Add a figure-8 road to the scenario. Display the scenario.

roadCenters = [0  0  1
             20 -20  1
             20  20  1
            -20 -20  1
            -20  20  1
              0   0  1];

roadWidth = 3;
bankAngle = [0 15 15 -15 -15 0];
road(scenario,roadCenters,roadWidth,bankAngle);
plot(scenario)
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Add an ego vehicle to the scenario. Position the vehicle at world coordinates (20, –20) and orient it at
a –15 degree yaw angle.

ego = actor(scenario,'ClassID',1,'Position',[20 -20 0],'Yaw',-15);
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Obtain the road boundaries in ego vehicle coordinates by using the roadBoundaries function.
Specify the ego vehicle as the input argument.

rbEgo1 = roadBoundaries(ego);

Display the result on a bird's-eye plot.

bep = birdsEyePlot;
lbp = laneBoundaryPlotter(bep,'DisplayName','Road');
plotLaneBoundary(lbp,rbEgo1)
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Obtain the road boundaries in world coordinates by using the roadBoundaries function. Specify the
scenario as the input argument.

rbScenario = roadBoundaries(scenario);

Obtain the road boundaries in ego vehicle coordinates by using the
driving.scenario.roadBoundariesToEgo function.

rbEgo2 = driving.scenario.roadBoundariesToEgo(rbScenario,ego);

Display the road boundaries on a bird's-eye plot.

bep = birdsEyePlot;
lbp = laneBoundaryPlotter(bep,'DisplayName','Road boundaries');
plotLaneBoundary(lbp,{rbEgo2})
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Create Driving Scenario with Multiple Actors and Roads

Create a driving scenario containing a curved road, two straight roads, and two actors: a car and a
bicycle. Both actors move along the road for 60 seconds.

Create the driving scenario object.

scenario = drivingScenario('SampleTime',0.1','StopTime',60);

Create the curved road using road center points following the arc of a circle with an 800-meter
radius. The arc starts at 0°, ends at 90°, and is sampled at 5° increments.

angs = [0:5:90]';
R = 800;
roadcenters = R*[cosd(angs) sind(angs) zeros(size(angs))];
roadwidth = 10;
road(scenario,roadcenters,roadwidth);

Add two straight roads with the default width, using road center points at each end.

roadcenters = [700 0 0; 100 0 0];
road(scenario,roadcenters)

ans = 
  Road with properties:
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           Name: ""
         RoadID: 2
    RoadCenters: [2x3 double]
      RoadWidth: 6
      BankAngle: [2x1 double]

roadcenters = [400 400 0; 0 0 0];
road(scenario,roadcenters)

ans = 
  Road with properties:

           Name: ""
         RoadID: 3
    RoadCenters: [2x3 double]
      RoadWidth: 6
      BankAngle: [2x1 double]

Get the road boundaries.

rbdry = roadBoundaries(scenario);

Add a car and a bicycle to the scenario. Position the car at the beginning of the first straight road.

car = vehicle(scenario,'ClassID',1,'Position',[700 0 0], ...
    'Length',3,'Width',2,'Height',1.6);

Position the bicycle farther down the road.

bicycle = actor(scenario,'ClassID',3,'Position',[706 376 0]', ...
    'Length',2,'Width',0.45,'Height',1.5);

Plot the scenario.

plot(scenario,'Centerline','on','RoadCenters','on');
title('Scenario');
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Display the actor poses and profiles.

poses = actorPoses(scenario)

poses=2×1 struct array with fields:
    ActorID
    Position
    Velocity
    Roll
    Pitch
    Yaw
    AngularVelocity

profiles = actorProfiles(scenario)

profiles=2×1 struct array with fields:
    ActorID
    ClassID
    Length
    Width
    Height
    OriginOffset
    MeshVertices
    MeshFaces
    RCSPattern
    RCSAzimuthAngles
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    RCSElevationAngles

Input Arguments
scenario — Driving scenario
drivingScenario object

Driving scenario, specified as a drivingScenario object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: plot(sc,'Centerline','on','RoadCenters','on') displays the center line and
road centers of each road segment.

Parent — Axes in which to draw plot
Axes object

Axes in which to draw the plot, specified as the comma-separated pair consisting of 'Parent' and an
Axes object. If you do not specify Parent, a new figure is created.

Centerline — Display center line of roads
'off' (default) | 'on'

Display the center line of roads, specified as the comma-separated pair consisting of 'Centerline'
and 'off' or 'on'. The center line follows the middle of each road segment. Center lines are
discontinuous through areas such as intersections or road splits.

RoadCenters — Display road centers
'off' (default) | 'on'

Display road centers, specified as the comma-separated pair consisting of 'RoadCenters' and
'off' or 'on'. The road centers define the roads shown in the plot.

Waypoints — Display actor waypoints
'off' (default) | 'on'

Display actor waypoints, specified as the comma-separated pair consisting of 'Waypoints' and
'off' or 'on'. Waypoints define the trajectory of the actor.

Meshes — Display actor meshes
'off' (default) | 'on'

Display actor meshes instead of cuboids, specified as the comma-separated pair consisting of
'Meshes' and 'off' or 'on'.

ActorIndicators — Actors around which to draw indicator
[] (default) | vector of ActorID integers

Actors around which to draw indicators, specified as the comma-separated pair consisting of
'ActorIndicators' and a vector of ActorID integers. The driving scenario plot draws circles
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around the actors that have the specified ActorID values. Each circle is the same color as the actor
that it surrounds. The circles are not sensor coverage areas.

Use this name-value pair to highlight the ego vehicle in driving scenarios that contain several
vehicles.

Tips
• To rotate any plot, in the figure window, select View > Camera Toolbar.

See Also
Objects
drivingScenario

Functions
actor | chasePlot | road | trajectory | vehicle

Topics
“Create Driving Scenario Programmatically”
“Create Actor and Vehicle Trajectories Programmatically”
“Define Road Layouts Programmatically”

Introduced in R2017a
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record
Run driving scenario and record actor states

Syntax
rec = record(scenario)

Description
rec = record(scenario) returns a recording, rec, of the states of actors in a driving scenario
simulation, scenario. To record a scenario, you must define the trajectory of at least one actor.

Examples

Record Actor Poses from Driving Scenario

Create a driving scenario in which one car passes a stationary car on a two-lane road.

scenario = drivingScenario;
road(scenario,[0 0; 10 0; 53 -20],'lanes',lanespec(2));
plot(scenario,'Waypoints','on');
stationaryCar = vehicle(scenario,'ClassID',1,'Position',[25 -5.5 0],'Yaw',-22);

passingCar = vehicle(scenario,'ClassID',1);
waypoints = [1 -1.5; 16.36 -2.5; 17.35 -2.765; ...
            23.83 -2.01; 24.9 -2.4; 50.5 -16.7];
speed = 15; % m/s
trajectory(passingCar,waypoints,speed);
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Record the driving scenario simulation.

rec = record(scenario);
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Compare the recorded poses of the passing car at the start and end of the simulation.

rec(1).ActorPoses(2)

ans = struct with fields:
            ActorID: 2
           Position: [1 -1.5000 0]
           Velocity: [14.9816 0.7423 0]
               Roll: 0
              Pitch: 0
                Yaw: 2.8367
    AngularVelocity: [0 0 1.2537e-05]

rec(end).ActorPoses(2)

ans = struct with fields:
            ActorID: 2
           Position: [50.4717 -16.6823 0]
           Velocity: [12.7171 -7.9546 0]
               Roll: 0
              Pitch: 0
                Yaw: -32.0261
    AngularVelocity: [0 0 -0.0099]

 record

4-307



Input Arguments
scenario — Driving scenario
drivingScenario object

Driving scenario, specified as a drivingScenario object.

Output Arguments
rec — Recording of actor states during simulation
M-by-1 vector of structures

Recording of actor states during simulation, returned as an M-by-1 vector of structures. M is the
number of time steps in the simulation. Each structure corresponds to a simulation time step.

The rec structure has these fields:

Field Description Type
SimulationTime Simulation time at each time

step
Real scalar

ActorPoses Actor poses in scenario
coordinates

N-by-1 vector of ActorPoses
structures, where N is the
number of actors, including
vehicles.

Each ActorPoses structure has these fields.

Field Description
ActorID Scenario-defined actor identifier, specified as a

positive integer.
Position Position of actor, specified as a real-valued vector

of the form [x, y, z]. Units are in meters.
Velocity Velocity (v) of actor in the x-, y-, and z-direction,

specified as a real-valued vector of the form [vx,
vy, vz]. Units are in meters per second.

Roll Roll angle of actor, specified as a real-valued
scalar. Units are in degrees.

Pitch Pitch angle of actor, specified as a real-valued
scalar. Units are in degrees.

Yaw Yaw angle of actor, specified as a real-valued
scalar. Units are in degrees.

AngularVelocity Angular velocity (ω) of actor in the x-, y-, and z-
direction, specified as a real-valued vector of the
form [ωx, ωy, ωz]. Units are in degrees per second.

For full definitions of these structure fields, see the actor and vehicle functions.
Data Types: struct
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See Also
Objects
drivingScenario

Functions
actor | actorPoses | advance | restart | vehicle

Topics
“Create Driving Scenario Programmatically”

Introduced in R2017a
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restart
Restart driving scenario simulation from beginning

Syntax
restart(scenario)

Description
restart(scenario) restarts the simulation of the driving scenario, scenario, from the beginning.
The function sets the SimulationTime property of the driving scenario to 0.

Examples

Restart Driving Scenario Simulation

Create a driving scenario in which a vehicle travels down a straight, 25-meter road at 20 meters per
second. Plot the scenario.

scenario = drivingScenario('SampleTime',0.1);

roadcenters= [0 0 0; 25 0 0];
road(scenario,roadcenters)

ans = 
  Road with properties:

           Name: ""
         RoadID: 1
    RoadCenters: [2x3 double]
      RoadWidth: 6
      BankAngle: [2x1 double]

v = vehicle(scenario,'ClassID',1);

waypoints = [5 0 0; 20 0 0];
speed = 20; % m/s
trajectory(v,waypoints,speed)

plot(scenario)
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Run the simulation and display the location of the vehicle at each time step.

while advance(scenario)
    fprintf('Vehicle location: %0.2f meters at t = %0.0f ms\n', ...
            v.Position(1), ...
            scenario.SimulationTime * 1000)
end

Vehicle location: 7.00 meters at t = 100 ms

Vehicle location: 9.00 meters at t = 200 ms

Vehicle location: 11.00 meters at t = 300 ms

Vehicle location: 13.00 meters at t = 400 ms

Vehicle location: 15.00 meters at t = 500 ms

Vehicle location: 17.00 meters at t = 600 ms

Vehicle location: 19.00 meters at t = 700 ms
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Restart the simulation. Increase the sample time and rerun the simulation.

restart(scenario);
scenario.SampleTime = 0.2;

while advance(scenario)
    fprintf('Vehicle location: %0.2f meters at t = %0.0f ms\n', ...
            v.Position(1), ...
            scenario.SimulationTime * 1000)
end

Vehicle location: 9.00 meters at t = 200 ms

Vehicle location: 13.00 meters at t = 400 ms

Vehicle location: 17.00 meters at t = 600 ms
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Input Arguments
scenario — Driving scenario
drivingScenario object

Driving scenario, specified as a drivingScenario object.

See Also
Objects
drivingScenario

Functions
advance | record

Topics
“Create Driving Scenario Programmatically”

Introduced in R2017a
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updatePlots
Update driving scenario plots

Syntax
updatePlots(scenario)

Description
updatePlots(scenario) updates the display of all existing plots for the driving scenario,
scenario. Driving scenario plots are automatically updated every time you call the advance
function to advance the simulation. Use updatePlots after you update any actor properties and
want to refresh the plot without having to call advance.

Examples

Update Driving Scenario Plots

Update driving scenario plots after changing aspects of the scenario.

Create a driving scenario containing a vehicle on a straight, 25-meter road segment. Plot the
scenario.

scenario = drivingScenario;
roadcenters = [0 0 0; 25 0 0];
road(scenario,roadcenters);
  
v = vehicle(scenario,'ClassID',1);
v.Position = [1 0 0];

plot(scenario)
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Use a chase plot to plot the scenario from the perspective of the vehicle.

chasePlot(v)

 updatePlots
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Set a new position for the vehicle.

v.Position = [12 0 0];

Update both plots to show the new position of the vehicle.

updatePlots(scenario)
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Input Arguments
scenario — Driving scenario
drivingScenario object

Driving scenario, specified as a drivingScenario object.

See Also
Objects
drivingScenario

Functions
advance | chasePlot | plot

Topics
“Create Driving Scenario Programmatically”

Introduced in R2017a
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actor
Package: 

Add actor to driving scenario

Syntax
ac = actor(scenario)
ac = actor(scenario,Name,Value)

Description
ac = actor(scenario) adds an Actor object, ac, to the driving scenario, scenario. The actor
has default property values.

Actors are cuboids (box shapes) that represent objects in motion, such as cars, pedestrians, and
bicycles. Actors can also represent stationary obstacles that can influence the motion of other actors,
such as barriers. For more details about how actors are defined, see “Actor and Vehicle Positions and
Dimensions” on page 4-331.

ac = actor(scenario,Name,Value) sets actor properties using one or more name-value pair
arguments. For example, you can set the position, velocity, dimensions, and orientation of the actor.
You can also set a time for the actor to spawn or despawn in the scenario.

Note You can configure the actors in a driving scenario to spawn and despawn, and then import the
associated drivingScenario object into the Driving Scenario Designer app. The app considers
the first actor created in the driving scenario to be the ego actor and does not allow the ego actor to
either spawn or despawn in the scenario.

Examples

Create Driving Scenario with Multiple Actors and Roads

Create a driving scenario containing a curved road, two straight roads, and two actors: a car and a
bicycle. Both actors move along the road for 60 seconds.

Create the driving scenario object.

scenario = drivingScenario('SampleTime',0.1','StopTime',60);

Create the curved road using road center points following the arc of a circle with an 800-meter
radius. The arc starts at 0°, ends at 90°, and is sampled at 5° increments.

angs = [0:5:90]';
R = 800;
roadcenters = R*[cosd(angs) sind(angs) zeros(size(angs))];
roadwidth = 10;
road(scenario,roadcenters,roadwidth);
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Add two straight roads with the default width, using road center points at each end.

roadcenters = [700 0 0; 100 0 0];
road(scenario,roadcenters)

ans = 
  Road with properties:

           Name: ""
         RoadID: 2
    RoadCenters: [2x3 double]
      RoadWidth: 6
      BankAngle: [2x1 double]

roadcenters = [400 400 0; 0 0 0];
road(scenario,roadcenters)

ans = 
  Road with properties:

           Name: ""
         RoadID: 3
    RoadCenters: [2x3 double]
      RoadWidth: 6
      BankAngle: [2x1 double]

Get the road boundaries.

rbdry = roadBoundaries(scenario);

Add a car and a bicycle to the scenario. Position the car at the beginning of the first straight road.

car = vehicle(scenario,'ClassID',1,'Position',[700 0 0], ...
    'Length',3,'Width',2,'Height',1.6);

Position the bicycle farther down the road.

bicycle = actor(scenario,'ClassID',3,'Position',[706 376 0]', ...
    'Length',2,'Width',0.45,'Height',1.5);

Plot the scenario.

plot(scenario,'Centerline','on','RoadCenters','on');
title('Scenario');
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Display the actor poses and profiles.

poses = actorPoses(scenario)

poses=2×1 struct array with fields:
    ActorID
    Position
    Velocity
    Roll
    Pitch
    Yaw
    AngularVelocity

profiles = actorProfiles(scenario)

profiles=2×1 struct array with fields:
    ActorID
    ClassID
    Length
    Width
    Height
    OriginOffset
    MeshVertices
    MeshFaces
    RCSPattern
    RCSAzimuthAngles
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    RCSElevationAngles

Spawn and Despawn Actors in Scenario During Simulation

Create a driving scenario. Set the stop time for the scenario to 3 seconds.

scenario = drivingScenario('StopTime',3);

Add a two-lane road to the scenario.

roadCenters = [0 1 0; 53 1 0];
laneSpecification = lanespec([1 1]);
road(scenario,roadCenters,'Lanes',laneSpecification);

Add another road that intersects the first road at a right angle to form a T-shape.

roadCenters = [20.3 33.4 0; 20 3 0];
laneSpecification = lanespec(2);
road(scenario,roadCenters,'Lanes',laneSpecification)

ans = 
  Road with properties:

           Name: ""
         RoadID: 2
    RoadCenters: [2x3 double]
      RoadWidth: 7.3500
      BankAngle: [2x1 double]

Add the ego vehicle to the scenario and define its waypoints. Set the ego vehicle speed to 20 m/s and
generate the trajectories for the ego vehicle.

egoVehicle = vehicle(scenario,'ClassID',1, ...
                    'Position',[1.5 2.5 0]);
waypoints = [2 3 0; 13 3 0;
            21 3 0; 31 3 0;
            43 3 0; 47 3 0];
speed = 15;
trajectory(egoVehicle,waypoints,speed)

Add a non-ego actor to the scenario. Set the non-ego actor to spawn and despawn during the
simulation by specifying an entry time and an exit time.

nonEgoactor1 = actor(scenario,'ClassID',1, ...
                'Position',[22 30 0],'EntryTime',0.8,'ExitTime',2);

Define the waypoints for the non-ego actor. Set the non-ego actor speed to 35 m/s and generate its
trajectories.

waypoints = [22 30 0; 22 23 0;
            22 13 0; 22 7 0;
            18 -0.3 0; 12 -0.8 0; 3 -0.8 0];
speed = 35;
trajectory(nonEgoactor1,waypoints,speed)
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Add another non-ego actor to the scenario. Set the second non-ego actor to spawn during the
simulation by specifying an entry time. Since you do not specify an exit time, this actor will remain in
the scenario until the scenario ends.

nonEgoactor2 = actor(scenario,'ClassID',1, ...
                'Position',[48 -1 0],'EntryTime',2);

Define the waypoints for the second non-ego actor. Set the actor speed to 60 m/s and generate its
trajectories.

waypoints = [48 -1 0; 42 -1 0; 28 -1 0;
            16 -1 0; 6 -1 0];
speed = 60;
trajectory(nonEgoactor2,waypoints,speed)

Create a custom figure window to plot the scenario.

fig = figure;
set(fig,'Position',[0 0 600 600])
movegui(fig,'center')
hViewPnl = uipanel(fig,'Position',[0 0 1 1],'Title','Actor Spawn and Despawn');
hPlt = axes(hViewPnl);

Plot the scenario and run the simulation. Observe how the non-ego actors spawn and despawn in the
scenario while simulation is running.

plot(scenario,'Waypoints','on','Parent',hPlt)
while advance(scenario)
    pause(0.1)
end
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Input Arguments
scenario — Driving scenario
drivingScenario object

Driving scenario, specified as a drivingScenario object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
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Example: 'Height',1.7 sets the height of the actor to 1.7 meters upon creation.

ClassID — Classification identifier
0 (default) | nonnegative integer

Classification identifier of actor, specified as the comma-separated pair consisting of 'ClassID' and
a nonnegative integer.

Specify ClassID values to group together actors that have similar dimensions, radar cross-section
(RCS) patterns, or other properties. As a best practice, before adding actors to a drivingScenario
object, determine the actor classification scheme you want to use. Then, when creating the actors,
specify the ClassID name-value pair to set classification identifiers according to the actor
classification scheme.

Suppose you want to create a scenario containing these actors:

• Two cars, one of which is the ego vehicle
• A truck
• A bicycle

The code shows a sample classification scheme for this scenario, where 1 refers to cars, 2 refers to
trucks, and 3 refers to bicycles. The cars have default vehicle properties. The truck and bicycle have
the dimensions of a typical truck and bicycle, respectively.

scenario = drivingScenario;
ego = vehicle(scenario,'ClassID',1);
car = vehicle(scenario,'ClassID',1);
truck = vehicle(scenario,'ClassID',2,'Length',8.2,'Width',2.5,'Height',3.5);
bicycle = actor(scenario,'ClassID',3,'Length',1.7,'Width',0.45,'Height',1.7);

The default ClassID of 0 is reserved for an object of an unknown or unassigned class. If you plan to
import drivingScenario objects into the Driving Scenario Designer app, do not leave the
ClassID property of actors set to 0. The app does not recognize a ClassID of 0 for actors and
returns an error. Instead, set ClassID values of actors according to the actor classification scheme
used in the app.

ClassID Class Name
1 Car
2 Truck
3 Bicycle
4 Pedestrian
5 Barrier

Name — Name of actor
"" (default) | character vector | string scalar

Name of the actor, specified as the comma-separated pair consisting of 'Name' and a character
vector or string scalar.
Example: 'Name','Actor1'
Example: "Name","Actor1"
Data Types: char | string
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EntryTime — Entry time for actor to spawn
0 (default) | positive scalar

Entry time for an actor to spawn in the driving scenario, specified as the comma-separated pair
consisting of 'EntryTime' and a positive scalar. Units are in seconds, measured from the start time
of the scenario.

Specify this name-value pair argument to add or make an actor appear in the driving scenario at the
specified time, while the simulation is running.

• If the actor has an associated exit time, then the entry time must be less than the specified exit
time.

• If the actor does not have an associated exit time, then the entry time must be less than or equal
to the stop time of the scenario. You can set the stop time for the scenario by specifying a value for
the 'StopTime' property of the drivingScenario object.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ExitTime — Exit time for actor to despawn
Inf (default) | positive scalar

Exit time for an actor to despawn from the driving scenario, specified as the comma-separated pair
consisting of 'ExitTime' and a positive scalar. Units are in seconds, measured from the start time of
the scenario.

Specify this name-value pair argument to remove or make an actor disappear from the scenario at a
specified time while the simulation is running.

• If the actor has an associated entry time, then the exit time must be greater than the specified
entry time.

• If the actor does not have an associated entry time, then the exit time must be less than or equal
to the stop time of the scenario. You can set the stop time for the scenario by specifying a value for
the 'StopTime' property of the drivingScenario object.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

PlotColor — Display color of actor
RGB triplet | hexadecimal color code | color name | short color name

Display color of actor, specified as the comma-separated pair consisting of 'PlotColor' and an RGB
triplet, hexadecimal color code, color name, or short color name.

The actor appears in the specified color in all programmatic scenario visualizations, including the
plot function, chasePlot function, and plotting functions of birdsEyePlot objects. If you import
the scenario into the Driving Scenario Designer app, then the actor appears in this color in all app
visualizations. If you import the scenario into Simulink, then the actor appears in this color in the
Bird's-Eye Scope.

If you do not specify a color for the actor, the function assigns one based on the default color order of
Axes objects. For more details, see the ColorOrder property for Axes objects.

For a custom color, specify an RGB triplet or a hexadecimal color code.
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• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Position — Position of actor center
[0 0 0] (default) | [x y z] real-valued vector

Position of the actor center, specified as the comma-separated pair consisting of 'Position' and an
[x y z] real-valued vector.

The center of the actor is [L/2 W/2 b], where:

• L/2 is the midpoint of actor length L.
• W/2 is the midpoint of actor width W.
• b is the bottom of the cuboid.

Units are in meters.
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Example: [10;50;0]

Velocity — Velocity of actor center
[0 0 0] (default) | [vx vy vz] real-valued vector

Velocity (v) of the actor center in the x-, y- and z-directions, specified as the comma-separated pair
consisting of 'Velocity' and a [vx vy vz] real-valued vector. The 'Position' name-value pair
specifies the actor center. Units are in meters per second.
Example: [-4;7;10]

Yaw — Yaw angle of actor
0 (default) | real scalar

Yaw angle of the actor, specified as the comma-separated pair consisting of 'Yaw' and a real scalar.
Yaw is the angle of rotation of the actor around the z-axis. Yaw is clockwise-positive when looking in
the forward direction of the axis, which points up from the ground. Therefore, when viewing actors
from the top down, such as on a bird's-eye plot, yaw is counterclockwise-positive. Angle values are
wrapped to the range [–180, 180]. Units are in degrees.
Example: -0.4

Pitch — Pitch angle of actor
0 (default) | real scalar

Pitch angle of the actor, specified as the comma-separated pair consisting of 'Pitch' and a real
scalar. Pitch is the angle of rotation of the actor around the y-axis and is clockwise-positive when
looking in the forward direction of the axis. Angle values are wrapped to the range [–180, 180]. Units
are in degrees.
Example: 5.8

Roll — Roll angle of actor
0 (default) | real scalar

Roll angle of the actor, specified as the comma-separated pair consisting of 'Roll' and a real scalar.
Roll is the angle of rotation of the actor around the x-axis and is clockwise-positive when looking in
the forward direction of the axis. Angle values are wrapped to the range [–180, 180]. Units are in
degrees.
Example: -10

AngularVelocity — Angular velocity of actor
[0 0 0] (default) | [ωx ωy ωz] real-valued vector

Angular velocity (ω) of the actor, in world coordinates, specified as the comma-separated pair
consisting of 'AngularVelocity' and a [ωx ωy ωz] real-valued vector. Units are in degrees per
second.
Example: [20 40 20]

Length — Length of actor
4.7 (default) | positive real scalar

Length of the actor, specified as the comma-separated pair consisting of 'Length' and a positive
real scalar. Units are in meters.
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Example: 5.5

Width — Width of actor
1.8 (default) | positive real scalar

Width of the actor, specified as the comma-separated pair consisting of 'Width' and a positive real
scalar. Units are in meters.
Example: 3.0

Height — Height of actor
1.4 (default) | positive real scalar

Height of the actor, specified as the comma-separated pair consisting of 'Height' and a positive real
scalar. Units are meters.
Example: 2.1

Mesh — Extended object mesh
extendedObjectMesh object

Extended object mesh, specified as an extendedObjectMesh object.

RCSPattern — Radar cross-section pattern of actor
[10 10; 10 10] (default) | Q-by-P real-valued matrix

Radar cross-section (RCS) pattern of actor, specified as the comma-separated pair consisting of
'RCSPattern' and a Q-by-P real-valued matrix. RCS is a function of the azimuth and elevation
angles, where:

• Q is the number of elevation angles specified by the 'RCSElevationAngles' name-value pair.
• P is the number of azimuth angles specified by the 'RCSAzimuthAngles' name-value pair.

Units are in decibels per square meter (dBsm).
Example: 5.8

RCSAzimuthAngles — Azimuth angles of actor's RCS pattern
[-180 180] (default) | P-element real-valued vector

Azimuth angles of the actor's RCS pattern, specified as the comma-separated pair consisting of
'RCSAzimuthAngles' and a P-element real-valued vector. P is the number of azimuth angles. Values
are in the range [–180°, 180°].

Each element of RCSAzimuthAngles defines the azimuth angle of the corresponding column of the
'RCSPattern' name-value pair. Units are in degrees.
Example: [-90:90]

RCSElevationAngles — Elevation angles of actor's RCS pattern
[-90 90] (default) | Q-element real-valued vector

Elevation angles of the actor's RCS pattern, specified as the comma-separated pair consisting of
'RCSElevationAngles' and a Q-element real-valued vector. Q is the number of elevation angles.
Values are in the range [–90°, 90°].
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Each element of RCSElevationAngles defines the elevation angle of the corresponding row of the
RCSPattern property. Units are in degrees.
Example: [0:90]

Output Arguments
ac — Driving scenario actor
Actor object

Driving scenario actor, returned as an Actor object belonging to the driving scenario specified by
scenario.

You can modify the Actor object by changing its property values. The property names correspond to
the name-value pair arguments used to create the object. The only property that you cannot modify is
ActorID, which is a positive integer indicating the unique, scenario-defined ID of the actor.

To specify or visualize actor motion, use these functions:

trajectory Create actor or vehicle trajectory in driving
scenario

chasePlot Ego-centric projective perspective plot

To get information about actor characteristics, use these functions:

actorPoses Positions, velocities, and orientations of actors in
driving scenario

actorProfiles Physical and radar characteristics of actors in
driving scenario

targetOutlines Outlines of targets viewed by actor
targetPoses Target positions and orientations relative to ego

vehicle
driving.scenario.targetsToEgo Convert actor poses to ego vehicle coordinates
driving.scenario.targetsToScenario Convert target actor poses from ego vehicle

coordinates to world coordinates of scenario

To get information about the roads and lanes that the actor is on, use these functions:

roadBoundaries Get road boundaries
driving.scenario.roadBoundariesToEgo Convert road boundaries to ego vehicle

coordinates
currentLane Get current lane of actor
laneBoundaries Get lane boundaries of actor lane
laneMarkingVertices Lane marking vertices and faces in driving

scenario
roadMesh Mesh representation of an actor's nearest roads

in driving scenario.
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More About
Actor and Vehicle Positions and Dimensions

In driving scenarios, an actor is a cuboid (box-shaped) object with a specific length, width, and
height. Actors also have a radar cross-section (RCS) pattern, specified in dBsm, which you can refine
by setting angular azimuth and elevation coordinates. The position of an actor is defined as the center
of its bottom face. This center point is used as the actor's rotational center, its point of contact with
the ground, and its origin in its local coordinate system. In this coordinate system:

• The X-axis points forward from the actor.
• The Y-axis points left from the actor.
• The Z-axis points up from the ground.

Roll, pitch, and yaw are clockwise-positive when looking in the forward direction of the X-, Y-, and Z-
axes, respectively.

A vehicle is an actor that moves on wheels. Vehicles have three extra properties that govern the
placement of their front and rear axle.

• Wheelbase — Distance between the front and rear axles
• Front overhang — Distance between the front of the vehicle and the front axle
• Rear overhang — Distance between the rear axle and the rear of the vehicle

Unlike other types of actors, the position of a vehicle is defined by the point on the ground that is
below the center of its rear axle. This point corresponds to the natural center of rotation of the
vehicle. As with nonvehicle actors, this point is the origin in the local coordinate system of the
vehicle, where:

• The X-axis points forward from the vehicle.
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• The Y-axis points left from the vehicle.
• The Z-axis points up from the ground.

Roll, pitch, and yaw are clockwise-positive when looking in the forward direction of the X-, Y-, and Z-
axes, respectively.

This table shows a list of common actors and their dimensions. To specify these values in Actor and
Vehicle objects, set the corresponding properties shown.

Actor
Classific
ation

Actor
Object

Actor Properties
Length Width Height FrontOv

erhang
RearOve
rhang

Wheelba
se

RCSPatt
ern

Pedestria
n

Actor 0.24 m 0.45 m 1.7 m N/A N/A N/A –8 dBsm

Car Vehicle 4.7 m 1.8 m 1.4 m 0.9 m 1.0 m 2.8 m 10 dBsm
Motorcycl
e

Vehicle 2.2 m 0.6 m 1.5 m 0.37 m 0.32 m 1.51 m 0 dBsm

See Also
drivingScenario | vehicle

Topics
“Create Driving Scenario Programmatically”
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“Create Actor and Vehicle Trajectories Programmatically”

Introduced in R2017a
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actorPoses
Positions, velocities, and orientations of actors in driving scenario

Syntax
poses = actorPoses(scenario)

Description
poses = actorPoses(scenario) returns the current poses (positions, velocities, and
orientations) for all actors in the driving scenario, scenario. Actors include Actor and Vehicle
objects, which you can create using the actor and vehicle functions, respectively. Actor poses are
in scenario coordinates.

Examples

Create Driving Scenario with Multiple Actors and Roads

Create a driving scenario containing a curved road, two straight roads, and two actors: a car and a
bicycle. Both actors move along the road for 60 seconds.

Create the driving scenario object.

scenario = drivingScenario('SampleTime',0.1','StopTime',60);

Create the curved road using road center points following the arc of a circle with an 800-meter
radius. The arc starts at 0°, ends at 90°, and is sampled at 5° increments.

angs = [0:5:90]';
R = 800;
roadcenters = R*[cosd(angs) sind(angs) zeros(size(angs))];
roadwidth = 10;
road(scenario,roadcenters,roadwidth);

Add two straight roads with the default width, using road center points at each end.

roadcenters = [700 0 0; 100 0 0];
road(scenario,roadcenters)

ans = 
  Road with properties:

           Name: ""
         RoadID: 2
    RoadCenters: [2x3 double]
      RoadWidth: 6
      BankAngle: [2x1 double]

roadcenters = [400 400 0; 0 0 0];
road(scenario,roadcenters)
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ans = 
  Road with properties:

           Name: ""
         RoadID: 3
    RoadCenters: [2x3 double]
      RoadWidth: 6
      BankAngle: [2x1 double]

Get the road boundaries.

rbdry = roadBoundaries(scenario);

Add a car and a bicycle to the scenario. Position the car at the beginning of the first straight road.

car = vehicle(scenario,'ClassID',1,'Position',[700 0 0], ...
    'Length',3,'Width',2,'Height',1.6);

Position the bicycle farther down the road.

bicycle = actor(scenario,'ClassID',3,'Position',[706 376 0]', ...
    'Length',2,'Width',0.45,'Height',1.5);

Plot the scenario.

plot(scenario,'Centerline','on','RoadCenters','on');
title('Scenario');
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Display the actor poses and profiles.

poses = actorPoses(scenario)

poses=2×1 struct array with fields:
    ActorID
    Position
    Velocity
    Roll
    Pitch
    Yaw
    AngularVelocity

profiles = actorProfiles(scenario)

profiles=2×1 struct array with fields:
    ActorID
    ClassID
    Length
    Width
    Height
    OriginOffset
    MeshVertices
    MeshFaces
    RCSPattern
    RCSAzimuthAngles
    RCSElevationAngles

Input Arguments
scenario — Driving scenario
drivingScenario object

Driving scenario, specified as a drivingScenario object.

Output Arguments
poses — Actor poses
structures | array of structures

Actor poses, in scenario coordinates, returned as a structure or an array of structures. Poses are the
positions, velocities, and orientations of actors.

Each structure in poses has these fields.

Field Description
ActorID Scenario-defined actor identifier, specified as a

positive integer.
Position Position of actor, specified as a real-valued vector

of the form [x, y, z]. Units are in meters.
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Field Description
Velocity Velocity (v) of actor in the x-, y-, and z-direction,

specified as a real-valued vector of the form [vx,
vy, vz]. Units are in meters per second.

Roll Roll angle of actor, specified as a real-valued
scalar. Units are in degrees.

Pitch Pitch angle of actor, specified as a real-valued
scalar. Units are in degrees.

Yaw Yaw angle of actor, specified as a real-valued
scalar. Units are in degrees.

AngularVelocity Angular velocity (ω) of actor in the x-, y-, and z-
direction, specified as a real-valued vector of the
form [ωx, ωy, ωz]. Units are in degrees per second.

For full definitions of these structure fields, see the actor and vehicle functions.

See Also
Objects
drivingScenario | lidarPointCloudGenerator | radarDetectionGenerator |
visionDetectionGenerator

Functions
actor | actorProfiles | targetOutlines | targetPoses | vehicle

Topics
“Create Driving Scenario Programmatically”

Introduced in R2017a
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actorProfiles
Physical and radar characteristics of actors in driving scenario

Syntax
profiles = actorProfiles(scenario)

Description
profiles = actorProfiles(scenario) returns the physical and radar characteristics,
profiles, for all actors in a driving scenario, scenario. Actors include Actor and Vehicle
objects, which you can create using the actor and vehicle functions, respectively.

You can use actor profiles as inputs to radar, vision, and lidar sensors, such as
radarDetectionGenerator, visionDetectionGenerator and lidarPointCloudGenerator
objects.

Examples

Create Driving Scenario with Multiple Actors and Roads

Create a driving scenario containing a curved road, two straight roads, and two actors: a car and a
bicycle. Both actors move along the road for 60 seconds.

Create the driving scenario object.

scenario = drivingScenario('SampleTime',0.1','StopTime',60);

Create the curved road using road center points following the arc of a circle with an 800-meter
radius. The arc starts at 0°, ends at 90°, and is sampled at 5° increments.

angs = [0:5:90]';
R = 800;
roadcenters = R*[cosd(angs) sind(angs) zeros(size(angs))];
roadwidth = 10;
road(scenario,roadcenters,roadwidth);

Add two straight roads with the default width, using road center points at each end.

roadcenters = [700 0 0; 100 0 0];
road(scenario,roadcenters)

ans = 
  Road with properties:

           Name: ""
         RoadID: 2
    RoadCenters: [2x3 double]
      RoadWidth: 6
      BankAngle: [2x1 double]
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roadcenters = [400 400 0; 0 0 0];
road(scenario,roadcenters)

ans = 
  Road with properties:

           Name: ""
         RoadID: 3
    RoadCenters: [2x3 double]
      RoadWidth: 6
      BankAngle: [2x1 double]

Get the road boundaries.

rbdry = roadBoundaries(scenario);

Add a car and a bicycle to the scenario. Position the car at the beginning of the first straight road.

car = vehicle(scenario,'ClassID',1,'Position',[700 0 0], ...
    'Length',3,'Width',2,'Height',1.6);

Position the bicycle farther down the road.

bicycle = actor(scenario,'ClassID',3,'Position',[706 376 0]', ...
    'Length',2,'Width',0.45,'Height',1.5);

Plot the scenario.

plot(scenario,'Centerline','on','RoadCenters','on');
title('Scenario');
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Display the actor poses and profiles.

poses = actorPoses(scenario)

poses=2×1 struct array with fields:
    ActorID
    Position
    Velocity
    Roll
    Pitch
    Yaw
    AngularVelocity

profiles = actorProfiles(scenario)

profiles=2×1 struct array with fields:
    ActorID
    ClassID
    Length
    Width
    Height
    OriginOffset
    MeshVertices
    MeshFaces
    RCSPattern
    RCSAzimuthAngles
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    RCSElevationAngles

Input Arguments
scenario — Driving scenario
drivingScenario object

Driving scenario, specified as a drivingScenario object.

Output Arguments
profiles — Actor profiles
structure | array of structures

Actor profiles, returned as a structure or as an array of structures. Each structure contains the
physical and radar characteristics of an actor.

The actor profile structures have these fields.

Field Description
ActorID Scenario-defined actor identifier, specified as a

positive integer.
ClassID Classification identifier, specified as a

nonnegative integer. 0 represents an object of an
unknown or unassigned class.

Length Length of actor, specified as a positive real-valued
scalar. Units are in meters.

Width Width of actor, specified as a positive real-valued
scalar. Units are in meters.

Height Height of actor, specified as a positive real-valued
scalar. Units are in meters.

OriginOffset Offset of actor's rotational center from its
geometric center, specified as a real-valued
vector of the form [x, y, z]. The rotational center,
or origin, is located at the bottom center of the
actor. For vehicles, the rotational center is the
point on the ground beneath the center of the
rear axle. Units are in meters.

MeshVertices Mesh vertices of actor, specified as an n-by-3 real-
valued matrix of vertices. Each row in the matrix
defines a point in 3-D space.

MeshFaces Mesh faces of actor, specified as an m-by-3 matrix
of integers. Each row of MeshFaces represents a
triangle defined by the vertex IDs, which are the
row numbers of vertices.
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Field Description
RCSPattern Radar cross-section (RCS) pattern of actor,

specified as a numel(RCSElevationAngles)-
by-numel(RCSAzimuthAngles) real-valued
matrix. Units are in decibels per square meter.

RCSAzimuthAngles Azimuth angles corresponding to rows of
RCSPattern, specified as a vector of values in
the range [–180, 180]. Units are in degrees.

RCSElevationAngles Elevation angles corresponding to rows of
RCSPattern, specified as a vector of values in
the range [–90, 90]. Units are in degrees.

For full definitions of these structure fields, see the actor and vehicle functions.

See Also
Objects
drivingScenario | lidarPointCloudGenerator | radarDetectionGenerator |
visionDetectionGenerator

Functions
actor | actorPoses | targetOutlines | targetPoses | vehicle

Introduced in R2017a
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vehicle
Package: 

Add vehicle to driving scenario

Syntax
vc = vehicle(scenario)
vc = vehicle(scenario,Name,Value)

Description
vc = vehicle(scenario) adds a Vehicle object, vc, to the driving scenario, scenario. The
vehicle has default property values.

Vehicles are a specialized type of actor cuboid (box-shaped) object that has four wheels. For more
details about how vehicles are defined, see “Actor and Vehicle Positions and Dimensions” on page 4-
356.

vc = vehicle(scenario,Name,Value) sets vehicle properties using one or more name-value
pairs. For example, you can set the position, velocity, dimensions, orientation, and wheelbase of the
vehicle. You can also set a time for the vehicle to spawn or despawn in the scenario.

Note You can configure the vehicles in a driving scenario to spawn and despawn, and then import
the associated drivingScenario object into the Driving Scenario Designer app. The app
considers the first vehicle created in the driving scenario to be the ego vehicle and does not allow the
ego vehicle to either spawn or despawn in the scenario.

Examples

Create Driving Scenario with Multiple Actors and Roads

Create a driving scenario containing a curved road, two straight roads, and two actors: a car and a
bicycle. Both actors move along the road for 60 seconds.

Create the driving scenario object.

scenario = drivingScenario('SampleTime',0.1','StopTime',60);

Create the curved road using road center points following the arc of a circle with an 800-meter
radius. The arc starts at 0°, ends at 90°, and is sampled at 5° increments.

angs = [0:5:90]';
R = 800;
roadcenters = R*[cosd(angs) sind(angs) zeros(size(angs))];
roadwidth = 10;
road(scenario,roadcenters,roadwidth);

Add two straight roads with the default width, using road center points at each end.
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roadcenters = [700 0 0; 100 0 0];
road(scenario,roadcenters)

ans = 
  Road with properties:

           Name: ""
         RoadID: 2
    RoadCenters: [2x3 double]
      RoadWidth: 6
      BankAngle: [2x1 double]

roadcenters = [400 400 0; 0 0 0];
road(scenario,roadcenters)

ans = 
  Road with properties:

           Name: ""
         RoadID: 3
    RoadCenters: [2x3 double]
      RoadWidth: 6
      BankAngle: [2x1 double]

Get the road boundaries.

rbdry = roadBoundaries(scenario);

Add a car and a bicycle to the scenario. Position the car at the beginning of the first straight road.

car = vehicle(scenario,'ClassID',1,'Position',[700 0 0], ...
    'Length',3,'Width',2,'Height',1.6);

Position the bicycle farther down the road.

bicycle = actor(scenario,'ClassID',3,'Position',[706 376 0]', ...
    'Length',2,'Width',0.45,'Height',1.5);

Plot the scenario.

plot(scenario,'Centerline','on','RoadCenters','on');
title('Scenario');
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Display the actor poses and profiles.

poses = actorPoses(scenario)

poses=2×1 struct array with fields:
    ActorID
    Position
    Velocity
    Roll
    Pitch
    Yaw
    AngularVelocity

profiles = actorProfiles(scenario)

profiles=2×1 struct array with fields:
    ActorID
    ClassID
    Length
    Width
    Height
    OriginOffset
    MeshVertices
    MeshFaces
    RCSPattern
    RCSAzimuthAngles
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    RCSElevationAngles

Spawn and Despawn Vehicles in Scenario During Simulation

Create a driving scenario. Set the stop time for the scenario to 3 seconds.

scenario = drivingScenario('StopTime',3);

Add a two-lane road to the scenario.

roadCenters = [0 1 0; 53 1 0];
laneSpecification = lanespec([1 1]);
road(scenario,roadCenters,'Lanes',laneSpecification);

Add another road that intersects the first road at a right angle to form a T-shape.

roadCenters = [20.3 33.4 0; 20 3 0];
laneSpecification = lanespec(2);
road(scenario,roadCenters,'Lanes',laneSpecification)

ans = 
  Road with properties:

           Name: ""
         RoadID: 2
    RoadCenters: [2x3 double]
      RoadWidth: 7.3500
      BankAngle: [2x1 double]

Add the ego vehicle to the scenario and define its waypoints. Set the ego vehicle speed to 20 m/s and
generate the trajectories for the ego vehicle.

egoVehicle = vehicle(scenario,'ClassID',1, ...
                    'Position',[1.5 2.5 0]);
waypoints = [2 3 0; 13 3 0;
            21 3 0; 31 3 0;
            43 3 0; 47 3 0];
speed = 15;
trajectory(egoVehicle,waypoints,speed)

Add a non-ego vehicle to the scenario. Set the non-ego vehicle to spawn and despawn during the
simulation by specifying an entry time and an exit time.

nonEgovehicle1 = vehicle(scenario,'ClassID',1, ...
                'Position',[22 30 0],'EntryTime',0.8,'ExitTime',2);

Define the waypoints for the non-ego vehicle. Set the non-ego vehicle speed to 35 m/s and generate
its trajectories.

waypoints = [22 30 0; 22 23 0;
            22 13 0; 22 7 0;
            18 -0.3 0; 12 -0.8 0; 3 -0.8 0];
speed = 35;
trajectory(nonEgovehicle1,waypoints,speed)
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Add another non-ego vehicle to the scenario. Set the second non-ego vehicle to spawn during the
simulation by specifying an entry time. Since you do not specify an exit time, this vehicle will remain
in the scenario until the scenario ends.

nonEgovehicle2 = vehicle(scenario,'ClassID',1, ...
                'Position',[48 -1 0],'EntryTime',2);

Define the waypoints for the second non-ego vehicle. Set the vehicle speed to 60 m/s and generate its
trajectories.

waypoints = [48 -1 0; 42 -1 0; 28 -1 0;
            16 -1 0; 6 -1 0];
speed = 60;
trajectory(nonEgovehicle2,waypoints,speed)

Create a custom figure window to plot the scenario.

fig = figure;
set(fig,'Position',[0 0 600 600])
movegui(fig,'center')
hViewPnl = uipanel(fig,'Position',[0 0 1 1],'Title','Vehicle Spawn and Despawn');
hPlt = axes(hViewPnl);

Plot the scenario and run the simulation. Observe how the non-ego vehicles spawn and despawn in
the scenario while simulation is running.

plot(scenario,'Waypoints','on','Parent',hPlt)
while advance(scenario)
    pause(0.1)
end
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Input Arguments
scenario — Driving scenario
drivingScenario object

Driving scenario, specified as a drivingScenario object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
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Example: vehicle('Length',2.2,'Width',0.6,'Height',1.5) creates a vehicle that has the
dimensions of a motorcycle. Units are in meters.

ClassID — Classification identifier
0 (default) | nonnegative integer

Classification identifier of actor, specified as the comma-separated pair consisting of 'ClassID' and
a nonnegative integer.

Specify ClassID values to group together actors that have similar dimensions, radar cross-section
(RCS) patterns, or other properties. As a best practice, before adding actors to a drivingScenario
object, determine the actor classification scheme you want to use. Then, when creating the actors,
specify the ClassID name-value pair to set classification identifiers according to the actor
classification scheme.

Suppose you want to create a scenario containing these actors:

• Two cars, one of which is the ego vehicle
• A truck
• A bicycle

The code shows a sample classification scheme for this scenario, where 1 refers to cars, 2 refers to
trucks, and 3 refers to bicycles. The cars have default vehicle properties. The truck and bicycle have
the dimensions of a typical truck and bicycle, respectively.

scenario = drivingScenario;
ego = vehicle(scenario,'ClassID',1);
car = vehicle(scenario,'ClassID',1);
truck = vehicle(scenario,'ClassID',2,'Length',8.2,'Width',2.5,'Height',3.5);
bicycle = actor(scenario,'ClassID',3,'Length',1.7,'Width',0.45,'Height',1.7);

The default ClassID of 0 is reserved for an object of an unknown or unassigned class. If you plan to
import drivingScenario objects into the Driving Scenario Designer app, do not leave the
ClassID property of actors set to 0. The app does not recognize a ClassID of 0 for actors and
returns an error. Instead, set ClassID values of actors according to the actor classification scheme
used in the app.

ClassID Class Name
1 Car
2 Truck
3 Bicycle
4 Pedestrian
5 Barrier

Name — Name of vehicle
"" (default) | character vector | string scalar

Name of the vehicle, specified as the comma-separated pair consisting of 'Name' and a character
vector or string scalar.
Example: 'Name','Vehicle1'
Example: "Name","Vehicle1"
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Data Types: char | string

EntryTime — Entry time for vehicle to spawn
0 (default) | positive scalar

Entry time for a vehicle to spawn in the driving scenario, specified as the comma-separated pair
consisting of 'EntryTime' and a positive scalar. Units are in seconds, measured from the start time
of the scenario.

Specify this name-value pair argument to add or make a vehicle appear in the driving scenario at the
specified time, while the simulation is running.

• If the vehicle has an associated exit time, then the entry time must be less than the specified exit
time.

• If the vehicle does not have an associated exit time, then the entry time must be less than or equal
to the stop time of the scenario. You can set the stop time for the scenario by specifying a value for
the 'StopTime' property of the drivingScenario object.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ExitTime — Exit time for vehicle to despawn
Inf (default) | positive scalar

Exit time for a vehicle to despawn from the driving scenario, specified as the comma-separated pair
consisting of 'ExitTime' and a positive scalar. Units are in seconds, measured from the start time of
the scenario.

Specify this name-value pair argument to remove or make a vehicle disappear from the scenario at a
specified time while the simulation is running.

• If the vehicle has an associated entry time, then the exit time must be greater than the specified
entry time.

• If the vehicle does not have an associated entry time, then the exit time must be less than or equal
to the stop time of the scenario. You can set the stop time for the scenario by specifying a value for
the 'StopTime' property of the drivingScenario object.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

PlotColor — Display color of vehicle
RGB triplet | hexadecimal color code | color name | short color name

Display color of vehicle, specified as the comma-separated pair consisting of 'PlotColor' and an
RGB triplet, hexadecimal color code, color name, or short color name.

The vehicle appears in the specified color in all programmatic scenario visualizations, including the
plot function, chasePlot function, and plotting functions of birdsEyePlot objects. If you import
the scenario into the Driving Scenario Designer app, then the vehicle appears in this color in all
app visualizations. If you import the scenario into Simulink, then the vehicle appears in this color in
the Bird's-Eye Scope.

If you do not specify a color for the vehicle, the function assigns one based on the default color order
of Axes objects. For more details, see the ColorOrder property for Axes objects.

For a custom color, specify an RGB triplet or a hexadecimal color code.
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• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Position — Position of vehicle center
[0 0 0] (default) | [x y z] real-valued vector

Position of the rotational center of the vehicle, specified as the comma-separated pair consisting of
'Position' and an [x y z] real-valued vector.

The rotational center of a vehicle is the midpoint of its rear axle. The vehicle extends rearward by a
distance equal to the rear overhang. The vehicle extends forward by a distance equal to the sum of
the wheelbase and forward overhang. Units are in meters.
Example: [10;50;0]

Velocity — Velocity of vehicle center
[0 0 0] (default) | [vx vy vz] real-valued vector
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Velocity (v) of the vehicle center in the x-, y- and z-directions, specified as the comma-separated pair
consisting of 'Velocity' and a [vx vy vz] real-valued vector. The 'Position' name-value pair
specifies the vehicle center. Units are in meters per second.
Example: [-4;7;10]

Yaw — Yaw angle of vehicle
0 (default) | real scalar

Yaw angle of the vehicle, specified as the comma-separated pair consisting of 'Yaw' and a real scalar.
Yaw is the angle of rotation of the vehicle around the z-axis. Yaw is clockwise-positive when looking in
the forward direction of the axis, which points up from the ground. Therefore, when viewing vehicles
from the top down, such as on a bird's-eye plot, yaw is counterclockwise-positive. Angle values are
wrapped to the range [–180, 180]. Units are in degrees.
Example: -0.4

Pitch — Pitch angle of vehicle
0 (default) | real scalar

Pitch angle of the vehicle, specified as the comma-separated pair consisting of 'Pitch' and a real
scalar. Pitch is the angle of rotation of the vehicle around the y-axis and is clockwise-positive when
looking in the forward direction of the axis. Angle values are wrapped to the range [–180, 180]. Units
are in degrees.
Example: 5.8

Roll — Roll angle of vehicle
0 (default) | real scalar

Roll angle of the vehicle, specified as the comma-separated pair consisting of 'Roll' and a real
scalar. Roll is the angle of rotation of the vehicle around the x-axis and is clockwise-positive when
looking in the forward direction of the axis. Angle values are wrapped to the range [–180, 180]. Units
are in degrees.
Example: -10

AngularVelocity — Angular velocity of vehicle
[0 0 0] (default) | [ωx ωy ωz] real-valued vector

Angular velocity (ω) of the vehicle, in world coordinates, specified as the comma-separated pair
consisting of 'AngularVelocity' and a [ωx ωy ωz] real-valued vector. Units are in degrees per
second.
Example: [20 40 20]

Length — Length of vehicle
4.7 (default) | positive real scalar

Length of the vehicle, specified as the comma-separated pair consisting of 'Length' and a positive
real scalar. Units are in meters.

In Vehicle objects, this equation defines the values of the Length, FrontOverhang, Wheelbase,
and RearOverhang properties:

Length = FrontOverhang + Wheelbase + RearOverhang
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• If you update the Length, RearOverhang, or Wheelbase property, to maintain the equation, the
Vehicle object increases or decreases the FrontOverhang property and keeps the other
properties constant.

• If you update the FrontOverhang property, to maintain this equation, the Vehicle object
increases or decreases the Wheelbase property and keeps the other properties constant.

When setting both the FrontOverhang and RearOverhang properties, to prevent the Vehicle
object from overriding the FrontOverhang value, set RearOverhang first, followed by
FrontOverhang. The object calculates the new Wheelbase property value automatically.
Example: 5.5

Width — Width of vehicle
1.8 (default) | positive real scalar

Width of the vehicle, specified as the comma-separated pair consisting of 'Width' and a positive real
scalar. Units are in meters.
Example: 2.0

Height — Height of vehicle
1.4 (default) | positive real scalar

Height of the vehicle, specified as the comma-separated pair consisting of 'Height' and a positive
real scalar. Units are in meters.
Example: 2.1

Mesh — Extended object mesh
extendedObjectMesh object

Extended object mesh, specified as an extendedObjectMesh object.

RCSPattern — Radar cross-section pattern of vehicle
[10 10; 10 10] (default) | Q-by-P real-valued matrix

Radar cross-section (RCS) pattern of the vehicle, specified as the comma-separated pair consisting of
'RCSPattern' and a Q-by-P real-valued matrix. RCS is a function of the azimuth and elevation
angles, where:

• Q is the number of elevation angles specified by the 'RCSElevationAngles' name-value pair.
• P is the number of azimuth angles specified by the 'RCSAzimuthAngles' name-value pair.

Units are in decibels per square meter (dBsm).
Example: 5.8

RCSAzimuthAngles — Azimuth angles of vehicle's RCS pattern
[-180 180] (default) | P-element real-valued vector

Azimuth angles of the vehicle's RCS pattern, specified as the comma-separated pair consisting of
'RCSAzimuthAngles' and a P-element real-valued vector. P is the number of azimuth angles. Values
are in the range [–180°, 180°].

Each element of RCSAzimuthAngles defines the azimuth angle of the corresponding column of the
'RCSPattern' name-value pair. Units are in degrees.
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Example: [-90:90]

RCSElevationAngles — Elevation angles of vehicle's RCS pattern
[-90 90] (default) | Q-element real-valued vector

Elevation angles of the vehicle's RCS pattern, specified as the comma-separated pair consisting of
'RCSElevationAngles' and a Q-element real-valued vector. Q is the number of elevation angles.
Values are in the range [–90°, 90°].

Each element of RCSElevationAngles defines the elevation angle of the corresponding row of the
'RCSPattern' name-value pair. Units are in degrees.
Example: [0:90]

FrontOverhang — Front overhang of vehicle
0.9 (default) | real scalar

Front overhang of the vehicle, specified as the comma-separated pair consisting of
'FrontOverhang' and a real scalar. The front overhang is the distance that the vehicle extends
beyond the front axle. If the vehicle does not extend past the front axle, then the front overhang is
negative. Units are in meters.

In Vehicle objects, this equation defines the values of the Length, FrontOverhang, Wheelbase,
and RearOverhang properties:

Length = FrontOverhang + Wheelbase + RearOverhang

• If you update the Length, RearOverhang, or Wheelbase property, to maintain the equation, the
Vehicle object increases or decreases the FrontOverhang property and keeps the other
properties constant.

• If you update the FrontOverhang property, to maintain this equation, the Vehicle object
increases or decreases the Wheelbase property and keeps the other properties constant.

When setting both the FrontOverhang and RearOverhang properties, to prevent the Vehicle
object from overriding the FrontOverhang value, set RearOverhang first, followed by
FrontOverhang. The object calculates the new Wheelbase property value automatically.
Example: 0.37

RearOverhang — Rear overhang of vehicle
1.0 (default) | real scalar

Rear overhang of the vehicle, specified as the comma-separated pair consisting of 'RearOverhang'
and a real scalar. The rear overhang is the distance that the vehicle extends beyond the rear axle. If
the vehicle does not extend past the rear axle, then the rear overhang is negative. Negative rear
overhang is common in semitrailer trucks, where the cab of the truck does not overhang the rear
wheel. Units are in meters.

In Vehicle objects, this equation defines the values of the Length, FrontOverhang, Wheelbase,
and RearOverhang properties:

Length = FrontOverhang + Wheelbase + RearOverhang

• If you update the Length, RearOverhang, or Wheelbase property, to maintain the equation, the
Vehicle object increases or decreases the FrontOverhang property and keeps the other
properties constant.
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• If you update the FrontOverhang property, to maintain this equation, the Vehicle object
increases or decreases the Wheelbase property and keeps the other properties constant.

When setting both the FrontOverhang and RearOverhang properties, to prevent the Vehicle
object from overriding the FrontOverhang value, set RearOverhang first, followed by
FrontOverhang. The object calculates the new Wheelbase property value automatically.
Example: 0.32

Wheelbase — Distance between vehicle axles
2.8 (default) | positive real scalar

Distance between the front and rear axles of a vehicle, specified as the comma-separated pair
consisting of 'Wheelbase' and a positive real scalar. Units are in meters.

In Vehicle objects, this equation defines the values of the Length, FrontOverhang, Wheelbase,
and RearOverhang properties:

Length = FrontOverhang + Wheelbase + RearOverhang

• If you update the Length, RearOverhang, or Wheelbase property, to maintain the equation, the
Vehicle object increases or decreases the FrontOverhang property and keeps the other
properties constant.

• If you update the FrontOverhang property, to maintain this equation, the Vehicle object
increases or decreases the Wheelbase property and keeps the other properties constant.

When setting both the FrontOverhang and RearOverhang properties, to prevent the Vehicle
object from overriding the FrontOverhang value, set RearOverhang first, followed by
FrontOverhang. The object calculates the new Wheelbase property value automatically.
Example: 1.51

Output Arguments
vc — Driving scenario vehicle
Vehicle object

Driving scenario vehicle, returned as a Vehicle object belonging to the driving scenario specified in
scenario.

You can modify the Vehicle object by changing its property values. The property names correspond
to the name-value pair arguments used to create the object.

The only property that you cannot modify is ActorID, which is a positive integer indicating the
unique, scenario-defined ID of the vehicle.

To specify and visualize vehicle motion, use these functions:

trajectory Create actor or vehicle trajectory in driving
scenario

chasePlot Ego-centric projective perspective plot

To get information about vehicle characteristics, use these functions:
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actorPoses Positions, velocities, and orientations of actors in
driving scenario

actorProfiles Physical and radar characteristics of actors in
driving scenario

targetOutlines Outlines of targets viewed by actor
targetPoses Target positions and orientations relative to ego

vehicle
driving.scenario.targetsToEgo Convert target actor poses from world

coordinates of scenario to ego vehicle coordinates
driving.scenario.targetsToScenario Convert target actor poses from ego vehicle

coordinates to world coordinates of scenario

To get information about the roads and lanes that the vehicle is on, use these functions:

roadBoundaries Get road boundaries
driving.scenario.roadBoundariesToEgo Convert road boundaries to ego vehicle

coordinates
currentLane Get current lane of actor
laneBoundaries Get lane boundaries of actor lane
laneMarkingVertices Lane marking vertices and faces in driving

scenario
roadMesh Mesh representation of an actor's nearest roads

in driving scenario.

More About
Actor and Vehicle Positions and Dimensions

In driving scenarios, an actor is a cuboid (box-shaped) object with a specific length, width, and
height. Actors also have a radar cross-section (RCS) pattern, specified in dBsm, which you can refine
by setting angular azimuth and elevation coordinates. The position of an actor is defined as the center
of its bottom face. This center point is used as the actor's rotational center, its point of contact with
the ground, and its origin in its local coordinate system. In this coordinate system:

• The X-axis points forward from the actor.
• The Y-axis points left from the actor.
• The Z-axis points up from the ground.

Roll, pitch, and yaw are clockwise-positive when looking in the forward direction of the X-, Y-, and Z-
axes, respectively.
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A vehicle is an actor that moves on wheels. Vehicles have three extra properties that govern the
placement of their front and rear axle.

• Wheelbase — Distance between the front and rear axles
• Front overhang — Distance between the front of the vehicle and the front axle
• Rear overhang — Distance between the rear axle and the rear of the vehicle

Unlike other types of actors, the position of a vehicle is defined by the point on the ground that is
below the center of its rear axle. This point corresponds to the natural center of rotation of the
vehicle. As with nonvehicle actors, this point is the origin in the local coordinate system of the
vehicle, where:

• The X-axis points forward from the vehicle.
• The Y-axis points left from the vehicle.
• The Z-axis points up from the ground.

Roll, pitch, and yaw are clockwise-positive when looking in the forward direction of the X-, Y-, and Z-
axes, respectively.
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This table shows a list of common actors and their dimensions. To specify these values in Actor and
Vehicle objects, set the corresponding properties shown.

Actor
Classific
ation

Actor
Object

Actor Properties
Length Width Height FrontOv

erhang
RearOve
rhang

Wheelba
se

RCSPatt
ern

Pedestria
n

Actor 0.24 m 0.45 m 1.7 m N/A N/A N/A –8 dBsm

Car Vehicle 4.7 m 1.8 m 1.4 m 0.9 m 1.0 m 2.8 m 10 dBsm
Motorcycl
e

Vehicle 2.2 m 0.6 m 1.5 m 0.37 m 0.32 m 1.51 m 0 dBsm

See Also
actor | drivingScenario

Topics
“Create Driving Scenario Programmatically”
“Create Actor and Vehicle Trajectories Programmatically”

Introduced in R2017a

4 Objects

4-358



chasePlot
Package: 

Ego-centric projective perspective plot

Syntax
chasePlot(ac)
chasePlot(ac,Name,Value)

Description
chasePlot(ac) plots a driving scenario from the perspective of actor ac. This plot is called a chase
plot and has an ego-centric projective perspective, where the view is positioned immediately behind
the actor.

chasePlot(ac,Name,Value) specifies options using one or more name-value pairs. For example,
you can display road centers and actor waypoints on the plot.

Examples

Simulate Car Traveling on S-Curve

Simulate a driving scenario with one car traveling on an S-curve. Create and plot the lane
boundaries.

Create the driving scenario with one road having an S-curve.

scenario = drivingScenario('StopTime',3);
roadcenters = [-35 20 0; -20 -20 0; 0 0 0; 20 20 0; 35 -20 0];

Create the lanes and add them to the road.

lm = [laneMarking('Solid','Color','w'); ...
    laneMarking('Dashed','Color','y'); ...
    laneMarking('Dashed','Color','y'); ...
    laneMarking('Solid','Color','w')];
ls = lanespec(3,'Marking',lm);
road(scenario,roadcenters,'Lanes',ls);

Add an ego vehicle and specify its trajectory from its waypoints. By default, the car travels at a speed
of 30 meters per second.

car = vehicle(scenario, ...
    'ClassID',1, ...
    'Position',[-35 20 0]);
waypoints = [-35 20 0; -20 -20 0; 0 0 0; 20 20 0; 35 -20 0];
trajectory(car,waypoints);

Plot the scenario and corresponding chase plot.
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plot(scenario)

chasePlot(car)
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Run the simulation loop.

1 Initialize a bird's-eye plot and create an outline plotter, left-lane and right-lane boundary plotters,
and a road boundary plotter.

2 Obtain the road boundaries and rectangular outlines.
3 Obtain the lane boundaries to the left and right of the vehicle.
4 Advance the simulation and update the plotters.

bep = birdsEyePlot('XLim',[-40 40],'YLim',[-30 30]);
olPlotter = outlinePlotter(bep);
lblPlotter = laneBoundaryPlotter(bep,'Color','r','LineStyle','-');
lbrPlotter = laneBoundaryPlotter(bep,'Color','g','LineStyle','-');
rbsEdgePlotter = laneBoundaryPlotter(bep);
legend('off');
while advance(scenario)
    rbs = roadBoundaries(car);
    [position,yaw,length,width,originOffset,color] = targetOutlines(car);
    lb = laneBoundaries(car,'XDistance',0:5:30,'LocationType','Center', ...
        'AllBoundaries',false);
    plotLaneBoundary(rbsEdgePlotter,rbs)
    plotLaneBoundary(lblPlotter,{lb(1).Coordinates})
    plotLaneBoundary(lbrPlotter,{lb(2).Coordinates})
    plotOutline(olPlotter,position,yaw,length,width, ...
        'OriginOffset',originOffset,'Color',color)
end
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Show Target Outlines in Driving Scenario Simulation

Create a driving scenario and show how target outlines change as the simulation advances.

Create a driving scenario consisting of two intersecting straight roads. The first road segment is 45
meters long. The second straight road is 32 meters long and intersects the first road. A car traveling
at 12.0 meters per second along the first road approaches a running pedestrian crossing the
intersection at 2.0 meters per second.

scenario = drivingScenario('SampleTime',0.1,'StopTime',1);
road(scenario,[-10 0 0; 45 -20 0]);
road(scenario,[-10 -10 0; 35 10 0]);
ped = actor(scenario,'ClassID',4,'Length',0.4,'Width',0.6,'Height',1.7);
car = vehicle(scenario,'ClassID',1);
pedspeed = 2.0;
carspeed = 12.0;
trajectory(ped,[15 -3 0; 15 3 0],pedspeed);
trajectory(car,[-10 -10 0; 35 10 0],carspeed);

Create an ego-centric chase plot for the vehicle.

chasePlot(car,'Centerline','on')
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Create an empty bird's-eye plot and add an outline plotter and lane boundary plotter. Then, run the
simulation. At each simulation step:

• Update the chase plot to display the road boundaries and target outlines.
• Update the bird's-eye plot to display the updated road boundaries and target outlines. The plot

perspective is always with respect to the ego vehicle.

bepPlot = birdsEyePlot('XLim',[-50 50],'YLim',[-40 40]);
outlineplotter = outlinePlotter(bepPlot);
laneplotter = laneBoundaryPlotter(bepPlot);
legend('off')

while advance(scenario)
    rb = roadBoundaries(car);
    [position,yaw,length,width,originOffset,color] = targetOutlines(car);    
    plotLaneBoundary(laneplotter,rb)
    plotOutline(outlineplotter,position,yaw,length,width, ...
        'OriginOffset',originOffset,'Color',color)
    pause(0.01)
end
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Input Arguments
ac — Actor
Actor object | Vehicle object

Actor belonging to a drivingScenario object, specified as an Actor or Vehicle object. To create
these objects, use the actor and vehicle functions, respectively.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: chasePlot(ac,'Centerline','on','RoadCenters,'on') displays the center line
and road centers of each road segment.

Parent — Axes in which to draw plot
Axes object

Axes in which to draw the plot, specified as the comma-separated pair consisting of 'Parent' and an
Axes object. If you do not specify Parent, a new figure is created.

Centerline — Display center line of roads
'off' (default) | 'on'
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Display the center line of roads, specified as the comma-separated pair consisting of 'Centerline'
and 'off' or 'on'. The center line follows the middle of each road segment. Center lines are
discontinuous through areas such as intersections or road splits.

RoadCenters — Display road centers
'off' (default) | 'on'

Display road centers, specified as the comma-separated pair consisting of 'RoadCenters' and
'off' or 'on'. The road centers define the roads shown in the plot.

Waypoints — Display actor waypoints
'off' (default) | 'on'

Display actor waypoints, specified as the comma-separated pair consisting of 'Waypoints' and
'off' or 'on'. Waypoints define the trajectory of the actor.

Meshes — Display actor meshes
'off' (default) | 'on'

Display actor meshes instead of cuboids, specified as the comma-separated pair consisting of
'Meshes' and 'off' or 'on'.

ViewHeight — Height of plot viewpoint
1.5 × actor height (default) | positive real scalar

Height of the plot viewpoint, specified as the comma-separated pair consisting of 'ViewHeight' and
a positive real scalar. The height is with respect to the bottom of the actor. Units are in meters.

ViewLocation — Location of plot viewpoint
2.5 × actor length (default) | [x, y] real-valued vector

Location of the plot viewpoint, specified as the comma-separated pair consisting of 'ViewLocation'
and an [x, y] real-valued vector. The location is with respect to the cuboid center in the coordinate
system of the actor. The default location of the viewpoint is behind the cuboid center,
[2.5*actor.Length 0]. Units are in meters.

ViewRoll — Roll angle orientation of plot viewpoint
0 (default) | real scalar

Roll angle orientation of the plot viewpoint, specified as the comma-separated pair consisting of
'ViewRoll' and a real scalar. Units are in degrees.

ViewPitch — Pitch angle orientation of plot viewpoint
0 (default) | real scalar

Pitch angle orientation of the plot viewpoint, specified as the comma-separated pair consisting of
'ViewPitch' and a real scalar. Units are in degrees.

ViewYaw — Yaw angle orientation of plot viewpoint
0 (default) | real scalar

Yaw angle orientation of the plot viewpoint, specified as the comma-separated pair consisting of
'ViewYaw' and a real scalar. Units are in degrees.
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See Also
Objects
drivingScenario

Functions
actor | plot | road | trajectory | vehicle

Topics
“Create Driving Scenario Programmatically”

Introduced in R2017a
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trajectory
Package: 

Create actor or vehicle trajectory in driving scenario

Syntax
trajectory(ac,waypoints)
trajectory(ac,waypoints,speed)
trajectory(ac,waypoints,speed,waittime)
trajectory( ___ ,'Yaw',yaw)

Description
trajectory(ac,waypoints) creates a trajectory for an actor or vehicle, ac, from a set of
waypoints.

trajectory(ac,waypoints,speed) also specifies the speed with which the actor or vehicle
travels along the trajectory, in either forward or reverse motion.

trajectory(ac,waypoints,speed,waittime) specifies the wait time for an actor or vehicle in
addition to the input arguments in the previous syntax. Use this syntax to generate stop-and-go
driving scenarios by pausing an actor or vehicle actors at specific waypoints.

trajectory( ___ ,'Yaw',yaw) specifies the yaw orientation angle of the actor or vehicle at each
waypoint, in addition to any of the input argument combinations from preceding syntaxes.

Examples

Simulate Car Traveling on S-Curve

Simulate a driving scenario with one car traveling on an S-curve. Create and plot the lane
boundaries.

Create the driving scenario with one road having an S-curve.

scenario = drivingScenario('StopTime',3);
roadcenters = [-35 20 0; -20 -20 0; 0 0 0; 20 20 0; 35 -20 0];

Create the lanes and add them to the road.

lm = [laneMarking('Solid','Color','w'); ...
    laneMarking('Dashed','Color','y'); ...
    laneMarking('Dashed','Color','y'); ...
    laneMarking('Solid','Color','w')];
ls = lanespec(3,'Marking',lm);
road(scenario,roadcenters,'Lanes',ls);

Add an ego vehicle and specify its trajectory from its waypoints. By default, the car travels at a speed
of 30 meters per second.
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car = vehicle(scenario, ...
    'ClassID',1, ...
    'Position',[-35 20 0]);
waypoints = [-35 20 0; -20 -20 0; 0 0 0; 20 20 0; 35 -20 0];
trajectory(car,waypoints);

Plot the scenario and corresponding chase plot.

plot(scenario)

chasePlot(car)
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Run the simulation loop.

1 Initialize a bird's-eye plot and create an outline plotter, left-lane and right-lane boundary plotters,
and a road boundary plotter.

2 Obtain the road boundaries and rectangular outlines.
3 Obtain the lane boundaries to the left and right of the vehicle.
4 Advance the simulation and update the plotters.

bep = birdsEyePlot('XLim',[-40 40],'YLim',[-30 30]);
olPlotter = outlinePlotter(bep);
lblPlotter = laneBoundaryPlotter(bep,'Color','r','LineStyle','-');
lbrPlotter = laneBoundaryPlotter(bep,'Color','g','LineStyle','-');
rbsEdgePlotter = laneBoundaryPlotter(bep);
legend('off');
while advance(scenario)
    rbs = roadBoundaries(car);
    [position,yaw,length,width,originOffset,color] = targetOutlines(car);
    lb = laneBoundaries(car,'XDistance',0:5:30,'LocationType','Center', ...
        'AllBoundaries',false);
    plotLaneBoundary(rbsEdgePlotter,rbs)
    plotLaneBoundary(lblPlotter,{lb(1).Coordinates})
    plotLaneBoundary(lbrPlotter,{lb(2).Coordinates})
    plotOutline(olPlotter,position,yaw,length,width, ...
        'OriginOffset',originOffset,'Color',color)
end
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Simulate Vehicle with Trajectory of Varying Speeds

Create a driving scenario and add a curved two-lane road to it.

scenario = drivingScenario('SampleTime',0.05);
roadcenters = [5 0; 30 10; 35 25];
lspec = lanespec(2);
road(scenario,roadcenters,'Lanes',lspec);

Add a vehicle to the scenario. Set a trajectory in which the vehicle drives around the curve at varying
speeds.

v = vehicle(scenario,'ClassID',1);
waypoints = [6 2; 18 4; 25 7; 28 10; 31 15; 33 22];
speeds = [30 10 5 5 10 30];
trajectory(v,waypoints,speeds)

Plot the scenario and run the simulation. Observe how the vehicle slows down as it drives along the
curve.

plot(scenario,'Waypoints','on','RoadCenters','on')
while advance(scenario)
    pause(0.1)
end
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Generate Stop-and-Go Driving Scenario

Create a driving scenario consisting of two, two-lane roads that intersect at a right angle.

scenario = drivingScenario('StopTime',2.75);
roadCenters = [50 1 0; 2 0.9 0];
laneSpecification = lanespec(2,'Width',4);
road(scenario,roadCenters,'Lanes',laneSpecification);
roadCenters = [27 24 0; 27 -21 0];
road(scenario,roadCenters,'Lanes',laneSpecification);

Add an ego vehicle to the scenario. Specify the waypoints and the speed values for the vehicle at each
waypoint. Set a wait time for the vehicle at the second waypoint. Generate a trajectory in which the
ego vehicle travels through the specified waypoints at the specified speed.

egoVehicle = vehicle(scenario,'ClassID',1,'Position',[5 -1 0]);
waypoints = [5 -1 0; 16 -1 0; 40 -1 0];
speed = [30; 0; 30];
waittime = [0; 0.3; 0];
trajectory(egoVehicle,waypoints,speed,waittime);

Add a car to the scenario. Specify the waypoints and the speed values for the car at each waypoint.
Set a wait time for the car at the second waypoint. Generate a trajectory in which the car travels
through the specified waypoints at the specified speed.
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car = vehicle(scenario,'ClassID',1,'Position',[48 4 0],'PlotColor',[0.494 0.184 0.556], 'Name','Car');
waypoints = [47 3 0; 38 3 0; 10 3 0];
speed = [30; 0; 30];
waittime = [0; 0.3; 0];
trajectory(car,waypoints,speed,waittime);

Add an ambulance to the scenario. Generate a trajectory in which the ambulance travels through the
specified waypoints at a constant speed.

ambulance = vehicle(scenario,'ClassID',6,'Position',[25 22 0],'PlotColor',[0.466 0.674 0.188],'Name','Ambulance');
waypoints = [25 22 0; 25 13 0; 25 6 0; 26 2 0; 33 -1 0; 45 -1 0];
speed = 25;
trajectory(ambulance,waypoints,speed);

Create a custom figure window to plot the scenario.

fig = figure;
set(fig,'Position',[0,0,800,600]);
movegui(fig,'center');
hViewPnl = uipanel(fig,'Position',[0 0 1 1],'Title','Stop-and-Go Scenario');
hPlt = axes(hViewPnl);

Plot the scenario and run the simulation. The ego vehicle and the car pause for their specified wait
times to avoid collision with the ambulance.

plot(scenario,'Waypoints','on','RoadCenters','on','Parent',hPlt)
while advance(scenario)
    pause(0.1)
end

 trajectory

4-377



Simulate Vehicle Backing into Parking Spot

Simulate a driving scenario in which a car drives in reverse to back into a parking spot.

Create a driving scenario. Add road segments to define a parking lot. The first road segment defines
the parking spaces. The second road segment defines the driving lane and overlays the first road
segment.

scenario = drivingScenario;

roadCentersParking = [6 0; 24 0];
lmParking = [laneMarking('Unmarked') ...
            repmat(laneMarking('Solid'),1,5) ...
            laneMarking('Unmarked')];
lspecParking = lanespec(6,'Width',3,'Marking',lmParking);
road(scenario,roadCentersParking,'Lanes',lspecParking);

roadCentersDriving = [12 0; 18 0];
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lmDriving = [laneMarking('Unmarked') laneMarking('Unmarked')];
lspecDriving = lanespec(1,'Width',18,'Marking',lmDriving);
road(scenario,roadCentersDriving,'Lanes',lspecDriving);

Add a vehicle to the driving scenario.

car = vehicle(scenario,'ClassID',1,'Position',[15 -6 0],'Yaw',90);

Define the trajectory of the vehicle. The vehicle drives forward, stops, and then drives in reverse until
it backs into the parking spot. As the vehicle enters the parking spot, it has a yaw orientation angle
that is 90 degrees counterclockwise from where it started.

waypoints = [15 -6; 15 5; 12 -1.5; 7.3 -1.5];
speed = [4.5; 0; -2; 0];
trajectory(car,waypoints,speed,'Yaw',[90 90 180 180]);

Plot the driving scenario and display the waypoints of the trajectory.

plot(scenario,'Waypoints','on')
while advance(scenario)
    pause(0.001)
end

Define Trajectory of Pedestrian

Define the trajectory of a pedestrian who takes a sharp right turn at an intersection.
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Create a driving scenario. Add road segments that define an intersection.

scenario = drivingScenario;
roadCenters = [0 10; 0 -10];
road(scenario,roadCenters);
road(scenario,flip(roadCenters,2));

Add a pedestrian actor to the scenario.

pedestrian = actor(scenario, ...
    'ClassID',4, ...
    'Length',0.24, ...
    'Width',0.45, ...
    'Height',1.7, ...
    'Position',[-9 0 0], ...
    'RCSPattern',[-8 -8; -8 -8], ...
    'Mesh', driving.scenario.pedestrianMesh, ...
    'Name','Pedestrian');

Define the trajectory of the pedestrian. The pedestrian approaches the intersection, pauses briefly,
and then take a sharp right turn at the intersection. To define the sharp right turn, specify two
waypoints at the intersection that are close together. For these waypoints, specify the yaw orientation
angle of the second waypoint at a 90-degree angle from the first waypoint.

waypoints = [-9 0; -0.25 0; 0 -0.25; 0 -9];
speed = [1.5; 0; 0.5; 1.5];
yaw =  [0; 0; -90; -90];
waittime = [0; 0.2; 0; 0];
trajectory(pedestrian,waypoints,speed,waittime,'Yaw', yaw);

Plot the driving scenario and display the waypoints of the pedestrian.

plot(scenario,'Waypoints','on')
while advance(scenario)
    pause(0.001)
end
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Input Arguments
ac — Actor
Actor object | Vehicle object

Actor belonging to a drivingScenario object, specified as an Actor or Vehicle object. To create
these objects, use the actor and vehicle functions, respectively.

waypoints — Trajectory waypoints
real-valued N-by-2 matrix | real-valued N-by-3 matrix

Trajectory waypoints, specified as a real-valued N-by-2 or N-by-3 matrix, where N is the number of
waypoints.

• If waypoints is an N-by-2 matrix, then each matrix row represents the (x, y) coordinates of a
waypoint. The z-coordinate of each waypoint is zero.

• If waypoints is an N-by-3 matrix, then each matrix row represents the (x, y, z) coordinates of a
waypoint.

Waypoints are in the world coordinate system. Units are in meters.
Example: [1 0 0; 2 7 7; 3 8 8]
Data Types: single | double
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speed — Actor speed
30.0 | real-valued scalar | N-element real-valued vector

Actor speed at each waypoint in waypoints, specified as a real-valued scalar or N-element real-
valued vector. N is the number of waypoints.

• When speed is a scalar, the speed is constant throughout the actor motion.
• When speed is a vector, the vector values specify the speed at each waypoint. For forward motion,

specify positive speed values. For reverse motion, specify negative speed values. To change motion
directions, separate the positive speeds and negative speeds by a waypoint with 0 speed.

Speeds are interpolated between waypoints. speed can be zero at any waypoint but cannot be zero at
two consecutive waypoints. Units are in meters per second.
Example: [10 8 9] specifies speeds of 10 m/s, 8 m/s, and 9 m/s.
Example: [10 0 -10] specifies a speed of 10 m/s in forward motion, followed by a pause, followed
by a speed of 10 m/s in reverse.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

waittime — Pause time for actor
0 (default) | N-element vector of nonnegative values

Pause time for the actor, specified as an N-element vector of nonnegative values. N is the number of
waypoints. When you specify a pause time for the actor at a particular waypoint, you must set the
corresponding speed value to 0. You can set the waitime to 0 at any waypoint, but you cannot set
waittime at two consecutive waypoints to non-zero values. Units are in seconds.
Data Types: single | double

yaw — Yaw orientation angle of actor
N-element real-valued vector

Yaw orientation angle of the actor at each waypoint, specified as an N-element real-valued vector,
where N is the number of waypoints. Units are in degrees and angles are positive in the
counterclockwise direction.

If you do not specify yaw, then the yaw at each waypoint is NaN, meaning that the yaw has no
constraints.
Example: [0 90] specifies an actor at a 0-degree angle at the first waypoint and a 90-degree angle
at the second waypoint.
Example: [0 NaN] specifies an actor at a 0-degree angle at the first waypoint. The actor has no
constraints on its yaw at the second waypoint.
Data Types: single | double

Algorithms
The trajectory function creates a trajectory for an actor to follow in a scenario. A trajectory
consists of the path followed by an object and its speed along the path. You specify the path using N
two-dimensional or three-dimensional waypoints. Each of the N – 1 segments between waypoints
defines a curve whose curvature varies linearly with distance along the segment. The function fits a
piecewise clothoid curve to the (x, y) coordinates of the waypoints by matching the curvature on both
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sides of the waypoint. For a nonclosed curve, the curvature at the first and last waypoint is zero. If
the first and last waypoints coincide, then the curvatures before and after the endpoints are matched.
The z-coordinates of the trajectory are interpolated using a shape-preserving piecewise cubic curve.

You can specify speed as a scalar or a vector. When speed is a scalar, the actor follows the trajectory
with constant speed. When speed is an N-element vector, speed is linearly interpolated between
waypoints. Setting the speed to zero at two consecutive waypoints creates a stationary actor.

See Also
Objects
drivingScenario

Functions
actor | road | vehicle

Topics
“Scenario Generation from Recorded Vehicle Data”
“Create Actor and Vehicle Trajectories Programmatically”
“Create Driving Scenario Programmatically”

Introduced in R2018a
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targetMeshes
Package: 

Mesh vertices and faces relative to specific actor

Syntax
[vertices,faces] = targetMeshes(ac)
[vertices,faces,colors] = targetMeshes(ac)

Description
[vertices,faces] = targetMeshes(ac) returns the mesh vertices and faces of all actors in a
driving scenario relative to the specified actor, ac. When displaying meshes on page 4-388 by using a
birdsEyePlot object, you can use the output mesh information as inputs to the plotMesh function.

[vertices,faces,colors] = targetMeshes(ac) also returns the color of the mesh faces for
each actor.

Examples

Display Actor Meshes in Driving Scenario

Display actors in a driving scenario by using their mesh representations instead of their cuboid
representations.

Create a driving scenario, and add a 25-meter straight road to the scenario.

scenario = drivingScenario;
roadcenters = [0 0 0; 25 0 0];
road(scenario,roadcenters);

Add a pedestrian and a vehicle to the scenario. Specify the mesh dimensions of the actors using
prebuilt meshes.

• Specify the pedestrian mesh as a driving.scenario.pedestrianMesh object.
• Specify the vehicle mesh as a driving.scenario.carMesh object.

p = actor(scenario,'ClassID',4, ...
            'Length',0.2,'Width',0.4, ...
            'Height',1.7,'Mesh',driving.scenario.pedestrianMesh);

v = vehicle(scenario,'ClassID',1, ...
            'Mesh',driving.scenario.carMesh);

Add trajectories for the pedestrian and vehicle.

• Specify for the pedestrian to cross the road at 1 meter per second.
• Specify for the vehicle to follow the road at 10 meters per second.
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waypointsP = [15 -3 0; 15 3 0];
speedP = 1;
trajectory(p,waypointsP,speedP);

wayPointsV = [v.RearOverhang 0 0; (25 - v.Length + v.RearOverhang) 0 0];
speedV = 10;
trajectory(v,wayPointsV,speedV)

Add an egocentric plot for the vehicle. Turn the display of meshes on.

chasePlot(v,'Meshes','on')

Create a bird's-eye plot in which to display the meshes. Also create a mesh plotter and lane boundary
plotter. Then run the simulation loop.

1 Obtain the road boundaries of the road the vehicle is on.
2 Obtain the mesh vertices, faces, and colors of the actor meshes, with positions relative to the

vehicle.
3 Plot the road boundaries and actor meshes on the bird's-eye plot.
4 Pause the scenario to allow time for the plots to update. The chase plot updates every time you

advance the scenario.

bep = birdsEyePlot('XLim',[-25 25],'YLim',[-10 10]);
mPlotter = meshPlotter(bep);
lbPlotter = laneBoundaryPlotter(bep);
legend('off')
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while advance(scenario)

   rb = roadBoundaries(v);

   [vertices,faces,colors] = targetMeshes(v);

   plotLaneBoundary(lbPlotter,rb)
   plotMesh(mPlotter,vertices,faces,'Color',colors)

   pause(0.01)
end
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Input Arguments
ac — Actor
Actor object | Vehicle object

Actor belonging to a drivingScenario object, specified as an Actor or Vehicle object. To create
these objects, use the actor and vehicle functions, respectively.

Output Arguments
vertices — Mesh vertices of each actor
N-element cell array

Mesh vertices of each actor, returned as an N-element cell array, where N is the number of actors.

Each element in vertices must be a V-by-3 real-valued matrix containing the vertices of an actor,
where:

• V is the number of vertices.
• Each row defines the 3-D (x,y,z) position of a vertex. The vertex positions are relative to the

position of the input actor ac. Units are in meters.

faces — Mesh faces of each actor
N-element cell array
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Mesh faces of each actor, returned as an N-element cell array, where N is the number of actors.

Each element in faces must be an F-by-3 integer-valued matrix containing the faces of an actor,
where:

• F is the number of faces.
• Each row defines a triangle of vertex IDs that make up the face. The vertex IDs correspond to row

numbers within vertices.

Suppose the first face of the ith element of faces has these vertex IDs.

faces{i}(1,:)

ans =

     1     2     3

In the ith element of vertices, rows 1, 2, and 3 contain the (x, y, z) positions of the vertices that
make up this face.

vertices{i}(1:3,:)

ans =

    3.7000    0.9000    0.8574
    3.7000   -0.9000    0.8574
    3.7000   -0.9000    0.3149

colors — Color of mesh faces for each actor
N-by-3 matrix of N RGB triplets

Color of the mesh faces for each actor, returned as an N-by-3 matrix of RGB triplets. N is the number
of actors and is equal to the number of elements in vertices and faces.

The ith row of colors is the RGB color value of the faces in the ith element of faces. The function
applies the same color to all mesh faces of an actor.

An RGB triplet is a three-element row vector whose elements specify the intensities of the red, green,
and blue components of the color. The intensities must be in the range [0, 1]. For example, [0.4 0.6
0.7].

More About
Meshes

In driving scenarios, a mesh is a triangle-based 3-D representation of an object. Mesh representations
of objects are more detailed than the default cuboid (box-shaped) representations of objects. Meshes
are useful for generating synthetic point cloud data from a driving scenario.

This table shows the difference between a cuboid representation and a mesh representation of a
vehicle in a driving scenario.
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Cuboid Mesh

See Also
Objects
birdsEyePlot | drivingScenario

Functions
actor | actorPoses | targetOutlines | targetPoses | vehicle

Introduced in R2020b
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targetPoses
Package: 

Target positions and orientations relative to ego vehicle

Syntax
poses = targetPoses(ac)
poses = targetPoses(ac,range)

Description
poses = targetPoses(ac) returns the poses of all targets in a driving scenario with respect to
the ego vehicle actor, ac. See “Ego Vehicle and Targets” on page 4-395 for more details.

poses = targetPoses(ac,range) returns the poses of targets that are within a specified range
around the ego vehicle actor.

Examples

Convert Target Poses Between Ego Vehicle and Scenario Coordinates

In a simple driving scenario, obtain the poses of target vehicles in the coordinate system of the ego
vehicle. Then convert these poses back to the world coordinates of the driving scenario.

Create a driving scenario.

scenario = drivingScenario;

Create target actors.

actor(scenario,'ClassID',1, ...
    'Position',[10 20 30], ...
    'Velocity',[12 113 14], ...
    'Yaw',54, ...
    'Pitch',25, ...
    'Roll',22, ...
    'AngularVelocity',[24 42 27]);

actor(scenario,'ClassID',1, ...
    'Position',[17 22 12], ...
    'Velocity',[19 13 15], ...
    'Yaw',45, ...
    'Pitch',52, ...
    'Roll',2, ...
    'AngularVelocity',[42 24 29]);

Add an ego vehicle actor.

egoActor = actor(scenario,'ClassID',1, ...
    'Position',[1 2 3], ...
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    'Velocity',[1.2 1.3 1.4], ...
    'Yaw',4, ...
    'Pitch',5, ...
    'Roll',2, ...
    'AngularVelocity',[4 2 7]);

Use the actorPoses function to return the poses of all actors in the scenario. Pose properties
(position, velocity, and orientation) are in the world coordinates of the driving scenario. Save the
target actors to a separate variable and inspect the pose of the first target actor.

allPoses = actorPoses(scenario);
targetPosesScenarioCoords = allPoses(1:2);
targetPosesScenarioCoords(1)

ans = struct with fields:
            ActorID: 1
           Position: [10 20 30]
           Velocity: [12 113 14]
               Roll: 22
              Pitch: 25
                Yaw: 54
    AngularVelocity: [24 42 27]

Use the driving.scenario.targetsToEgo function to convert the target poses to the ego-centric
coordinates of the ego actor. Inspect the pose of the first actor.

targetPosesEgoCoords = driving.scenario.targetsToEgo(targetPosesScenarioCoords,egoActor);
targetPosesEgoCoords(1)

ans = struct with fields:
            ActorID: 1
           Position: [7.8415 18.2876 27.1675]
           Velocity: [18.6826 112.0403 9.2960]
               Roll: 16.4327
              Pitch: 23.2186
                Yaw: 47.8114
    AngularVelocity: [-3.3744 47.3021 18.2569]

Alternatively, use the targetPoses function to obtain all target actor poses in ego vehicle
coordinates. Display the first target pose, which matches the previously calculated pose.

targetPosesEgoCoords = targetPoses(egoActor);
targetPosesEgoCoords(1)

ans = struct with fields:
            ActorID: 1
            ClassID: 1
           Position: [7.8415 18.2876 27.1675]
           Velocity: [18.6826 112.0403 9.2960]
               Roll: 16.4327
              Pitch: 23.2186
                Yaw: 47.8114
    AngularVelocity: [-3.3744 47.3021 18.2569]

Use the driving.scenario.targetsToScenario to convert the target poses back to the world
coordinates of the scenario. Display the first target pose, which matches the original target pose.
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targetPosesScenarioCoords = driving.scenario.targetsToScenario(targetPosesEgoCoords,egoActor);
targetPosesScenarioCoords(1)

ans = struct with fields:
            ActorID: 1
            ClassID: 1
           Position: [10.0000 20.0000 30.0000]
           Velocity: [12.0000 113.0000 14.0000]
               Roll: 22
              Pitch: 25.0000
                Yaw: 54
    AngularVelocity: [24.0000 42.0000 27.0000]

Obtain Target Poses Within Sensor Range

Obtain the poses of targets that are within the maximum range of a sensor mounted to the ego
vehicle.

Create a driving scenario. The scenario contains a 75-meter straight road, an ego vehicle, and two
target vehicles.

• The nearest target vehicle is 45 meters away and in the same lane as the ego vehicle.
• The farthest target vehicle is 65 meters away and in the opposite lane of the ego vehicle.

Plot the driving scenario.

scenario = drivingScenario;

roadCenters = [0 0 0; 75 0 0];
laneSpecification = lanespec([1 1]);
road(scenario,roadCenters,'Lanes',laneSpecification,'Name','Road');

egoVehicle = vehicle(scenario, ...
    'ClassID',1, ...
    'Position',[4 -2 0], ...
    'Name','Ego');

vehicle(scenario, ...
    'ClassID',1, ...
    'Position',[45 -1.7 0], ...
    'Name','Near Target');

vehicle(scenario, ...
    'ClassID',1, ...
    'Position',[65 2 0], ...
    'Yaw',-180, ...
    'Name','Far Target');

plot(scenario)
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Create a vision sensor mounted to the front bumper of the ego vehicle. Configure the sensor to have a
maximum detection range of 50 meters.

sensor = visionDetectionGenerator('SensorIndex',1, ...
    'SensorLocation',[3.7 0], ...
    'MaxRange',50);

Plot the outlines of the vehicles and the coverage area of the sensor. The nearest target vehicle is
within range of the sensor but the farthest target vehicle is not.

bep = birdsEyePlot;

olPlotter = outlinePlotter(bep);
[position,yaw,length,width,originOffset,color] = targetOutlines(egoVehicle);
plotOutline(olPlotter,position,yaw,length,width, ...
    'OriginOffset',originOffset,'Color',color)

caPlotter = coverageAreaPlotter(bep,'DisplayName','Coverage area','FaceColor','blue');
mountPosition = sensor.SensorLocation;
range = sensor.MaxRange;
orientation = sensor.Yaw;
fieldOfView = sensor.FieldOfView(1);
plotCoverageArea(caPlotter,mountPosition,range,orientation,fieldOfView);
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Obtain the poses of targets that are within the range of the sensor. The output structure contains the
pose of only the nearest target, which is under 50 meters away from the ego vehicle.

poses = targetPoses(egoVehicle,range)

poses = struct with fields:
            ActorID: 2
            ClassID: 1
           Position: [41 0.3000 0]
           Velocity: [0 0 0]
               Roll: 0
              Pitch: 0
                Yaw: 0
    AngularVelocity: [0 0 0]

Input Arguments
ac — Actor
Actor object | Vehicle object

Actor belonging to a drivingScenario object, specified as an Actor or Vehicle object. To create
these objects, use the actor and vehicle functions, respectively.

range — Circular range around ego vehicle
nonnegative real scalar
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Circular range around the ego vehicle actor, specified as a nonnegative real scalar. The
targetPoses function returns only the poses of targets that lie within this range. Units are in
meters.

Output Arguments
poses — Target poses
structure | array of structures

Target poses, in ego vehicle coordinates, returned as a structure or as an array of structures. The
pose of the ego vehicle actor, ac, is not included.

A target pose defines the position, velocity, and orientation of a target in ego vehicle coordinates.
Target poses also include the rates of change in actor position and orientation.

Each pose structure has these fields.

Field Description
ActorID Scenario-defined actor identifier, specified as a

positive integer.
ClassID Classification identifier, specified as a

nonnegative integer. 0 represents an object of an
unknown or unassigned class.

Position Position of actor, specified as a real-valued vector
of the form [x y z]. Units are in meters.

Velocity Velocity (v) of actor in the x-, y-, and z-direction,
specified as a real-valued vector of the form [vx vy
vz]. Units are in meters per second.

Roll Roll angle of actor, specified as a real scalar.
Units are in degrees.

Pitch Pitch angle of actor, specified as a real scalar.
Units are in degrees.

Yaw Yaw angle of actor, specified as a real scalar.
Units are in degrees.

AngularVelocity Angular velocity (ω) of actor in the x-, y-, and z-
direction, specified as a real-valued vector of the
form [ωx ωy ωz]. Units are in degrees per second.

For full definitions of these structure fields, see the actor and vehicle functions.

More About
Ego Vehicle and Targets

In a driving scenario, you can specify one actor as the observer of all other actors, similar to how the
driver of a car observes all other cars. The observer actor is called the ego actor or, more specifically,
the ego vehicle. From the perspective of the ego vehicle, all other actors (such as vehicles and
pedestrians) are the observed actors, called targets. Ego vehicle coordinates are centered and
oriented with reference to the ego vehicle. The coordinates of the driving scenario are world
coordinates.
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See Also
Objects
drivingScenario

Functions
actor | actorPoses | actorProfiles | vehicle

Topics
“Create Driving Scenario Programmatically”

Introduced in R2017a
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targetOutlines
Package: 

Outlines of targets viewed by actor

Syntax
[position,yaw,length,width,originOffset,color] = targetOutlines(ac)

Description
[position,yaw,length,width,originOffset,color] = targetOutlines(ac) returns the
oriented rectangular outlines of all non-ego target actors in a driving scenario. The outlines are as
viewed from a designated ego vehicle actor, ac. See “Ego Vehicle and Targets” on page 4-401 for
more details.

A target outline is the projection of the target actor cuboid into the (x,y) plane of the local coordinate
system of the ego vehicle. The target outline components are the position, yaw, length, width,
originOffset, and color output arguments.

You can use the returned outlines as input arguments to the outline plotter of a birdsEyePlot.
First, call the outlinePlotter function to create the plotter object. Then, use the plotOutline
function to plot the outlines of all the actors in a bird's-eye plot.

Examples

Show Target Outlines in Driving Scenario Simulation

Create a driving scenario and show how target outlines change as the simulation advances.

Create a driving scenario consisting of two intersecting straight roads. The first road segment is 45
meters long. The second straight road is 32 meters long and intersects the first road. A car traveling
at 12.0 meters per second along the first road approaches a running pedestrian crossing the
intersection at 2.0 meters per second.

scenario = drivingScenario('SampleTime',0.1,'StopTime',1);
road(scenario,[-10 0 0; 45 -20 0]);
road(scenario,[-10 -10 0; 35 10 0]);
ped = actor(scenario,'ClassID',4,'Length',0.4,'Width',0.6,'Height',1.7);
car = vehicle(scenario,'ClassID',1);
pedspeed = 2.0;
carspeed = 12.0;
trajectory(ped,[15 -3 0; 15 3 0],pedspeed);
trajectory(car,[-10 -10 0; 35 10 0],carspeed);

Create an ego-centric chase plot for the vehicle.

chasePlot(car,'Centerline','on')
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Create an empty bird's-eye plot and add an outline plotter and lane boundary plotter. Then, run the
simulation. At each simulation step:

• Update the chase plot to display the road boundaries and target outlines.
• Update the bird's-eye plot to display the updated road boundaries and target outlines. The plot

perspective is always with respect to the ego vehicle.

bepPlot = birdsEyePlot('XLim',[-50 50],'YLim',[-40 40]);
outlineplotter = outlinePlotter(bepPlot);
laneplotter = laneBoundaryPlotter(bepPlot);
legend('off')

while advance(scenario)
    rb = roadBoundaries(car);
    [position,yaw,length,width,originOffset,color] = targetOutlines(car);    
    plotLaneBoundary(laneplotter,rb)
    plotOutline(outlineplotter,position,yaw,length,width, ...
        'OriginOffset',originOffset,'Color',color)
    pause(0.01)
end
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Input Arguments
ac — Actor
Actor object | Vehicle object

Actor belonging to a drivingScenario object, specified as an Actor or Vehicle object. To create
these objects, use the actor and vehicle functions, respectively.

Output Arguments
position — Rotational centers of targets
real-valued N-by-2 matrix

Rotational centers of targets, returned as a real-valued N-by-2 matrix. N is the number of targets.
Each row contains the x- and y-coordinates of the rotational center of a target. Units are in meters.

yaw — Yaw angles of targets
real-valued N-element vector

Yaw angles of targets about the rotational center, returned as a real-valued N-element vector. N is the
number of targets. Yaw angles are measured in the counterclockwise direction, as seen from above.
Units are in degrees.
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length — Lengths of rectangular outlines of targets
positive, real-valued N-element vector

Lengths of rectangular outlines of targets, returned as a positive, real-valued N-element vector. N is
the number of targets. Units are in meters.

width — Widths of rectangular outlines of targets
positive, real-valued N-element vector

Widths of rectangular outline of targets, returned as a positive, real-valued N-element vector. N is the
number of targets. Units are in meters.

originOffset — Offsets of rotational centers from geometric centers
real-valued N-by-2 matrix

Offset of the rotational centers of targets from their geometric centers, returned as a real-valued N-
by-2 matrix. N is the number of targets. Each row contains the x- and y-coordinates defining this
offset. In vehicle targets, the rotational center, or origin, is located on the ground, directly beneath
the center of the rear axle. Units are in meters.

color — RGB representation of target colors
nonnegative, real-valued N-by-3 matrix

RGB representation of target colors, returned as a nonnegative, real-valued N-by-3 matrix. N is the
number of target actors.

More About
Ego Vehicle and Targets

In a driving scenario, you can specify one actor as the observer of all other actors, similar to how the
driver of a car observes all other cars. The observer actor is called the ego actor or, more specifically,
the ego vehicle. From the perspective of the ego vehicle, all other actors (such as vehicles and
pedestrians) are the observed actors, called targets. Ego vehicle coordinates are centered and
oriented with reference to the ego vehicle. The coordinates of the driving scenario are world
coordinates.

See Also
Objects
birdsEyePlot | drivingScenario

Functions
actor | actorPoses | outlinePlotter | plotOutline | targetPoses | vehicle

Topics
“Create Driving Scenario Programmatically”

Introduced in R2017a
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driving.scenario.targetsToEgo
Convert target poses from scenario to ego coordinates

Syntax
targetPosesEgoCoords = driving.scenario.targetsToEgo(
targetPosesScenarioCoords,egoPose)
targetPosesEgoCoords = driving.scenario.targetsToEgo(
targetPosesScenarioCoords,egoActor)

Description
targetPosesEgoCoords = driving.scenario.targetsToEgo(
targetPosesScenarioCoords,egoPose) converts the poses of target actors from the world
coordinates of a driving scenario to the coordinate system relative to the pose of an ego actor. A pose
is the position, velocity, and orientation of an actor. For more details on the coordinate systems of
actors, see “Ego Vehicle and Targets” on page 4-406.

targetPosesEgoCoords = driving.scenario.targetsToEgo(
targetPosesScenarioCoords,egoActor) converts target poses by using the pose of the specified
ego actor.

Examples

Convert Target Poses Between Ego Vehicle and Scenario Coordinates

In a simple driving scenario, obtain the poses of target vehicles in the coordinate system of the ego
vehicle. Then convert these poses back to the world coordinates of the driving scenario.

Create a driving scenario.

scenario = drivingScenario;

Create target actors.

actor(scenario,'ClassID',1, ...
    'Position',[10 20 30], ...
    'Velocity',[12 113 14], ...
    'Yaw',54, ...
    'Pitch',25, ...
    'Roll',22, ...
    'AngularVelocity',[24 42 27]);

actor(scenario,'ClassID',1, ...
    'Position',[17 22 12], ...
    'Velocity',[19 13 15], ...
    'Yaw',45, ...
    'Pitch',52, ...
    'Roll',2, ...
    'AngularVelocity',[42 24 29]);
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Add an ego vehicle actor.

egoActor = actor(scenario,'ClassID',1, ...
    'Position',[1 2 3], ...
    'Velocity',[1.2 1.3 1.4], ...
    'Yaw',4, ...
    'Pitch',5, ...
    'Roll',2, ...
    'AngularVelocity',[4 2 7]);

Use the actorPoses function to return the poses of all actors in the scenario. Pose properties
(position, velocity, and orientation) are in the world coordinates of the driving scenario. Save the
target actors to a separate variable and inspect the pose of the first target actor.

allPoses = actorPoses(scenario);
targetPosesScenarioCoords = allPoses(1:2);
targetPosesScenarioCoords(1)

ans = struct with fields:
            ActorID: 1
           Position: [10 20 30]
           Velocity: [12 113 14]
               Roll: 22
              Pitch: 25
                Yaw: 54
    AngularVelocity: [24 42 27]

Use the driving.scenario.targetsToEgo function to convert the target poses to the ego-centric
coordinates of the ego actor. Inspect the pose of the first actor.

targetPosesEgoCoords = driving.scenario.targetsToEgo(targetPosesScenarioCoords,egoActor);
targetPosesEgoCoords(1)

ans = struct with fields:
            ActorID: 1
           Position: [7.8415 18.2876 27.1675]
           Velocity: [18.6826 112.0403 9.2960]
               Roll: 16.4327
              Pitch: 23.2186
                Yaw: 47.8114
    AngularVelocity: [-3.3744 47.3021 18.2569]

Alternatively, use the targetPoses function to obtain all target actor poses in ego vehicle
coordinates. Display the first target pose, which matches the previously calculated pose.

targetPosesEgoCoords = targetPoses(egoActor);
targetPosesEgoCoords(1)

ans = struct with fields:
            ActorID: 1
            ClassID: 1
           Position: [7.8415 18.2876 27.1675]
           Velocity: [18.6826 112.0403 9.2960]
               Roll: 16.4327
              Pitch: 23.2186
                Yaw: 47.8114
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    AngularVelocity: [-3.3744 47.3021 18.2569]

Use the driving.scenario.targetsToScenario to convert the target poses back to the world
coordinates of the scenario. Display the first target pose, which matches the original target pose.

targetPosesScenarioCoords = driving.scenario.targetsToScenario(targetPosesEgoCoords,egoActor);
targetPosesScenarioCoords(1)

ans = struct with fields:
            ActorID: 1
            ClassID: 1
           Position: [10.0000 20.0000 30.0000]
           Velocity: [12.0000 113.0000 14.0000]
               Roll: 22
              Pitch: 25.0000
                Yaw: 54
    AngularVelocity: [24.0000 42.0000 27.0000]

Input Arguments
targetPosesScenarioCoords — Target poses in world coordinates of scenario
structure | array of structures

Target poses in the world coordinates of a driving scenario, specified as a structure or an array of
structures.

Each target pose structure must contain at least these fields.

Field Description
ActorID Scenario-defined actor identifier, specified as a

positive integer.
Position Position of actor, specified as a real-valued vector

of the form [x, y, z]. Units are in meters.
Velocity Velocity (v) of actor in the x-, y-, and z-direction,

specified as a real-valued vector of the form [vx,
vy, vz]. Units are in meters per second.

Roll Roll angle of actor, specified as a real-valued
scalar. Units are in degrees.

Pitch Pitch angle of actor, specified as a real-valued
scalar. Units are in degrees.

Yaw Yaw angle of actor, specified as a real-valued
scalar. Units are in degrees.

AngularVelocity Angular velocity (ω) of actor in the x-, y-, and z-
direction, specified as a real-valued vector of the
form [ωx, ωy, ωz]. Units are in degrees per second.

For full definitions of these structure fields, see the actor and vehicle functions.
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egoPose — Ego actor pose
structure

Ego actor pose in the world coordinates of a driving scenario, specified as a structure.

The ego actor pose structure must contain at least these fields.

Field Description
ActorID Scenario-defined actor identifier, specified as a

positive integer.
Position Position of actor, specified as a real-valued vector

of the form [x, y, z]. Units are in meters.
Velocity Velocity (v) of actor in the x-, y-, and z-direction,

specified as a real-valued vector of the form [vx,
vy, vz]. Units are in meters per second.

Roll Roll angle of actor, specified as a real-valued
scalar. Units are in degrees.

Pitch Pitch angle of actor, specified as a real-valued
scalar. Units are in degrees.

Yaw Yaw angle of actor, specified as a real-valued
scalar. Units are in degrees.

AngularVelocity Angular velocity (ω) of actor in the x-, y-, and z-
direction, specified as a real-valued vector of the
form [ωx, ωy, ωz]. Units are in degrees per second.

For full definitions of these structure fields, see the actor and vehicle functions.

egoActor — Ego actor
Actor object | Vehicle object

Ego actor in the world coordinates of a driving scenario, specified as an Actor or Vehicle object.
The function converts the coordinates of target actors relative to the pose of egoActor. The pose
information is stored in the Position, Velocity, Roll, Pitch, Yaw, and AngularVelocity
properties of the ego actor.

For the full definitions of pose properties, see the actor and vehicle functions.

Output Arguments
targetPosesEgoCoords — Target poses in ego actor coordinates
structure | array of structures

Target poses in ego vehicle coordinates, returned as a structure or an array of structures.

At a minimum, each returned target pose structure has these fields.

Field Description
ActorID Scenario-defined actor identifier, specified as a

positive integer.
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Field Description
Position Position of actor, specified as a real-valued vector

of the form [x, y, z]. Units are in meters.
Velocity Velocity (v) of actor in the x-, y-, and z-direction,

specified as a real-valued vector of the form [vx,
vy, vz]. Units are in meters per second.

Roll Roll angle of actor, specified as a real-valued
scalar. Units are in degrees.

Pitch Pitch angle of actor, specified as a real-valued
scalar. Units are in degrees.

Yaw Yaw angle of actor, specified as a real-valued
scalar. Units are in degrees.

AngularVelocity Angular velocity (ω) of actor in the x-, y-, and z-
direction, specified as a real-valued vector of the
form [ωx, ωy, ωz]. Units are in degrees per second.

The returned targetPosesEgoCoords structures include the same fields as those in the input
targetPosesScenarioCoords structures. For example, if the input structures include a ClassID
field, then the returned structures also include ClassID.

For full definitions of these structure fields, see the actor and vehicle functions.

More About
Ego Vehicle and Targets

In a driving scenario, you can specify one actor as the observer of all other actors, similar to how the
driver of a car observes all other cars. The observer actor is called the ego actor or, more specifically,
the ego vehicle. From the perspective of the ego vehicle, all other actors (such as vehicles and
pedestrians) are the observed actors, called targets. Ego vehicle coordinates are centered and
oriented with reference to the ego vehicle. The coordinates of the driving scenario are world
coordinates.

See Also
Objects
drivingScenario

Functions
actor | actorPoses | driving.scenario.roadBoundariesToEgo |
driving.scenario.targetsToScenario | road | roadBoundaries | targetPoses | vehicle

Introduced in R2017a
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driving.scenario.targetsToScenario
Convert target poses from ego to scenario coordinates

Syntax
targetPosesScenarioCoords = driving.scenario.targetsToScenario(
targetPosesEgoCoords,egoPose)
targetPosesScenarioCoords = driving.scenario.targetsToScenario(
targetPosesEgoCoords,egoActor)

Description
targetPosesScenarioCoords = driving.scenario.targetsToScenario(
targetPosesEgoCoords,egoPose) converts the poses of target actors from coordinates relative to
the pose of an ego actor to the world coordinates of a driving scenario. A pose is the position, velocity,
and orientation of an actor. For more details on the coordinate systems of actors, see “Ego Vehicle
and Targets” on page 4-411.

targetPosesScenarioCoords = driving.scenario.targetsToScenario(
targetPosesEgoCoords,egoActor) converts target poses by using the pose of the specified ego
actor.

Examples

Convert Target Poses Between Ego Vehicle and Scenario Coordinates

In a simple driving scenario, obtain the poses of target vehicles in the coordinate system of the ego
vehicle. Then convert these poses back to the world coordinates of the driving scenario.

Create a driving scenario.

scenario = drivingScenario;

Create target actors.

actor(scenario,'ClassID',1, ...
    'Position',[10 20 30], ...
    'Velocity',[12 113 14], ...
    'Yaw',54, ...
    'Pitch',25, ...
    'Roll',22, ...
    'AngularVelocity',[24 42 27]);

actor(scenario,'ClassID',1, ...
    'Position',[17 22 12], ...
    'Velocity',[19 13 15], ...
    'Yaw',45, ...
    'Pitch',52, ...
    'Roll',2, ...
    'AngularVelocity',[42 24 29]);
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Add an ego vehicle actor.

egoActor = actor(scenario,'ClassID',1, ...
    'Position',[1 2 3], ...
    'Velocity',[1.2 1.3 1.4], ...
    'Yaw',4, ...
    'Pitch',5, ...
    'Roll',2, ...
    'AngularVelocity',[4 2 7]);

Use the actorPoses function to return the poses of all actors in the scenario. Pose properties
(position, velocity, and orientation) are in the world coordinates of the driving scenario. Save the
target actors to a separate variable and inspect the pose of the first target actor.

allPoses = actorPoses(scenario);
targetPosesScenarioCoords = allPoses(1:2);
targetPosesScenarioCoords(1)

ans = struct with fields:
            ActorID: 1
           Position: [10 20 30]
           Velocity: [12 113 14]
               Roll: 22
              Pitch: 25
                Yaw: 54
    AngularVelocity: [24 42 27]

Use the driving.scenario.targetsToEgo function to convert the target poses to the ego-centric
coordinates of the ego actor. Inspect the pose of the first actor.

targetPosesEgoCoords = driving.scenario.targetsToEgo(targetPosesScenarioCoords,egoActor);
targetPosesEgoCoords(1)

ans = struct with fields:
            ActorID: 1
           Position: [7.8415 18.2876 27.1675]
           Velocity: [18.6826 112.0403 9.2960]
               Roll: 16.4327
              Pitch: 23.2186
                Yaw: 47.8114
    AngularVelocity: [-3.3744 47.3021 18.2569]

Alternatively, use the targetPoses function to obtain all target actor poses in ego vehicle
coordinates. Display the first target pose, which matches the previously calculated pose.

targetPosesEgoCoords = targetPoses(egoActor);
targetPosesEgoCoords(1)

ans = struct with fields:
            ActorID: 1
            ClassID: 1
           Position: [7.8415 18.2876 27.1675]
           Velocity: [18.6826 112.0403 9.2960]
               Roll: 16.4327
              Pitch: 23.2186
                Yaw: 47.8114
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    AngularVelocity: [-3.3744 47.3021 18.2569]

Use the driving.scenario.targetsToScenario to convert the target poses back to the world
coordinates of the scenario. Display the first target pose, which matches the original target pose.

targetPosesScenarioCoords = driving.scenario.targetsToScenario(targetPosesEgoCoords,egoActor);
targetPosesScenarioCoords(1)

ans = struct with fields:
            ActorID: 1
            ClassID: 1
           Position: [10.0000 20.0000 30.0000]
           Velocity: [12.0000 113.0000 14.0000]
               Roll: 22
              Pitch: 25.0000
                Yaw: 54
    AngularVelocity: [24.0000 42.0000 27.0000]

Input Arguments
targetPosesEgoCoords — Target poses in ego actor coordinates
structure | array of structures

Target poses in ego actor coordinates, specified as a structure or an array of structures.

Each target pose structure must contain at least these fields.

Field Description
ActorID Scenario-defined actor identifier, specified as a

positive integer.
Position Position of actor, specified as a real-valued vector

of the form [x, y, z]. Units are in meters.
Velocity Velocity (v) of actor in the x-, y-, and z-direction,

specified as a real-valued vector of the form [vx,
vy, vz]. Units are in meters per second.

Roll Roll angle of actor, specified as a real-valued
scalar. Units are in degrees.

Pitch Pitch angle of actor, specified as a real-valued
scalar. Units are in degrees.

Yaw Yaw angle of actor, specified as a real-valued
scalar. Units are in degrees.

AngularVelocity Angular velocity (ω) of actor in the x-, y-, and z-
direction, specified as a real-valued vector of the
form [ωx, ωy, ωz]. Units are in degrees per second.

For full definitions of these structure fields, see the actor and vehicle functions.

egoPose — Ego actor pose
structure
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Ego actor pose in the world coordinates of a driving scenario, specified as a structure.

The ego actor pose structure must contain at least these fields.

Field Description
ActorID Scenario-defined actor identifier, specified as a

positive integer.
Position Position of actor, specified as a real-valued vector

of the form [x, y, z]. Units are in meters.
Velocity Velocity (v) of actor in the x-, y-, and z-direction,

specified as a real-valued vector of the form [vx,
vy, vz]. Units are in meters per second.

Roll Roll angle of actor, specified as a real-valued
scalar. Units are in degrees.

Pitch Pitch angle of actor, specified as a real-valued
scalar. Units are in degrees.

Yaw Yaw angle of actor, specified as a real-valued
scalar. Units are in degrees.

AngularVelocity Angular velocity (ω) of actor in the x-, y-, and z-
direction, specified as a real-valued vector of the
form [ωx, ωy, ωz]. Units are in degrees per second.

For full definitions of these structure fields, see the actor and vehicle functions.

egoActor — Ego actor
Actor object | Vehicle object

Ego actor in the world coordinates of a driving scenario, specified as an Actor or Vehicle object.
The function converts the coordinates of target actors relative to the pose of egoActor. The pose
information is stored in the Position, Velocity, Roll, Pitch, Yaw, and AngularVelocity
properties of the ego actor.

For the full definitions of pose properties, see the actor and vehicle functions.

Output Arguments
targetPosesScenarioCoords — Target poses in world coordinates of scenario
structure | array of structures

Target actor poses in the world coordinates of a driving scenario, returned as a structure or an array
of structures.

At a minimum, each returned target pose structure has these fields.

Field Description
ActorID Scenario-defined actor identifier, specified as a

positive integer.
Position Position of actor, specified as a real-valued vector

of the form [x, y, z]. Units are in meters.
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Field Description
Velocity Velocity (v) of actor in the x-, y-, and z-direction,

specified as a real-valued vector of the form [vx,
vy, vz]. Units are in meters per second.

Roll Roll angle of actor, specified as a real-valued
scalar. Units are in degrees.

Pitch Pitch angle of actor, specified as a real-valued
scalar. Units are in degrees.

Yaw Yaw angle of actor, specified as a real-valued
scalar. Units are in degrees.

AngularVelocity Angular velocity (ω) of actor in the x-, y-, and z-
direction, specified as a real-valued vector of the
form [ωx, ωy, ωz]. Units are in degrees per second.

The returned targetPosesScenarioCoords structures include the same fields as those in the input
targetPosesEgoCoords structures. For example, if the input structures include a ClassID field,
then the returned structures also include ClassID.

For full definitions of these structure fields, see the actor and vehicle functions.

More About
Ego Vehicle and Targets

In a driving scenario, you can specify one actor as the observer of all other actors, similar to how the
driver of a car observes all other cars. The observer actor is called the ego actor or, more specifically,
the ego vehicle. From the perspective of the ego vehicle, all other actors (such as vehicles and
pedestrians) are the observed actors, called targets. Ego vehicle coordinates are centered and
oriented with reference to the ego vehicle. The coordinates of the driving scenario are world
coordinates.

See Also
Objects
drivingScenario

Functions
actor | actorPoses | driving.scenario.roadBoundariesToEgo |
driving.scenario.targetsToEgo | road | roadBoundaries | targetPoses | vehicle

Introduced in R2020a
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path
(To be removed) Create actor or vehicle path in driving scenario

Note path will be removed in a future release. Use trajectory instead.

Syntax
path(ac,waypoints)
path(ac,waypoints,speed)

Description
path(ac,waypoints) creates a path for an actor or vehicle, ac, using a set of waypoints. The actor
follows the path at 30 m/s.

path(ac,waypoints,speed) also specifies the actor speed.

Input Arguments
ac — Actor
Actor object | Vehicle object

Actor belonging to a drivingScenario object, specified as an Actor or Vehicle object. To create
these objects, use the actor and vehicle functions, respectively.

waypoints — Path waypoints
real-valued N-by-2 matrix | real-valued N-by-3 matrix

Path waypoints, specified as a real-valued N-by-2 or N-by-3 matrix, where N is the number of
waypoints.

• If you specify the waypoints as an N-by-2 matrix, then each matrix row represents the (x,y)
coordinates of a waypoint. The z-coordinate of each waypoint is zero.

• If you specify the waypoints as an N-by-3 matrix, then each matrix row represents the (x,y,z)
coordinates of a waypoint.

All coordinates belong to the scenario coordinate system. Units are in meters.
Example: [1 0 0; 2 7 7]

speed — Actor speed
30.0 | positive real scalar | N-element vector of nonnegative values

Actor speed, specified as a positive real scalar or N-element vector of nonnegative values. N is the
number of waypoints.

• When speed is a scalar, the speed is constant throughout the actor motion.
• When speed is a vector, the vector values specify the speed at each waypoint.
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Speeds are interpolated between waypoints. speed can be zero at any waypoint but cannot be zero at
two consecutive waypoints. Units are in meters per second.
Example: [10,8,10,11]

Algorithms
The path function creates a path for an actor to follow in a scenario. You specify the path using N
two-dimensional or three-dimensional waypoints. Each of the N – 1 segments between waypoints
defines a curve whose curvature varies linearly with distance along the segment. The function fits a
piecewise clothoid curve to the (x,y) coordinates of the waypoints by matching the curvature on both
sides of the waypoint. For a nonclosed curve, the curvature at the first and last waypoint is zero. If
the first and last waypoints coincide, then the curvatures before and after the endpoints are matched.
The z-coordinates of the path are interpolated using a shape-preserving piecewise cubic curve.

You can specify speed as a scalar or a vector. When speed is a scalar, the actor follows the path with
constant speed. When speed is an N-element vector, speed is linearly interpolated between
waypoints. Setting the speed to zero at two consecutive waypoints creates a stationary actor.

Compatibility Considerations
path is not recommended
Not recommended starting in R2018a

path will be removed in a future release. Use trajectory instead.

Update Code

Replace all instances of path with trajectory. If you used path without specifying a speed, you
must now specify one. The trajectory function does not include a syntax that assumes a default
speed.

Discouraged Usage Recommended Replacement
scenario = drivingScenario;
road(scenario,[-10 0 0; 45 -20 0]);
car = vehicle(scenario);
waypoints = [-10 -10 0; 35 10 0];

path(car,waypoints) % default speed = 30 m/s

scenario = drivingScenario;
road(scenario,[-10 0 0; 45 -20 0]);
car = vehicle(scenario);
waypoints = [-10 -10 0; 35 10 0];

speed = 30;
trajectory(car,waypoints,speed)

See Also
trajectory

Introduced in R2017a
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road
Add road to driving scenario

Syntax
road(scenario,roadcenters)
road(scenario,roadcenters,roadwidth)
road(scenario,roadcenters,roadwidth,bankingangle)

road(scenario,roadcenters,'Lanes',lspec)
road(scenario,roadcenters,bankingangle,'Lanes',lspec)

road( ___ ,'Name',name)
rd = road( ___ )

Description
road(scenario,roadcenters) adds a road to a driving scenario, scenario. You specify the road
shape and the orientation of a road in the 2-D plane by using a set of road centers, roadcenters, at
discrete points. When you specify the number of lanes on a road, the lanes are numbered with
respect to the road centers. For more information, see “Draw Direction of Road and Numbering of
Lanes” on page 4-427.

road(scenario,roadcenters,roadwidth) adds a road with the specified width, roadwidth.

road(scenario,roadcenters,roadwidth,bankingangle) adds a road with the specified width
and banking angle, bankingangle.

road(scenario,roadcenters,'Lanes',lspec) adds a road with the specified lanes, lspec.

road(scenario,roadcenters,bankingangle,'Lanes',lspec) adds a road with the specified
banking angle and lanes.

road( ___ ,'Name',name) specifies the name of the road, using any of the input argument
combinations from previous syntaxes.

rd = road( ___ ) returns a Road object that stores the properties of the created road.

Examples

Create Driving Scenario with Multiple Actors and Roads

Create a driving scenario containing a curved road, two straight roads, and two actors: a car and a
bicycle. Both actors move along the road for 60 seconds.

Create the driving scenario object.

scenario = drivingScenario('SampleTime',0.1','StopTime',60);
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Create the curved road using road center points following the arc of a circle with an 800-meter
radius. The arc starts at 0°, ends at 90°, and is sampled at 5° increments.

angs = [0:5:90]';
R = 800;
roadcenters = R*[cosd(angs) sind(angs) zeros(size(angs))];
roadwidth = 10;
road(scenario,roadcenters,roadwidth);

Add two straight roads with the default width, using road center points at each end.

roadcenters = [700 0 0; 100 0 0];
road(scenario,roadcenters)

ans = 
  Road with properties:

           Name: ""
         RoadID: 2
    RoadCenters: [2x3 double]
      RoadWidth: 6
      BankAngle: [2x1 double]

roadcenters = [400 400 0; 0 0 0];
road(scenario,roadcenters)

ans = 
  Road with properties:

           Name: ""
         RoadID: 3
    RoadCenters: [2x3 double]
      RoadWidth: 6
      BankAngle: [2x1 double]

Get the road boundaries.

rbdry = roadBoundaries(scenario);

Add a car and a bicycle to the scenario. Position the car at the beginning of the first straight road.

car = vehicle(scenario,'ClassID',1,'Position',[700 0 0], ...
    'Length',3,'Width',2,'Height',1.6);

Position the bicycle farther down the road.

bicycle = actor(scenario,'ClassID',3,'Position',[706 376 0]', ...
    'Length',2,'Width',0.45,'Height',1.5);

Plot the scenario.

plot(scenario,'Centerline','on','RoadCenters','on');
title('Scenario');
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Display the actor poses and profiles.

poses = actorPoses(scenario)

poses=2×1 struct array with fields:
    ActorID
    Position
    Velocity
    Roll
    Pitch
    Yaw
    AngularVelocity

profiles = actorProfiles(scenario)

profiles=2×1 struct array with fields:
    ActorID
    ClassID
    Length
    Width
    Height
    OriginOffset
    MeshVertices
    MeshFaces
    RCSPattern
    RCSAzimuthAngles
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    RCSElevationAngles

Create and Display Road Boundaries

Create a driving scenario containing a figure-8 road specified in the world coordinates of the
scenario. Convert the world coordinates of the scenario to the coordinate system of the ego vehicle.

Create an empty driving scenario.

scenario = drivingScenario;

Add a figure-8 road to the scenario. Display the scenario.

roadCenters = [0  0  1
             20 -20  1
             20  20  1
            -20 -20  1
            -20  20  1
              0   0  1];

roadWidth = 3;
bankAngle = [0 15 15 -15 -15 0];
road(scenario,roadCenters,roadWidth,bankAngle);
plot(scenario)
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Add an ego vehicle to the scenario. Position the vehicle at world coordinates (20, –20) and orient it at
a –15 degree yaw angle.

ego = actor(scenario,'ClassID',1,'Position',[20 -20 0],'Yaw',-15);

Obtain the road boundaries in ego vehicle coordinates by using the roadBoundaries function.
Specify the ego vehicle as the input argument.

rbEgo1 = roadBoundaries(ego);

Display the result on a bird's-eye plot.

bep = birdsEyePlot;
lbp = laneBoundaryPlotter(bep,'DisplayName','Road');
plotLaneBoundary(lbp,rbEgo1)
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Obtain the road boundaries in world coordinates by using the roadBoundaries function. Specify the
scenario as the input argument.

rbScenario = roadBoundaries(scenario);

Obtain the road boundaries in ego vehicle coordinates by using the
driving.scenario.roadBoundariesToEgo function.

rbEgo2 = driving.scenario.roadBoundariesToEgo(rbScenario,ego);

Display the road boundaries on a bird's-eye plot.

bep = birdsEyePlot;
lbp = laneBoundaryPlotter(bep,'DisplayName','Road boundaries');
plotLaneBoundary(lbp,{rbEgo2})
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Display Lane Markings in Car and Pedestrian Scenario

Create a driving scenario containing a car and pedestrian on a straight road. Then, create and display
the lane markings of the road on a bird's-eye plot.

Create an empty driving scenario.

scenario = drivingScenario;

Create a straight, 25-meter road segment with two travel lanes in one direction.

lm = [laneMarking('Solid')
      laneMarking('Dashed','Length',2,'Space',4)
      laneMarking('Solid')];
l = lanespec(2,'Marking',lm);
road(scenario,[0 0 0; 25 0 0],'Lanes',l);

Add to the driving scenario a pedestrian crossing the road at 1 meter per second and a car following
the road at 10 meters per second.

ped = actor(scenario,'ClassID',4,'Length',0.2,'Width',0.4,'Height',1.7);
car = vehicle(scenario,'ClassID',1);
trajectory(ped,[15 -3 0; 15 3 0],1);
trajectory(car,[car.RearOverhang 0 0; 25-car.Length+car.RearOverhang 0 0],10);
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Display the scenario and corresponding chase plot.

plot(scenario)

chasePlot(car)
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Run the simulation.

1 Create a bird's-eye plot.
2 Create an outline plotter, lane boundary plotter, and lane marking plotter for the bird's-eye plot.
3 Obtain the road boundaries and target outlines.
4 Obtain the lane marking vertices and faces.
5 Display the lane boundaries and lane markers.
6 Run the simulation loop.

bep = birdsEyePlot('XLim',[-25 25],'YLim',[-10 10]);
olPlotter = outlinePlotter(bep);
lbPlotter = laneBoundaryPlotter(bep);
lmPlotter = laneMarkingPlotter(bep,'DisplayName','Lanes');
legend('off');
while advance(scenario)
    rb = roadBoundaries(car);
    [position,yaw,length,width,originOffset,color] = targetOutlines(car);
    [lmv,lmf] = laneMarkingVertices(car);
    plotLaneBoundary(lbPlotter,rb);
    plotLaneMarking(lmPlotter,lmv,lmf);
    plotOutline(olPlotter,position,yaw,length,width, ...
        'OriginOffset',originOffset,'Color',color);
end
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Input Arguments
scenario — Driving scenario
drivingScenario object

Driving scenario, specified as a drivingScenario object.

roadcenters — Road centers used to define road
real-valued N-by-2 matrix | real-valued N-by-3 matrix

Road centers used to define a road, specified as a real-valued N-by-2 or N-by-3 matrix. Road centers
determine the center line of the road at discrete points.

• If roadcenters is an N-by-2 matrix, then each matrix row represents the (x, y) coordinates of a
road center. The z-coordinate of each road center is zero.

• If roadcenters is an N-by-3 matrix, then each matrix row represents the (x, y, z) coordinates of a
road center.

If the first row of the matrix is the same as the last row, the road is a loop. Units are in meters.
Data Types: double

roadwidth — Width of road
6.0 (default) | positive real scalar | []
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Width of road, specified as a positive real scalar. The width is constant along the entire road. Units
are in meters.

To specify the bankingangle input but not roadwidth, specify roadwidth as an empty argument,
[].

If you specify roadwidth, then you cannot specify the lspec input.
Data Types: double

bankingangle — Banking angle of road
0 (default) | real-valued N-by-1 vector

Banking angle of road, specified as a real-valued N-by-1 vector. N is the number of road centers. The
banking angle is the roll angle of the road along the direction of the road. Units are in degrees.

lspec — Lane specification
lanespec object

Lane specification, specified as a lanespec object. Use lanespec to specify the number of lanes,
the width of each lane, and the type of lane markings. To specify the lane markings within lanespec,
use the laneMarking function.

If you specify lspec, then you cannot specify the roadwidth input.
Example: 'Lane',lanespec(3) specifies a three-lane road with default lane widths and lane
markings.

name — Name of road
"" (default) | character vector | string scalar

Name of the road, specified as a character vector or string scalar.
Example: 'Name','Road1'
Example: "Name","Road1"
Data Types: char | string

Output Arguments
rd — Output road
Road object

Output road, returned as a Road object that has the properties described in this table. With the
exception of RoadID, which is a scenario-generated property, the property names correspond to the
input arguments used to create the road. All properties are read-only.

Property Value
Name Name of road, specified as a string scalar

The name input argument sets this property. Even
if you specify name as a character vector, the
Name property value is a string scalar.
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Property Value
RoadID Identifier of road, specified as a positive integer

The scenario input argument generates a
unique ID for each road in the driving scenario.

RoadCenters Road centers used to define a road, specified as a
real-valued N-by-2 or N-by-3 matrix, where N is
the number of road centers

The roadcenters input argument sets this
property.

RoadWidth Width of road, specified as a positive real scalar

The roadwidth input argument sets this
property.

BankAngle Banking angle of road, specified as an N-by-1
real-valued vector, where N is the number of road
centers in the road

The bankingangle input argument sets this
property.

More About
Draw Direction of Road and Numbering of Lanes

To create a road by using the road function, specify the road centers as a matrix input. The function
creates a directed line that traverses the road centers, starting from the coordinates in the first row
of the matrix and ending at the coordinates in the last row of the matrix. The coordinates in the first
two rows of the matrix specify the draw direction of the road. These coordinates correspond to the
first two consecutive road centers. The draw direction is the direction in which the roads render in
the scenario plot.

To create a road by using the Driving Scenario Designer app, you can either specify the Road
Centers parameter or interactively draw on the Scenario Canvas. For a detailed example, see
“Create a Driving Scenario” on page 1-14. In this case, the draw direction is the direction in which
roads render in the Scenario Canvas.

• For a road with a top-to-bottom draw direction, the difference between the x-coordinates of the
first two consecutive road centers is positive.

• For a road with a bottom-to-top draw direction, the difference between the x-coordinates of the
first two consecutive road centers is negative.
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• For a road with a left-to-right draw direction, the difference between the y-coordinates of the first
two consecutive road centers is positive.

• For a road with a right-to-left draw direction, the difference between the y-coordinates of the first
two consecutive road centers is negative.
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Numbering Lanes

Lanes must be numbered from left to right, with the left edge of the road defined relative to the draw
direction of the road. For a one-way road, by default, the left edge of the road is a solid yellow
marking which indicates the end of the road in transverse direction (direction perpendicular to draw
direction). For a two-way road, by default, both edges are marked with solid white lines.

For example, these diagrams show how the lanes are numbered in a one-way and two-way road with a
draw direction from top-to-bottom.

Numbering Lanes in a One-Way Road Numbering Lanes in a Two-Way Road
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Specify the number of lanes as a positive integer
for a one-way road. If you set the integer value as
3, then the road has three lanes that travel in the
same direction. The lanes are numbered starting
from the left edge of the road.

1, 2, 3 denote the first, second, and third lanes of
the road, respectively.

Specify the number of lanes as a two-element
vector of positive integer for a two-way road. If
you set the vector as [1 2], then the road has
three lanes: two lanes traveling in one direction
and one lane traveling in the opposite direction.
Because of the draw direction, the road has one
left lane and two right lanes. The lanes are
numbered starting from the left edge of the road.

1L denote the only left lane of the road. 1R and
2R denote the first and second right lanes of the
road, respectively.

The lane specifications apply by the order in which the lanes are numbered.

Algorithms
The road function creates a road for an actor to follow in a driving scenario. You specify the road
using N two-dimensional or three-dimensional waypoints. Each of the N – 1 segments between
waypoints defines a curve whose curvature varies linearly with distance along the segment. The
function fits a piecewise clothoid curve to the (x, y) coordinates of the waypoints by matching the
curvature on both sides of the waypoint. For a nonclosed curve, the curvature at the first and last
waypoint is zero. If the first and last waypoints coincide, then the curvatures before and after the
endpoints are matched. The z-coordinates of the road are interpolated using a shape-preserving
piecewise cubic curve.

4 Objects

4-430



See Also
Objects
drivingScenario | lanespec

Functions
laneMarking | roadBoundaries | roadNetwork

Topics
“Define Road Layouts Programmatically”
“Create Driving Scenario Programmatically”

Introduced in R2017a
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roadNetwork
Add road network to driving scenario

Syntax
roadNetwork(scenario,'OpenDRIVE',filename)
roadNetwork(scenario,'OpenDRIVE','ShowLaneTypes',showLaneTypes)

roadNetwork(scenario,'HEREHDLiveMap',lat,lon)
roadNetwork(scenario,'HEREHDLiveMap',minLat,minLon,maxLat,maxLon)

roadNetwork(scenario,'OpenStreetMap',filename)

Description
OpenDRIVE

roadNetwork(scenario,'OpenDRIVE',filename) imports roads from an OpenDRIVE road
network file into a driving scenario. This function supports OpenDRIVE format specification version
1.4H [1].

roadNetwork(scenario,'OpenDRIVE','ShowLaneTypes',showLaneTypes) uses the name-
value pair 'ShowLaneTypes' to also import lane type information from the file and display it in the
driving scenario.

HERE HD Live Map

roadNetwork(scenario,'HEREHDLiveMap',lat,lon) imports roads from a HERE HD Live Map4

(HERE HDLM) road network into a driving scenario. The function imports the roads that are nearest
to the latitude and longitude coordinates specified in lat and lon, respectively.

roadNetwork(scenario,'HEREHDLiveMap',minLat,minLon,maxLat,maxLon) imports HERE
HDLM roads that are at least partially within the geographic bounding box specified by minLat,
minLon, maxLat, and maxLon.

OpenStreetMap

roadNetwork(scenario,'OpenStreetMap',filename) imports roads from an OpenStreetMap
road network file into a driving scenario.

Examples

Import OpenDRIVE Road Network into Driving Scenario

Create an empty driving scenario.

scenario = drivingScenario;

4. You need to enter into a separate agreement with HERE in order to gain access to the HDLM services and to get the
required credentials (access_key_id and access_key_secret) for using the HERE Service.
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Import an OpenDRIVE road network into the scenario.

filePath = 'intersection.xodr';  
roadNetwork(scenario,'OpenDRIVE',filePath);

Plot the scenario and zoom in on the road network by setting the axes limits.

plot(scenario)
xlim([350 800])
ylim([1400 2000])
zlim([0.00 10.00])

Import OpenDRIVE Road with Multiple Lane Types into Driving Scenario

Create an empty driving scenario.

scenario = drivingScenario;

Import an OpenDRIVE road composed of driving and parking lanes into the scenario. By default, the
function interprets the lane type information and imports the lanes into driving scenario without
altering the lane type.

filePath = 'parking.xodr';  
roadNetwork(scenario,'OpenDRIVE',filePath);

Plot the scenario.
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plot(scenario)
zoom(2)
legend('Driving lane','Parking lane')

Import the OpenDRIVE road into the scenario. Set the 'ShowLaneTypes' value to false to
suppress multiple lane types. The function ignores the lane type information and imports all the lanes
as driving lanes.

scenario = drivingScenario;
roadNetwork(scenario,'OpenDRIVE',filePath,'ShowLaneTypes',false);
plot(scenario)
zoom(2)
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Import HERE HDLM Roads Using Specified Coordinates

Import HERE HDLM road network data that is nearest to the coordinates of a specified driving route
into a driving scenario. Plot a vehicle following this route in the driving scenario.

Load a sequence of geographic coordinates that correspond to a driving route.

data = load('geoSequence.mat');
lat = data.latitude;
lon = data.longitude;

Display the route by streaming the coordinates on a geographic player. Set the zoom level to 14 and
configure the player to display all points in its history. To speed up the streaming, plot only every
tenth coordinate in the route.

zoomLevel = 14;
player = geoplayer(lat(1),lon(1),zoomLevel,'HistoryDepth',Inf);
timestep = 10;

for i = 1:timestep:length(lat)
    plotPosition(player,lat(i),lon(i));
end
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Create a driving scenario. Import the HERE HDLM road data that is nearest to the driving route into
the scenario.

scenario = drivingScenario;
roadNetwork(scenario,'HEREHDLiveMap',lat,lon);

Use the latlon2local function to convert the driving route from geographic coordinates to local
east-north-up (ENU) Cartesian coordinates used in the driving scenario. For the origin of the ENU
coordinate system, use the geographic road network origin stored in the GeoReference property of
the scenario. The origin is the first coordinate specified in the driving route. Because the driving
route contains only latitudinal and longitudinal data, set the altitude to 0.

alt = 0;
origin = scenario.GeoReference;
[xEast,yNorth,zUp] = latlon2local(lat,lon,alt,origin);

Add a vehicle to the driving scenario. Specify the converted driving route as the trajectory of the
vehicle. Set a vehicle speed of 30 meters per second.

v = vehicle(scenario,'ClassID',1);
speed = 30;
trajectory(v,[xEast,yNorth,zUp],speed);

Plot the scenario and pause every 0.01 seconds to slow down the simulation. To maintain the same
alignment with geographic coordinate displays, the X-axis is on the bottom and the Y-axis is on the
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left. In driving scenarios not imported from maps, the X-axis is on the left and the Y-axis is on the
bottom. This alignment is consistent with the Automated Driving Toolbox™ world coordinate system.

After a few seconds, the vehicle appears to drive underneath the road. This issue occurs because the
converted trajectory contains no altitude data but the imported road network does. To avoid this
issue, if you are specifying a driving route recorded from a GPS, include the altitude data.

plot(scenario)
while advance(scenario)
    pause(0.01)
end

Import HERE HDLM Roads Using Specified Region

Import HERE HDLM road network data into driving scenario. Select this data from a region that is
centered around a specified geographic coordinate.

Define a latitude and longitude coordinates corresponding to a roundabout.

latCenter = 42.302324;
lonCenter = -71.384970;

Specify the minimum and maximum latitudinal and longitudinal coordinates for a rectangular region
around the roundabout. Display a bounding box corresponding to this region on a geographic plot.
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offset = 5e-4;
minLat = latCenter - offset;
minLon = lonCenter - offset;
maxLat = latCenter + offset;
maxLon = lonCenter + offset;

gx = geoaxes;
LineSpec = '.-k';
geoplot(gx, ...
        [minLat maxLat],[minLon minLon],LineSpec, ...
        [maxLat maxLat],[minLon maxLon],LineSpec, ...
        [maxLat minLat],[maxLon maxLon],LineSpec, ...
        [minLat minLat],[maxLon minLon],LineSpec)

Create a driving scenario and import roads from the region by using the minimum and maximum
coordinates. The roadNetwork function imports roads that are at least partially within this region.

scenario = drivingScenario;
roadNetwork(scenario,'HEREHDLiveMap',minLat,minLon,maxLat,maxLon);

Plot the scenario. To maintain the same alignment with geographic coordinate displays, the X-axis is
on the bottom and the Y-axis is on the left. In driving scenarios not imported from maps, the X-axis is
on the left and the Y-axis is on the bottom. This alignment is consistent with the Automated Driving
Toolbox™ world coordinate system.

plot(scenario) 
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Import OpenStreetMap Road Network and Plot Route

Import roads from the OpenStreetMap® web service into a driving scenario. Then, plot a vehicle
following a route in the imported road network.

Import a road network of the MathWorks® Apple Hill campus into an empty driving scenario. The file
was downloaded from https://www.openstreetmap.org, which provides access to crowd-sourced map
data all over the world. The data is licensed under the Open Data Commons Open Database License
(ODbL), https://opendatacommons.org/licenses/odbl/.

Plot the imported road network. To maintain the same alignment with geographic coordinate
displays, the X-axis is on the bottom and the Y-axis is on the left. In driving scenarios not imported
from maps, the X-axis is on the left and the Y-axis is on the bottom. This alignment is consistent with
the Automated Driving Toolbox™ world coordinate system.

scenario = drivingScenario;
roadNetwork(scenario,'OpenStreetMap','applehill.osm');
plot(scenario)
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Load the latitude and longitude coordinates for a driving route in this road network.

data = load('geoRouteAH.mat');
lat = data.latitude;
lon = data.longitude;

Use the latlon2local function to convert the driving route from geographic coordinates to local
east-north-up (ENU) Cartesian coordinates used in the driving scenario. For the origin of the ENU
coordinate system, use the geographic road network origin stored in the GeoReference property of
the scenario. The origin is the first coordinate specified in the driving route. Because the driving
route contains only latitudinal and longitudinal data, set the altitude to 0.

alt = 0;
origin = scenario.GeoReference;
[xEast,yNorth,zUp] = latlon2local(lat,lon,alt,origin);

Add a vehicle to the driving scenario. Specify the converted driving route as the trajectory of the
vehicle. Set a vehicle speed of 30 meters per second. Plot the vehicle trajectory and pause every 0.01
seconds to slow down the simulation.

v = vehicle(scenario,'ClassID',1);
speed = 30;
trajectory(v,[xEast,yNorth,zUp],speed);

while advance(scenario)
    pause(0.01)
end
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Input Arguments
scenario — Driving scenario
drivingScenario object

Driving scenario, specified as a drivingScenario object. scenario must contain no previously
created or imported roads.

filename — Name of road network file
character vector | string scalar

Name of the road network file, specified as a character vector or string scalar.

filename must specify a file in the current folder, a file that is on the MATLAB search path, or a full
or relative path to a file.

filename must end with a file extension that is valid for the source of the road network.

Road Network Source Valid File Extensions Sample Syntax
OpenDRIVE .xodr

.xml

roadNetwork(scenario, ...
    'OpenDRIVE','C:\Desktop\roads.xodr'
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Road Network Source Valid File Extensions Sample Syntax
OpenStreetMap .osm

.xml

roadNetwork(scenario, ...
    'OpenStreetMap','C:\Desktop\map.osm'

showLaneTypes — Import lane type information
true or 1 (default) | false or 0

Import lane type information from the OpenDRIVE road network file and display it in the driving
scenario, specified as a comma-separated pair consisting of 'ShowLaneTypes' and one of these
values:

• true or 1 — Import lane type information and render lane types.
• false or 0 — Ignore lane type information and import all lanes as driving lanes in the driving

scenario.

The table summarized the supported lane types and their default appearance after importing them
into the driving scenario.

Supported Lane Types Description Default Appearance
Driving lanes Lanes for driving

Border lanes Lanes at the road borders

Restricted lanes Lanes reserved for high-
occupancy vehicles

Shoulder lanes Lanes reserved for
emergency stopping

Parking lanes Lanes alongside driving
lanes, intended for parking
vehicles

Any other unsupported lane types are rendered as border lanes.
Example: 'ShowLaneTypes',false

lat — Latitude coordinates
vector of elements in range [–90, 90]

Latitude coordinates, specified as a vector of elements in the range [–90, 90]. lat must be the same
size as lon. Units are in degrees.
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lon — Longitude coordinates
vector of elements in range [–180, 180]

Longitude coordinates, specified as a vector of elements in the range [–180, 180]. lon must be the
same size as lat. Units are in degrees.

minLat — Minimum latitude coordinate of bounding box
scalar in range [–90, 90]

Minimum latitude coordinate of the bounding box, specified as a scalar in the range [–90, 90].
minLat must be less than maxLat. Units are in degrees.

The roadNetwork function imports any roads that are at least partially within the bounding box
specified by inputs minLat, minLon, maxLat, and maxLon. This diagram displays the relationship
between these coordinates.

minLon — Minimum longitude coordinate of bounding box
scalar in range [–180, 180]

Minimum longitude coordinate of the bounding box, specified as a scalar in the range [–180, 180].
minLon must be less than maxLon. Units are in degrees.

The roadNetwork function imports any roads that are at least partially within the bounding box
specified by inputs minLat, minLon, maxLat, and maxLon. This diagram displays the relationship
between these coordinates.

 roadNetwork

4-443



maxLat — Maximum latitude coordinate of bounding box
scalar in range [–90, 90]

Maximum latitude coordinate of the bounding box, specified as a scalar in the range [–90, 90].
maxLat must be greater than minLat. Units are in degrees.

The roadNetwork function imports any roads that are at least partially within the bounding box
specified by inputs minLat, minLon, maxLat, and maxLon. This diagram displays the relationship
between these coordinates.
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maxLon — Maximum longitude coordinate of bounding box
scalar in range [–180, 180]

Maximum longitude coordinate of the bounding box, specified as a scalar in the range [–180, 180].
maxLon must be greater than minLon. Units are in degrees.

The roadNetwork function imports any roads that are at least partially within the bounding box
specified by inputs minLat, minLon, maxLat, and maxLon. This diagram displays the relationship
between these coordinates.
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Limitations
OpenDRIVE Import Limitations

• You can import only lanes, lane type information, and roads. The import of road objects and traffic
signals is not supported.

• OpenDRIVE files containing large road networks can take up to several minutes to load. Examples
of large road networks include ones that model the roads of a city or ones with roads that are
thousands of meters long.

• Lanes with variable widths are not supported. The width is set to the highest width found within
that lane. For example, if a lane has a width that varies from 2 meters to 4 meters, the function
sets the lane width to 4 meters throughout.

• Roads with lane type information specified as driving, border, restricted, shoulder, and
parking are supported. Lanes with any other lane type information are imported as border lanes.

• Roads with multiple lane marking styles are not supported. The function applies the first found
marking style to all lanes in the road. For example, if a road has Dashed and Solid lane
markings, the function applies Dashed lane markings throughout.

• Lane marking styles Bott Dots, Curbs, and Grass are not supported. Lanes with these marking
styles are imported as unmarked.

HERE HD Live Map Import Limitations

When importing HERE HDLM data, these road and lane features are not supported:

• Lanes with varying widths — In the generated road network, each lane is set to have the
maximum width found along its entire length. Consider a HERE HDLM lane with a width that
varies from 2 to 4 meters along its length. In the generated road network, the lane width is 4
meters along its entire length.
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• Roads with varying numbers of lanes along their lengths — In the generated road network, each
road is set to have the maximum number of lanes along its entire length. Consider a HERE HDLM
road with 3 lanes on one half and 2 lanes on the other half. In the generated road network, the
road has 3 lanes along its entire length.

• Multiple lane marking styles along a lane — In the generated road network, each lane is set to
have the marking style of the lane segment with the maximum width along the road. Consider a
HERE HDLM lane with 2 lane segments. The first lane segment is 2 meters wide and has solid
markings. The second lane segment is 4 meters wide and has dashed markings. In the generated
road network, the lane has a fixed width of 4 meters throughout and dashed markings along its
entire length.

These modifications to the road networks can sometimes cause roads to overlap in the driving
scenario. Consider the HERE HDLM roads for the divided highway highlighted in blue in the table.
Due to the unsupported features, in the imported driving scenario, the lane widths of the roads
increase. This limitation causes the roads to overlap and appear as one road. Sensors that detect
lanes are unable to detect the covered lanes.

HERE HDLM Road Network Imported Driving Scenario

If you receive a warning that the geometry of a road is unable to be computed, then the curvature of
the road is too sharp for it to render properly and it is not imported.

OpenStreetMap Import Limitations

When importing OpenStreetMap data, road and lane features have these limitations:

• Lane-level information is not imported from OpenStreetMap roads. Lane specifications are based
only on the direction of travel specified in the OpenStreetMap road network, where:

• One-way roads are imported as single-lane roads with default lane specifications. These lanes
are programmatically equivalent to lanespec(1).

• Two-way roads are imported as two-lane roads with bidirectional travel and default lane
specifications. These lanes are programmatically equivalent to lanespec([1 1]).
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The table shows these differences in the OpenStreetMap road network and the road network in
the imported driving scenario.

OpenStreetMap Road Network Imported Driving Scenario

• When importing OpenStreetMap road networks that specify elevation data, if elevation data is not
specified for all roads being imported, then the generated road network might contain
inaccuracies and some roads might overlap.

• The basemap used in the app can have slight differences from the map used in the
OpenStreetMap service. Some imported road issues might also be due to missing or inaccurate
map data in the OpenStreetMap service. To check whether the data is missing or inaccurate due
to the map service, consider viewing the map data on an external map viewer.

• If you receive a warning that the geometry of a road is unable to be computed, then the curvature
of the road is too sharp for it to render properly and it is not imported.

Tips
• If the roads that you import do not look as expected, consider importing them by using the Driving

Scenario Designer app. The app can make the process of troubleshooting and correcting roads
easier than trying to troubleshoot and correct them by using the roadNetwork function.

References
[1] Dupuis, Marius, et al. OpenDRIVE Format Specification. Revision 1.4, Issue H, Document No.

VI2014.106. Bad Aibling, Germany: VIRES Simulationstechnologie GmbH, November 4, 2015.

See Also
Apps
Driving Scenario Designer

Objects
drivingScenario

Functions
actor | trajectory | vehicle

Topics
“Import OpenDRIVE Roads into Driving Scenario”
“Import HERE HD Live Map Roads into Driving Scenario”
“Import OpenStreetMap Data into Driving Scenario”
“Scenario Generation from Recorded Vehicle Data”
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External Websites
ASAM OpenDRIVE
HERE Technologies
openstreetmap.org

Introduced in R2018b
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roadBoundaries
Package: 

Get road boundaries

Syntax
rbdry = roadBoundaries(scenario)
rbdry = roadBoundaries(ac)

Description
rbdry = roadBoundaries(scenario) returns the road boundaries, rbdry, of a driving scenario,
scenario.

rbdry = roadBoundaries(ac) returns the road boundaries that the actor, ac, follows in a driving
scenario.

Examples

Create Driving Scenario with Multiple Actors and Roads

Create a driving scenario containing a curved road, two straight roads, and two actors: a car and a
bicycle. Both actors move along the road for 60 seconds.

Create the driving scenario object.

scenario = drivingScenario('SampleTime',0.1','StopTime',60);

Create the curved road using road center points following the arc of a circle with an 800-meter
radius. The arc starts at 0°, ends at 90°, and is sampled at 5° increments.

angs = [0:5:90]';
R = 800;
roadcenters = R*[cosd(angs) sind(angs) zeros(size(angs))];
roadwidth = 10;
road(scenario,roadcenters,roadwidth);

Add two straight roads with the default width, using road center points at each end.

roadcenters = [700 0 0; 100 0 0];
road(scenario,roadcenters)

ans = 
  Road with properties:

           Name: ""
         RoadID: 2
    RoadCenters: [2x3 double]
      RoadWidth: 6
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      BankAngle: [2x1 double]

roadcenters = [400 400 0; 0 0 0];
road(scenario,roadcenters)

ans = 
  Road with properties:

           Name: ""
         RoadID: 3
    RoadCenters: [2x3 double]
      RoadWidth: 6
      BankAngle: [2x1 double]

Get the road boundaries.

rbdry = roadBoundaries(scenario);

Add a car and a bicycle to the scenario. Position the car at the beginning of the first straight road.

car = vehicle(scenario,'ClassID',1,'Position',[700 0 0], ...
    'Length',3,'Width',2,'Height',1.6);

Position the bicycle farther down the road.

bicycle = actor(scenario,'ClassID',3,'Position',[706 376 0]', ...
    'Length',2,'Width',0.45,'Height',1.5);

Plot the scenario.

plot(scenario,'Centerline','on','RoadCenters','on');
title('Scenario');
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Display the actor poses and profiles.

poses = actorPoses(scenario)

poses=2×1 struct array with fields:
    ActorID
    Position
    Velocity
    Roll
    Pitch
    Yaw
    AngularVelocity

profiles = actorProfiles(scenario)

profiles=2×1 struct array with fields:
    ActorID
    ClassID
    Length
    Width
    Height
    OriginOffset
    MeshVertices
    MeshFaces
    RCSPattern
    RCSAzimuthAngles
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    RCSElevationAngles

Create and Display Road Boundaries

Create a driving scenario containing a figure-8 road specified in the world coordinates of the
scenario. Convert the world coordinates of the scenario to the coordinate system of the ego vehicle.

Create an empty driving scenario.

scenario = drivingScenario;

Add a figure-8 road to the scenario. Display the scenario.

roadCenters = [0  0  1
             20 -20  1
             20  20  1
            -20 -20  1
            -20  20  1
              0   0  1];

roadWidth = 3;
bankAngle = [0 15 15 -15 -15 0];
road(scenario,roadCenters,roadWidth,bankAngle);
plot(scenario)
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Add an ego vehicle to the scenario. Position the vehicle at world coordinates (20, –20) and orient it at
a –15 degree yaw angle.

ego = actor(scenario,'ClassID',1,'Position',[20 -20 0],'Yaw',-15);

Obtain the road boundaries in ego vehicle coordinates by using the roadBoundaries function.
Specify the ego vehicle as the input argument.

rbEgo1 = roadBoundaries(ego);

Display the result on a bird's-eye plot.

bep = birdsEyePlot;
lbp = laneBoundaryPlotter(bep,'DisplayName','Road');
plotLaneBoundary(lbp,rbEgo1)
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Obtain the road boundaries in world coordinates by using the roadBoundaries function. Specify the
scenario as the input argument.

rbScenario = roadBoundaries(scenario);

Obtain the road boundaries in ego vehicle coordinates by using the
driving.scenario.roadBoundariesToEgo function.

rbEgo2 = driving.scenario.roadBoundariesToEgo(rbScenario,ego);

Display the road boundaries on a bird's-eye plot.

bep = birdsEyePlot;
lbp = laneBoundaryPlotter(bep,'DisplayName','Road boundaries');
plotLaneBoundary(lbp,{rbEgo2})
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Input Arguments
scenario — Driving scenario
drivingScenario object

Driving scenario, specified as a drivingScenario object.

ac — Actor
Actor object | Vehicle object

Actor belonging to a drivingScenario object, specified as an Actor or Vehicle object. To create
these objects, use the actor and vehicle functions, respectively.

Output Arguments
rbdry — Road boundaries
cell array

Road boundaries, returned as a cell array. Each cell in the cell array contains a real-valued N-by-3
matrix representing a road boundary in the scenario, where N is the number of road boundaries.
Each row of the matrix corresponds to the (x, y, z) coordinates of a road boundary vertex.
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When the input argument is a driving scenario, the road coordinates are with respect to the world
coordinates of the driving scenario. When the input argument is an actor, the road coordinates are
with respect to the actor coordinate system.

The figures show the number of road boundaries that rbdry contains for various road types.

Single Road — One Road Boundary Intersection — One Road Boundary

 roadBoundaries

4-457



Roundabout — Two Road Boundaries Figure-8 — Three Road Boundaries

See Also
Objects
drivingScenario

Functions
actor | road | vehicle

Topics
“Create Driving Scenario Programmatically”

Introduced in R2017a
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driving.scenario.roadBoundariesToEgo
Convert road boundaries to ego vehicle coordinates

Syntax
egoRoadBoundaries = driving.scenario.roadBoundariesToEgo(
scenarioRoadBoundaries,ego)
egoRoadBoundaries = driving.scenario.roadBoundariesToEgo(
scenarioRoadBoundaries,egoPose)

Description
egoRoadBoundaries = driving.scenario.roadBoundariesToEgo(
scenarioRoadBoundaries,ego) converts road boundaries from the world coordinates of a driving
scenario to the coordinate system of the ego vehicle, ego.

egoRoadBoundaries = driving.scenario.roadBoundariesToEgo(
scenarioRoadBoundaries,egoPose) converts road boundaries from world coordinates to vehicle
coordinates using the pose of the ego vehicle, egoPose.

Examples

Create and Display Road Boundaries

Create a driving scenario containing a figure-8 road specified in the world coordinates of the
scenario. Convert the world coordinates of the scenario to the coordinate system of the ego vehicle.

Create an empty driving scenario.

scenario = drivingScenario;

Add a figure-8 road to the scenario. Display the scenario.

roadCenters = [0  0  1
             20 -20  1
             20  20  1
            -20 -20  1
            -20  20  1
              0   0  1];

roadWidth = 3;
bankAngle = [0 15 15 -15 -15 0];
road(scenario,roadCenters,roadWidth,bankAngle);
plot(scenario)
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Add an ego vehicle to the scenario. Position the vehicle at world coordinates (20, –20) and orient it at
a –15 degree yaw angle.

ego = actor(scenario,'ClassID',1,'Position',[20 -20 0],'Yaw',-15);
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Obtain the road boundaries in ego vehicle coordinates by using the roadBoundaries function.
Specify the ego vehicle as the input argument.

rbEgo1 = roadBoundaries(ego);

Display the result on a bird's-eye plot.

bep = birdsEyePlot;
lbp = laneBoundaryPlotter(bep,'DisplayName','Road');
plotLaneBoundary(lbp,rbEgo1)
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Obtain the road boundaries in world coordinates by using the roadBoundaries function. Specify the
scenario as the input argument.

rbScenario = roadBoundaries(scenario);

Obtain the road boundaries in ego vehicle coordinates by using the
driving.scenario.roadBoundariesToEgo function.

rbEgo2 = driving.scenario.roadBoundariesToEgo(rbScenario,ego);

Display the road boundaries on a bird's-eye plot.

bep = birdsEyePlot;
lbp = laneBoundaryPlotter(bep,'DisplayName','Road boundaries');
plotLaneBoundary(lbp,{rbEgo2})
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Input Arguments
scenarioRoadBoundaries — Road boundaries of scenario in world coordinates
1-by-N cell array

Road boundaries of the scenario in world coordinates, specified as a 1-by-N cell array. N is the
number of road boundaries within the scenario. Each cell corresponds to a road and contains the (x,
y, z) coordinates of the road boundaries in a real-valued P-by-3 matrix. P is the number of boundaries
and varies from cell to cell. Units are in meters.

ego — Ego vehicle
Actor object | Vehicle object

Ego vehicle, specified as an Actor or Vehicle object. To create these objects, use the actor and
vehicle functions, respectively.

egoPose — Ego actor pose
structure

Ego actor pose in the world coordinates of a driving scenario, specified as a structure.

The ego actor pose structure must contain at least these fields.
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Field Description
ActorID Scenario-defined actor identifier, specified as a

positive integer.
Position Position of actor, specified as a real-valued vector

of the form [x, y, z]. Units are in meters.
Velocity Velocity (v) of actor in the x-, y-, and z-direction,

specified as a real-valued vector of the form [vx,
vy, vz]. Units are in meters per second.

Roll Roll angle of actor, specified as a real-valued
scalar. Units are in degrees.

Pitch Pitch angle of actor, specified as a real-valued
scalar. Units are in degrees.

Yaw Yaw angle of actor, specified as a real-valued
scalar. Units are in degrees.

AngularVelocity Angular velocity (ω) of actor in the x-, y-, and z-
direction, specified as a real-valued vector of the
form [ωx, ωy, ωz]. Units are in degrees per second.

For full definitions of these structure fields, see the actor and vehicle functions.

Output Arguments
egoRoadBoundaries — Road boundaries in ego vehicle coordinates
real-valued Q-by-3 matrix

Road boundaries in ego vehicle coordinates, returned as a real-valued Q-by-3 matrix. Q is the number
of road boundary point coordinates of the form (x, y, z).

All road boundaries are contained in the same matrix, with a row of NaN values separating points in
different road boundaries. For example, if the input has three road boundaries of length P1, P2, and
P3, then Q = P1 + P2 + P3 + 2. Units are in meters.

See Also
Objects
drivingScenario

Functions
actor | actorPoses | driving.scenario.targetsToEgo |
driving.scenario.targetsToScenario | road | roadBoundaries | targetPoses | vehicle

Introduced in R2017a
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currentLane
Package: 

Get current lane of actor

Syntax
cl = currentLane(ac)
[cl,numlanes] = currentLane(ac)

Description
cl = currentLane(ac) returns the current lane, cl, of an actor, ac.

[cl,numlanes] = currentLane(ac) also returns the number of road lanes, numlanes.

Examples

Find Current Lanes of Two Cars

Obtain the current lane boundaries of cars during a driving scenario simulation.

Create a driving scenario containing a straight, three-lane road.

scenario = drivingScenario;
roadCenters = [0 0; 80 0];
road(scenario,roadCenters,'Lanes',lanespec([1 2],'Width',3));

Add an ego vehicle moving at 20 meters per second and a target vehicle moving at 10 meters per
second.

ego = vehicle(scenario,'ClassID',1,'Position',[5 0 0], ...
    'Length',3,'Width',2,'Height',1.6);
trajectory(ego,[1 0 0; 20 0 0; 30 0 0;50 0 0],20);

target = vehicle(scenario,'ClassID',1,'Position',[5 0 0], ...
    'Length',3,'Width',2,'Height',1.6);
trajectory(target,[5 -3 0; 20 -3 0; 30 -3 0;50 -3 0],10);

Plot the scenario.

plot(scenario)
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Run the simulation loop.

while advance(scenario)
    [cl1,numlanes] = currentLane(ego);
    [cl2,numlanes] = currentLane(target);
end
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Display the current lane of each vehicle.

disp(cl1)
disp(cl2)

     2

     3

Input Arguments
ac — Actor
Actor object | Vehicle object

Actor belonging to a drivingScenario object, specified as an Actor or Vehicle object. To create
these objects, use the actor and vehicle functions, respectively.

Output Arguments
cl — Current lane of actor
positive integer | []

Current lane of the actor, returned as a positive integer. Lanes are numbered from left to right,
relative to the actor, starting from 1. When the actor is not on a road or is on a road without any lanes
specified, cl is returned as empty, [].
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numlanes — Number of lanes on road
positive integer | []

Number of lanes on the road that the actor is traveling on, returned as a positive integer. When the
actor is not on a road or is on a road without any lanes specified, numlanes is returned as empty, [].

See Also
Objects
drivingScenario | lanespec

Functions
actor | laneBoundaries | vehicle

Introduced in R2018a
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lanespec
Create road lane specifications

Description
The lanespec object defines the lane specifications of a road that was added to a
drivingScenario object using the road function. For more details, see “Lane Specifications” on
page 4-481.

Creation

Syntax
lnspec = lanespec(numlanes)
lnspec = lanespec(numlanes,Name,Value)

Description

lnspec = lanespec(numlanes) creates lane specifications for a road having numlanes lanes.
numLanes sets the NumLanes property of the lanespec object. The order for numbering the lanes
on a road depend on the orientation of the road. For more details, see “Draw Direction of Road and
Numbering of Lanes” on page 4-478.

lnspec = lanespec(numlanes,Name,Value) sets properties on page 4-469 using one or more
name-value pairs. For example, lanespec(3,'Width',[2.25 3.5 2.25]) specifies a three-lane
road with widths from left to right of 2.25 meters, 3.5 meters, and 2.25 meters. For more information
on the geometrical properties of a lane, see “Lane Specifications” on page 4-481.

Properties
NumLanes — Number of lanes in road
positive integer | two-element vector of positive integers

This property is read-only.

Number of lanes in the road, specified as a positive integer or two-element vector of positive integers,
[NL, NR]. When NumLanes is a positive integer, all lanes flow in the same direction. When NumLanes
is a vector:

• NL is the number of left lanes, all flowing in one direction.
• NR is the number of right lanes, all flowing in the opposite direction.

The total number of lanes in the road is the sum of these vector values: N = NL + NR.

You can set this property when you create the object. After you create the object, this property is
read-only.
Example: [2 2] specifies two left lanes and two right lanes.
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Width — Lane widths
3.6 (default) | positive real scalar | 1-by-N vector of positive real scalars

Lane widths, specified as a positive real scalar or 1-by-N vector of positive real scalars, where N is
the number of lanes in the road. N must be equal to numlanes and the corresponding value set in the
NumLanes property.

When Width is a scalar, the same value is applied to all lanes. When Width is a vector, the vector
elements apply to lanes from left to right. Units are in meters.
Example: [3.5 3.7 3.7 3.5]
Data Types: double

Marking — Lane markings
LaneMarking object (default) | SolidMarking object | DashedMarking object | CompoundMarking
object | 1-by-M array of lane marking objects

Lane markings of road, specified as one of these values:

• LaneMarking object. This is the default.
• SolidMarking object
• DashedMarking object
• CompoundMarking object
• 1-by-M array of lane marking objects.

M is the number of lane markings. For a road with N lanes, M = N + 1.

To create lane marking objects, use the laneMarking function and specify the type of lane marking.

'Unmarked' 'Solid' 'Dashed' 'DoubleSol
id'

'DoubleDas
hed'

'SolidDash
ed'

'DashedSol
id'

No lane
marking

Solid line Dashed line Two solid
lines

Two dashed
lines

Solid line on
left, dashed
line on right

Dashed line
on left, solid
line on right
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'Unmarked' 'Solid' 'Dashed' 'DoubleSol
id'

'DoubleDas
hed'

'SolidDash
ed'

'DashedSol
id'

By default, for a one-way road, the rightmost and center lane markings are white and the leftmost
lane marking is yellow. For two-way roads, the color of the dividing lane marking is yellow.
Example: [laneMarking('Solid') laneMarking('DoubleDashed')
laneMarking('Solid')] specifies lane markings for a two-lane road. The leftmost and rightmost
lane markings are solid lines, and the dividing lane marking is a double-dashed line.

Type — Lane types
DrivingLaneType object (default) | RestrictedLaneType object | ShoulderLaneType object |
ParkingLaneType object | 1-by-M array of lane type objects

Lane types of road, specified as a homogeneous lane type object or a 1-by-M array of lane type
objects. M is the number of lane types.

To create lane type objects, use the laneType function and specify the type of lane.

'Driving' 'Border' 'Restricted' 'Shoulder' 'Parking'

Example: [laneType('Shoulder') laneType('Driving')] specifies the lane types for a two-
lane road. The leftmost lane is the shoulder lane and the rightmost lane is the driving lane.

Examples
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Create Straight Four-Lane Road

Create a driving scenario and the road centers for a straight, 80-meter road.

scenario = drivingScenario;
roadCenters = [0 0; 80 0];

Create a lanespec object for a four-lane road. Use the laneMarking function to specify its five lane
markings. The center line is double-solid and double yellow. The outermost lines are solid and white.
The inner lines are dashed and white.

solidW = laneMarking('Solid','Width',0.3);
dashW = laneMarking('Dashed','Space',5);
doubleY = laneMarking('DoubleSolid','Color','yellow');
lspec = lanespec([2 2],'Width',[5 5 5 5], ...
    'Marking',[solidW dashW doubleY dashW solidW]);

Add the road to the driving scenario. Display the road.

road(scenario,roadCenters,'Lanes',lspec);
plot(scenario)
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Simulate Car Traveling on S-Curve

Simulate a driving scenario with one car traveling on an S-curve. Create and plot the lane
boundaries.

Create the driving scenario with one road having an S-curve.

scenario = drivingScenario('StopTime',3);
roadcenters = [-35 20 0; -20 -20 0; 0 0 0; 20 20 0; 35 -20 0];

Create the lanes and add them to the road.

lm = [laneMarking('Solid','Color','w'); ...
    laneMarking('Dashed','Color','y'); ...
    laneMarking('Dashed','Color','y'); ...
    laneMarking('Solid','Color','w')];
ls = lanespec(3,'Marking',lm);
road(scenario,roadcenters,'Lanes',ls);

Add an ego vehicle and specify its trajectory from its waypoints. By default, the car travels at a speed
of 30 meters per second.

car = vehicle(scenario, ...
    'ClassID',1, ...
    'Position',[-35 20 0]);
waypoints = [-35 20 0; -20 -20 0; 0 0 0; 20 20 0; 35 -20 0];
trajectory(car,waypoints);

Plot the scenario and corresponding chase plot.

plot(scenario)
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chasePlot(car)
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Run the simulation loop.

1 Initialize a bird's-eye plot and create an outline plotter, left-lane and right-lane boundary plotters,
and a road boundary plotter.

2 Obtain the road boundaries and rectangular outlines.
3 Obtain the lane boundaries to the left and right of the vehicle.
4 Advance the simulation and update the plotters.

bep = birdsEyePlot('XLim',[-40 40],'YLim',[-30 30]);
olPlotter = outlinePlotter(bep);
lblPlotter = laneBoundaryPlotter(bep,'Color','r','LineStyle','-');
lbrPlotter = laneBoundaryPlotter(bep,'Color','g','LineStyle','-');
rbsEdgePlotter = laneBoundaryPlotter(bep);
legend('off');
while advance(scenario)
    rbs = roadBoundaries(car);
    [position,yaw,length,width,originOffset,color] = targetOutlines(car);
    lb = laneBoundaries(car,'XDistance',0:5:30,'LocationType','Center', ...
        'AllBoundaries',false);
    plotLaneBoundary(rbsEdgePlotter,rbs)
    plotLaneBoundary(lblPlotter,{lb(1).Coordinates})
    plotLaneBoundary(lbrPlotter,{lb(2).Coordinates})
    plotOutline(olPlotter,position,yaw,length,width, ...
        'OriginOffset',originOffset,'Color',color)
end
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Limitations
• Lane markings in intersections are not supported.
• The number of lanes for a road is fixed. You cannot change lane specifications for a road during a

simulation.
• A road can have only one lane specification.

More About
Draw Direction of Road and Numbering of Lanes

To create a road by using the road function, specify the road centers as a matrix input. The function
creates a directed line that traverses the road centers, starting from the coordinates in the first row
of the matrix and ending at the coordinates in the last row of the matrix. The coordinates in the first
two rows of the matrix specify the draw direction of the road. These coordinates correspond to the
first two consecutive road centers. The draw direction is the direction in which the roads render in
the scenario plot.

To create a road by using the Driving Scenario Designer app, you can either specify the Road
Centers parameter or interactively draw on the Scenario Canvas. For a detailed example, see
“Create a Driving Scenario” on page 1-14. In this case, the draw direction is the direction in which
roads render in the Scenario Canvas.
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• For a road with a top-to-bottom draw direction, the difference between the x-coordinates of the
first two consecutive road centers is positive.

• For a road with a bottom-to-top draw direction, the difference between the x-coordinates of the
first two consecutive road centers is negative.

• For a road with a left-to-right draw direction, the difference between the y-coordinates of the first
two consecutive road centers is positive.

• For a road with a right-to-left draw direction, the difference between the y-coordinates of the first
two consecutive road centers is negative.
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Numbering Lanes

Lanes must be numbered from left to right, with the left edge of the road defined relative to the draw
direction of the road. For a one-way road, by default, the left edge of the road is a solid yellow
marking which indicates the end of the road in transverse direction (direction perpendicular to draw
direction). For a two-way road, by default, both edges are marked with solid white lines.

For example, these diagrams show how the lanes are numbered in a one-way and two-way road with a
draw direction from top-to-bottom.

Numbering Lanes in a One-Way Road Numbering Lanes in a Two-Way Road
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Specify the number of lanes as a positive integer
for a one-way road. If you set the integer value as
3, then the road has three lanes that travel in the
same direction. The lanes are numbered starting
from the left edge of the road.

1, 2, 3 denote the first, second, and third lanes of
the road, respectively.

Specify the number of lanes as a two-element
vector of positive integer for a two-way road. If
you set the vector as [1 2], then the road has
three lanes: two lanes traveling in one direction
and one lane traveling in the opposite direction.
Because of the draw direction, the road has one
left lane and two right lanes. The lanes are
numbered starting from the left edge of the road.

1L denote the only left lane of the road. 1R and
2R denote the first and second right lanes of the
road, respectively.

The lane specifications apply by the order in which the lanes are numbered.

Lane Specifications

The diagram shows the components and geometric properties of roads, lanes, and lane markings.
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The lane specification object, lanespec, defines the road lanes.

• The NumLanes property specifies the number of lanes. You must specify the number of lanes when
you create this object.

• The Width property specifies the width of each lane.
• The Marking property contains the specifications of each lane marking in the road. Marking is an

array of lane marking objects, with one object per lane. To create these objects, use the
laneMarking function. Lane marking specifications include:

• Type — Type of lane marking (solid, dashed, and so on)
• Width — Lane marking width
• Color — Lane marking color
• Strength — Saturation value for lane marking color
• Length — For dashed lanes, the length of each dashed line
• Space — For dashed lanes, the spacing between dashes
• SegmentRange — For composite lane marking, the normalized length of each marker

segment.
• The Type property contains the lane type specifications of each lane in the road. Type can be a

homogeneous lane type object or a heterogeneous lane type array.

• Homogeneous lane type object contain lane type specifications of all the lanes in the road.
• Heterogeneous lane type array contain an array of lane type objects, with one object per lane.

To create these objects, use the laneType function. Lane type specifications include:

• Type — Type of lane (driving, border, and so on)
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• Color — Lane color
• Strength — Strength of the lane color

See Also
drivingScenario | laneBoundaryPlotter | laneMarking | laneMarkingPlotter |
laneMarkingVertices | laneType | plotLaneBoundary | plotLaneMarking | road

Introduced in R2018a
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laneMarking
Create road lane marking object

Syntax
lm = laneMarking(type)
lm = laneMarking(type,Name,Value)

cm = laneMarking(lmArray)
cm = laneMarking(lmArray,'SegmentRange',range)

Description
Single Marking Type Along Lane

lm = laneMarking(type) creates a default lane marking object of the specified type (solid lane,
dashed lane, and so on). This object defines the characteristics of a lane boundary marking on a road.
When creating roads in a driving scenario, you can use lane marking objects as inputs to the
lanespec object.

lm = laneMarking(type,Name,Value) set the properties of the lane marking object using one or
more name-value pairs. For example, laneMarking('Solid','Color','yellow') creates a solid
yellow lane marking.
Multiple Marking Types Along Lane

cm = laneMarking(lmArray) creates a composite lane marking object from an array of lane
marking objects, lmArray. Use this syntax to generate lane markings that contain multiple marker
types.

For example, create a lane boundary marking that has both solid and dashed marking types by
defining lmArray.

lmArray = [laneMarking('Solid') laneMarking('Dashed')]
cm = laneMarking(lmArray)

The order in which the marking types occur depend on the draw direction of the road. For more
information, see Draw Direction of Road and Numbering of Lanes on page 4-498 and Composite Lane
Marking on page 4-501.

cm = laneMarking(lmArray,'SegmentRange',range) specifies the range for each marker type
in the composite lane marking by using the name-value pair argument 'SegmentRange', range.

Examples

Create Straight Four-Lane Road

Create a driving scenario and the road centers for a straight, 80-meter road.

scenario = drivingScenario;
roadCenters = [0 0; 80 0];
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Create a lanespec object for a four-lane road. Use the laneMarking function to specify its five lane
markings. The center line is double-solid and double yellow. The outermost lines are solid and white.
The inner lines are dashed and white.

solidW = laneMarking('Solid','Width',0.3);
dashW = laneMarking('Dashed','Space',5);
doubleY = laneMarking('DoubleSolid','Color','yellow');
lspec = lanespec([2 2],'Width',[5 5 5 5], ...
    'Marking',[solidW dashW doubleY dashW solidW]);

Add the road to the driving scenario. Display the road.

road(scenario,roadCenters,'Lanes',lspec);
plot(scenario)

Simulate Car Traveling on S-Curve

Simulate a driving scenario with one car traveling on an S-curve. Create and plot the lane
boundaries.

Create the driving scenario with one road having an S-curve.

scenario = drivingScenario('StopTime',3);
roadcenters = [-35 20 0; -20 -20 0; 0 0 0; 20 20 0; 35 -20 0];
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Create the lanes and add them to the road.

lm = [laneMarking('Solid','Color','w'); ...
    laneMarking('Dashed','Color','y'); ...
    laneMarking('Dashed','Color','y'); ...
    laneMarking('Solid','Color','w')];
ls = lanespec(3,'Marking',lm);
road(scenario,roadcenters,'Lanes',ls);

Add an ego vehicle and specify its trajectory from its waypoints. By default, the car travels at a speed
of 30 meters per second.

car = vehicle(scenario, ...
    'ClassID',1, ...
    'Position',[-35 20 0]);
waypoints = [-35 20 0; -20 -20 0; 0 0 0; 20 20 0; 35 -20 0];
trajectory(car,waypoints);

Plot the scenario and corresponding chase plot.

plot(scenario)

chasePlot(car)
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Run the simulation loop.

1 Initialize a bird's-eye plot and create an outline plotter, left-lane and right-lane boundary plotters,
and a road boundary plotter.

2 Obtain the road boundaries and rectangular outlines.
3 Obtain the lane boundaries to the left and right of the vehicle.
4 Advance the simulation and update the plotters.

bep = birdsEyePlot('XLim',[-40 40],'YLim',[-30 30]);
olPlotter = outlinePlotter(bep);
lblPlotter = laneBoundaryPlotter(bep,'Color','r','LineStyle','-');
lbrPlotter = laneBoundaryPlotter(bep,'Color','g','LineStyle','-');
rbsEdgePlotter = laneBoundaryPlotter(bep);
legend('off');
while advance(scenario)
    rbs = roadBoundaries(car);
    [position,yaw,length,width,originOffset,color] = targetOutlines(car);
    lb = laneBoundaries(car,'XDistance',0:5:30,'LocationType','Center', ...
        'AllBoundaries',false);
    plotLaneBoundary(rbsEdgePlotter,rbs)
    plotLaneBoundary(lblPlotter,{lb(1).Coordinates})
    plotLaneBoundary(lbrPlotter,{lb(2).Coordinates})
    plotOutline(olPlotter,position,yaw,length,width, ...
        'OriginOffset',originOffset,'Color',color)
end
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Driving Scenario for Changing Lanes and Passing Vehicles

This example shows how to create a driving scenario for maneuvers such as changing lanes and
passing other vehicles. You create roads with passing zones and add vehicles to the scenario. Then,
define the trajectories for these vehicles to simulate vehicle lane change in passing zones.

Create Road with Passing Zones by Using Composite Lane Marking

Create a driving scenario. Specify the road centers and the number of lanes to add a two-way, two-
lane straight road of 54 meters with draw direction from top-to-bottom.

scenario = drivingScenario('StopTime',10);
roadCenters = [50 0; -4 0];
numLanes = [1 1];

Typically, the number of lane markings is equal to number of lanes plus one. A two-way, two-lane road
has 3 lane markings and the outermost lane markings at both the edges are solid white lines.

Create a solid marking object of marking width 0.25 meters, to constitute the outermost lane
markings for the two-way road.

outerLM = laneMarking('Solid','Width',0.25);

Create a lane marking array of SolidMarking and DashedMarking objects that contain the
properties for solid and dashed double yellow lines.
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lmArray = [laneMarking('DoubleSolid','Color','Yellow','Width',0.25)
           laneMarking('DashedSolid','Color','Yellow','Length',1,'Space',1.5,'Width',0.25)
           laneMarking('DoubleSolid','Color','Yellow','Width',0.25)
           laneMarking('SolidDashed','Color','Yellow','Length',1,'Space',1.5,'Width',0.25)];

Create a composite lane marking object for the center lane marking by using the lane marking array.
Specify the normalized length for each marking object.

centerLM = laneMarking(lmArray,'SegmentRange',[0.1 0.25 0.2 0.35]);

Create a vector of the outermost and the center lane marking objects. Pass the vector as input to the
lanespec function in order to define the lane specifications of the road.

marking = [outerLM centerLM outerLM];
ls = lanespec(numLanes,'Width',7,'Marking',marking);

Add the road to the driving scenario. Plot the driving scenario. Since the draw direction of the road is
from top-to-bottom, the marking types in the composite lane marking also occur in top-to-bottom
order.

road(scenario,roadCenters,'Lanes',ls);
figMark = figure;
set(figMark,'Position',[0 0 600 600]);
hPlot = axes(figMark);
plot(scenario,'Parent',hPlot);
title('Composite Marking: Road with Passing Zones')
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Simulate Vehicle Lane Change in Passing Zones

Add a slow moving vehicle (SMV) to the scenario. Specify the waypoints and speed value to set the
trajectory for the SMV.

slowVehicle = vehicle(scenario,'ClassID',1,'Position',[37 -3 0]);
waypoints = [37 -3;12 -3];
speed = 2;
trajectory(slowVehicle,waypoints,speed);

Add another vehicle to the scenario. Set the trajectory for the vehicle in such a way that it passes the
SMV in front of it by changing lanes at the passing zones.

passingVehicle = vehicle(scenario,'ClassID',1,'Position',[49 -3 0]);
waypoints = [49 -3; 45 -3; 40 -3; 35 0;
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             30 3; 26 3; 22 3; 18 3;
             8 0; 5 -2; 2 -3; 1 -3];
speed = 6;
trajectory(passingVehicle,waypoints,speed);

Create a custom figure window and plot the scenario.

close all;
figScene = figure;
set(figScene,'Position',[0 0 600 600]);
hPanel = uipanel(figScene);
hPlot = axes(hPanel);
plot(scenario,'Parent',hPlot);
title('Passing Zone: Change Lane and Pass Other Vehicle')

% Run the simulation
while advance(scenario)
    pause(0.01)
end
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Input Arguments
type — Type of lane marking
'Unmarked' | 'Solid' | 'Dashed' | 'DoubleSolid' | 'DoubleDashed' | 'SolidDashed' |
'DashedSolid'

Type of lane marking, specified as one of these values.
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'Unmarked' 'Solid' 'Dashed' 'DoubleSol
id'

'DoubleDas
hed'

'SolidDash
ed'

'DashedSol
id'

No lane
marking

Solid line Dashed line Two solid
lines

Two dashed
lines

Solid line on
left, dashed
line on right

Dashed line
on left, solid
line on right

The type of lane marking is stored in Type, a read-only property of the returned lane marking object.

lmArray — 1-D array of lane marking objects
LaneMarking object | SolidMarking object | DashedMarking object

1-D array of lane marking objects, specified as

• LaneMarking object for 'Unmarked' type of lane marking.
• SolidMarking object for 'Solid' and 'DoubleSolid' types of lane marking.
• DashedMarking object for 'Dashed', 'DoubleDashed', 'SolidDashed', and

'DashedSolid' types of lane marking.

Example: lmArray = [laneMarking('Solid') laneMarking('Dashed')]

range — Range for each marking type
vector

Range for each marking type, specified as a vector with normalized values in the interval [0, 1]. The
length of the vector must be same as the number of marking types specified in the input array
lmArray.

The default range value for each marking type in the lane is the inverse of the number of marking
types specified in lmArray.
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For example, if the input lane marking array contains three lane marking objects, such as lmArray =
[laneMarking('Solid') laneMarking('Dashed') laneMarking('Solid')], then the
default range value for each marking type is 1/3, that is range = [0.3330 0.3330 0.3330].

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: laneMarking('Dashed','Width',0.25,'Length',5.0) creates a lane with dashes
that are 0.25 meters wide and spaced 5 meters apart.

Width — Lane marking widths
0.15 (default) | positive real scalar

Lane marking widths, specified as the comma-separated pair consisting of 'Width' and a positive
real scalar. For a double lane marker, the same width is used for both lines. Units are in meters.
Example: 0.20

Color — Color of lane marking
[1 1 1] (white) (default) | RGB triplet | hexadecimal color code | color name | short color name

Color of lane marking, specified as the comma-separated pair consisting of 'Color' and an RGB
triplet, a hexadecimal color code, a color name, or a short color name. For a double lane marker, the
same color is used for both lines.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [0.98 0.86

0.36]
'#FFFF00'

'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
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Example: [0.8 0.8 0.8]

Strength — Saturation strength of lane marking color
1 (default) | real scalar in the range [0, 1]

Saturation strength of lane marking color, specified as the comma-separated pair consisting of
'Strength' and a real scalar in the range [0, 1]. A value of 0 corresponds to a marking whose color
is fully unsaturated. The marking is gray. A value of 1 corresponds to a marking whose color is fully
saturated. For a double lane marking, the same strength is used for both lines.
Example: 0.20

Length — Length of dash in dashed lines
3.0 (default) | positive real scalar

Length of dash in dashed lines, specified as the comma-separated pair consisting of 'Length' and a
positive real scalar. For a double lane marking, the same length is used for both lines. The dash is the
visible part of a dashed line. Units are in meters.
Example: 2.0

Space — Length of space between dashes in dashed lines
9.0 (default) | positive real scalar

Length of space between the end of one dash and the beginning of the next dash, specified as the
comma-separated pair consisting of 'Space' and a positive real scalar. For a double lane marking,
the same length is used for both lines. Units are in meters.
Example: 2.0

Output Arguments
lm — Lane marking
LaneMarking object | SolidMarking object | DashedMarking object

Lane marking, returned as a LaneMarking object, SolidMarking object, or DashedMarking
object. The type of returned object depends on the type of input lane marking specified for the type
input.

Input Type Output Lane Marking Lane Marking Properties
'Unmarked' LaneMarking object • Type
'Solid' SolidMarking object • Color

• Width
• Strength
• Type

'DoubleSolid'

'Dashed' DashedMarking object • Length
• Space
• Color
• Width
• Strength
• Type

'DashedSolid'
'SolidDashed'
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Input Type Output Lane Marking Lane Marking Properties
'DoubleDashed'

You can set these properties when you create the lane marking object by using the corresponding
name-value pairs of the laneMarking function. To update these properties after creation, use dot
notation. For example:

lm = laneMarking('Solid');
lm.Width = 0.2;

You can set all properties after creation except Type, which is read-only. For details on the geometric
properties of the SolidMarking and DashedMarking objects, see Lane Specifications on page 4-
502.

cm — Composite lane marking
CompositeMarking object

Composite lane marking, returned as a CompositeMarking object with properties Markings and
SegmentRange.

Composite Lane Marking Properties Description
Markings This property is an array of lane marking objects

that defines the multiple marking types
comprising the composite lane marking. The part
of the lane marking defined by each lane marking
object is a marker segment. This property is read-
only.

SegmentRange This property specifies the normalized range for
each marker segment in the composite lane
marking. This property is read-only.

Use this object to specify multiple marking types along a lane. For more details on how to specify
composite lane markings and the order of marker segments along the lane, see “Composite Lane
Marking” on page 4-501.

More About
Draw Direction of Road and Numbering of Lanes

To create a road by using the road function, specify the road centers as a matrix input. The function
creates a directed line that traverses the road centers, starting from the coordinates in the first row
of the matrix and ending at the coordinates in the last row of the matrix. The coordinates in the first
two rows of the matrix specify the draw direction of the road. These coordinates correspond to the
first two consecutive road centers. The draw direction is the direction in which the roads render in
the scenario plot.

To create a road by using the Driving Scenario Designer app, you can either specify the Road
Centers parameter or interactively draw on the Scenario Canvas. For a detailed example, see
“Create a Driving Scenario” on page 1-14. In this case, the draw direction is the direction in which
roads render in the Scenario Canvas.

• For a road with a top-to-bottom draw direction, the difference between the x-coordinates of the
first two consecutive road centers is positive.
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• For a road with a bottom-to-top draw direction, the difference between the x-coordinates of the
first two consecutive road centers is negative.

• For a road with a left-to-right draw direction, the difference between the y-coordinates of the first
two consecutive road centers is positive.

• For a road with a right-to-left draw direction, the difference between the y-coordinates of the first
two consecutive road centers is negative.
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Numbering Lanes

Lanes must be numbered from left to right, with the left edge of the road defined relative to the draw
direction of the road. For a one-way road, by default, the left edge of the road is a solid yellow
marking which indicates the end of the road in transverse direction (direction perpendicular to draw
direction). For a two-way road, by default, both edges are marked with solid white lines.

For example, these diagrams show how the lanes are numbered in a one-way and two-way road with a
draw direction from top-to-bottom.

Numbering Lanes in a One-Way Road Numbering Lanes in a Two-Way Road
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Specify the number of lanes as a positive integer
for a one-way road. If you set the integer value as
3, then the road has three lanes that travel in the
same direction. The lanes are numbered starting
from the left edge of the road.

1, 2, 3 denote the first, second, and third lanes of
the road, respectively.

Specify the number of lanes as a two-element
vector of positive integer for a two-way road. If
you set the vector as [1 2], then the road has
three lanes: two lanes traveling in one direction
and one lane traveling in the opposite direction.
Because of the draw direction, the road has one
left lane and two right lanes. The lanes are
numbered starting from the left edge of the road.

1L denote the only left lane of the road. 1R and
2R denote the first and second right lanes of the
road, respectively.

The lane specifications apply by the order in which the lanes are numbered.

Composite Lane Marking

A composite lane marking comprises two or more marker segments that define multiple marking
types along a lane. The geometric properties for a composite lane marking include the geometric
properties of each marking type and the normalized lengths of the marker segments.

The order in which the specified marker segments occur in a composite lane marking depends on the
draw direction of the road. Each marker segment is a directed segment with a start point and moves
towards the last road center. The first marker segment starts from the first road center and moves
towards the last road center for a specified length. The second marker segment starts from the end
point of the first marker segment and moves towards the last road center for a specified length. The
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same process applies for each marker segment that you specify for the composite lane marking. You
can set the normalized length for each of these marker segments by specifying the range input
argument.

For example, consider a one-way road with two lanes. The second lane marking from the left edge of
the road is a composite lane marking with marking types Solid and Dashed. The normalized range
for each marking type is 0.5. The first marker segment is a solid marking and the second marker
segment is a dashed marking. These diagrams show the order in which the marker segments apply
for left-to-right and right-to-left draw directions of the road.

For information on the geometric properties of lane markings, see “Lane Specifications” on page 4-
502.

Lane Specifications

The diagram shows the components and geometric properties of roads, lanes, and lane markings.
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The lane specification object, lanespec, defines the road lanes.

• The NumLanes property specifies the number of lanes. You must specify the number of lanes when
you create this object.

• The Width property specifies the width of each lane.
• The Marking property contains the specifications of each lane marking in the road. Marking is an

array of lane marking objects, with one object per lane. To create these objects, use the
laneMarking function. Lane marking specifications include:

• Type — Type of lane marking (solid, dashed, and so on)
• Width — Lane marking width
• Color — Lane marking color
• Strength — Saturation value for lane marking color
• Length — For dashed lanes, the length of each dashed line
• Space — For dashed lanes, the spacing between dashes
• SegmentRange — For composite lane marking, the normalized length of each marker

segment.
• The Type property contains the lane type specifications of each lane in the road. Type can be a

homogeneous lane type object or a heterogeneous lane type array.

• Homogeneous lane type object contain lane type specifications of all the lanes in the road.
• Heterogeneous lane type array contain an array of lane type objects, with one object per lane.

To create these objects, use the laneType function. Lane type specifications include:

• Type — Type of lane (driving, border, and so on)

 laneMarking

4-503



• Color — Lane color
• Strength — Strength of the lane color

See Also
Objects
drivingScenario | lanespec

Functions
laneBoundaryPlotter | laneMarkingPlotter | laneMarkingVertices | plotLaneBoundary |
plotLaneMarking | road

Introduced in R2018a
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laneType
Create road lane type object

Syntax
lt = laneType(type)
lt = laneType(type,Name,Value)

Description
lt = laneType(type) returns a road lane type object with properties Type, Color, and Strength
to define different lane types for a road.

You can use this object to create driving scenarios with roads that have driving lanes, border lanes,
restricted lanes, shoulder lanes, and parking lanes. You can also load this scenario into the Driving
Scenario Designer app.

For details on the steps involved in using laneType function with the drivingScenario object and
the Driving Scenario Designer app, see “More About” on page 4-512.

lt = laneType(type,Name,Value) sets the properties of the output lane type object by using one
or more name-value pairs.

Examples

Add Roads That Have Different Lane Types to Driving Scenario

This example shows how to define lane types and simulate a driving scenario for a four-lane road that
has different lane types.

Create a driving lane object with default property values.

drivingLane = laneType('Driving')

drivingLane = 
  DrivingLaneType with properties:

        Type: Driving
       Color: [0.8000 0.8000 0.8000]
    Strength: 1

Create a parking lane type object. Specify the color and the strength property values.

parkingLane = laneType('Parking','Color',[1 0 0],'Strength',0.1)

parkingLane = 
  ParkingLaneType with properties:

        Type: Parking
       Color: [1 0 0]
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    Strength: 0.1000

Create a three-element, heterogeneous lane type array by concatenating the driving and the parking
lane type objects. The lane type array contains lane types for a four-lane road.

lt = [parkingLane drivingLane drivingLane parkingLane];

Create lane specification for a four-lane road. Add the lane type array to the lane specification.

ls = lanespec([2 2],'Type',lt);

Create a driving scenario object. Add the four-lane road with lane specifications ls to the driving
scenario.

scenario = drivingScenario;
roadCenters = [0 0 0;40 0 0];
road(scenario,roadCenters,'Lanes',ls)

ans = 
  Road with properties:

           Name: ""
         RoadID: 1
    RoadCenters: [2x3 double]
      RoadWidth: 14.5500
      BankAngle: [2x1 double]

Plot the scenario. The scenario contains the four-lane road that has two parking lanes and two driving
lanes.

plot(scenario)
legend('Driving Lane','Parking Lane')
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Simulate Vehicles Travelling on Road That Has Multiple Lane Types

Create a heterogeneous lane type object array to define driving, shoulder, and border lane types for a
four-lane road.

lt = [laneType('Shoulder') laneType('Driving') laneType('Driving') laneType('Border','Color',[0.5 0 1],'Strength',0.1)];

Display the lane type object array.

lt

lt=1×4 object
  1x4 heterogeneous LaneType (ShoulderLaneType, DrivingLaneType, BorderLaneType) array with properties:

    Type
    Color
    Strength

Inspect the property values.

c = [{lt.Type}' {lt.Color}' {lt.Strength}'];
cell2table(c,'VariableNames',{'Type','Color','Strength'})

ans=4×3 table
      Type             Color            Strength
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    ________    ____________________    ________

    Shoulder    0.59    0.59    0.59        1   
    Driving      0.8     0.8     0.8        1   
    Driving      0.8     0.8     0.8        1   
    Border       0.5       0       1      0.1   

Pass the lane type object array as input to the lanespec function, and then create a lane
specification object for the four-lane road.

lspec = lanespec([2 2],'Type',lt);

Define the road centers.

roadCenters = [0 0 0; 40 0 0];

To add roads, create a driving scenario object.

scenario = drivingScenario('StopTime',8);

Add roads with the specified road centers and lane types to the driving scenario.

road(scenario,roadCenters,'Lanes',lspec);

Add two vehicles to the scenario. Position the vehicles on the driving lane.

vehicle1 = vehicle(scenario,'ClassID',1,'Position',[5 2 0]);
vehicle2 = vehicle(scenario,'ClassID',1,'Position',[35 -2 0]);

Define the vehicle trajectories by using waypoints. Set the vehicle trajectory speeds.

waypoints1 = [5 2;10 2;20 2;25 2;30 5;34 5.5];
trajectory(vehicle1,waypoints1,10)
waypoints2 = [35 -2;20 -2;10 -2;5 -2];
trajectory(vehicle2,waypoints2,5)

Plot the scenario. To advance the simulation one time step at a time, call the advance function in a
loop. Pause every 0.01 second to observe the motion of the vehicles on the plot. The first vehicle
travels along the trajectory in the driving lane. It drifts to the shoulder lane for emergency stopping.

% Create a custom figure window and define an axes object
fig = figure;
movegui(fig,'center');
hView = uipanel(fig,'Position',[0 0 1 1],'Title','Scenario with Shoulder, Driving, and Border Lanes');
hPlt = axes(hView);

% Plot the generated driving scenario along with the waypoints.
plot(scenario,'Waypoints','on','Parent',hPlt);
while advance(scenario)
    pause(0.01)
end
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Input Arguments
type — Lane type
'Driving' | 'Border' | 'Restricted' | 'Shoulder' | 'Parking'

Lane type, specified as 'Driving', 'Border', 'Restricted', 'Shoulder', or 'Parking'.

Lane Type Description
'Driving' Lanes for driving
'Border' Lanes at the road borders
'Restricted' Lanes reserved for high occupancy vehicles
'Shoulder' Lanes reserved for emergency stopping
'Parking' Lanes alongside driving lanes, intended for

parking vehicles

Note The lane type input sets the Type property of the output lane type object.

Data Types: char | string
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Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: laneType('Driving','Color','r')

Color — Lane color
RGB triplet | color name

Lane color, specified as the comma-separated pair consisting of 'Color' and an RGB triplet or color
name.

Specify the RGB triplet as a three-element row vector containing the intensities of the red, green, and
blue components of the color. The intensities must be in the range [0,1], for example, [0.4 0.6
0.7]. This table lists the RGB triplet values that specify the default colors for different lane types.

Lane Type RGB Triplet (Default values) Appearance
'Driving' [0.8 0.8 0.8]

'Border' [0.72 0.72 0.72]

'Restricted' [0.59 0.56 0.62]

'Shoulder' [0.59 0.59 0.59]

'Parking' [0.28 0.28 0.28]

Alternatively, you can specify some common colors by name. This table lists the named color options
and the equivalent RGB triplet values.

Color Name RGB Triplet Appearance
'red' [1 0 0]
'green' [0 1 0]
'blue' [0 0 1]
'cyan' [0 1 1]
'magenta' [1 0 1]
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Color Name RGB Triplet Appearance
'yellow' [0.98 0.86 0.36]
'black' [0 0 0]
'white' [1 1 1]

Note Use the lane color name-value pair to set the Color property of the output lane type object.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
char | string

Strength — Strength of lane color
1 (default) | real scalar in the range [0, 1]

Strength of lane color, specified as a comma-separated pair consisting of 'Strength' and a real
scalar in the range [0, 1]. A value of 0 desaturates the color and the lane color appears gray. A value
of 1 fully saturates the color and the lane color is the pure color. You can vary the strength value to
modify the level of saturation.

Note Use the strength of lane color name-value pair to set the Strength property of the lane type
object.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
lt — Lane type
DrivingLaneType object | BorderLaneType object | RestrictedLaneType object |
ShoulderLaneType object | ParkingLaneType object

Lane type, returned as a

• DrivingLaneType object
• BorderLaneType object
• RestrictedLaneType object
• ShoulderLaneType object
• ParkingLaneType object

The returned object lt depends on the value of the input type.

type lt
'Driving' DrivingLaneType object
'Border' BorderLaneType object

'Restricted' RestrictedLaneType object
'Shoulder' ShoulderLaneType object
'Parking' ParkingLaneType object
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You can create a heterogeneous LaneType array by concatenating these different lane type objects.

More About
Create Driving Scenario With Roads That Have Multiple Lane Types

You can add roads that have multiple lane types to the driving scenario by following these steps

1 Create an empty drivingScenario object.
2 Create a lane type object that defines different lane types on the road by using laneType.
3 Use lane type object as input to the lanespec object and define lane specifications for the road.
4 Use lanespec object as input to the road function and add roads that have the specified lane

types to the driving scenario.

You can use the plot function to visualize the driving scenario.

You can also import a driving scenario containing roads that have different lane types into the
Driving Scenario Designer app. To import a drivingScenario object named scenario into the
app, use the syntax drivingScenarioDesigner(scenario). In the scenarios, you can:

• Add or edit the road centers.
• Add actors and define actor trajectories.
• Mount sensors on the ego vehicle and simulate detection of actors and lane boundaries.

Note Editing the lane parameters resets all the lanes in the imported road to lane type 'Driving'
with the default property values.

See Also
Functions
road | roadNetwork

Objects
drivingScenario | lanespec

Introduced in R2019b
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laneMarkingVertices
Package: 

Lane marking vertices and faces in driving scenario

Syntax
[lmv,lmf] = laneMarkingVertices(scenario)
[lmv,lmf] = laneMarkingVertices(ac)

Description
[lmv,lmf] = laneMarkingVertices(scenario) returns the lane marking vertices, lmv, and
lane marking faces, lmf, contained in driving scenario scenario. The lmf and lmv outputs are in
the world coordinates of scenario. Use lane marking vertices and faces to display lane markings
using the laneMarkingPlotter function with a bird's-eye plot.

[lmv,lmf] = laneMarkingVertices(ac) returns lane marking vertices and faces in the
coordinates of driving scenario actor ac.

Examples

Display Lane Markings in Car and Pedestrian Scenario

Create a driving scenario containing a car and pedestrian on a straight road. Then, create and display
the lane markings of the road on a bird's-eye plot.

Create an empty driving scenario.

scenario = drivingScenario;

Create a straight, 25-meter road segment with two travel lanes in one direction.

lm = [laneMarking('Solid')
      laneMarking('Dashed','Length',2,'Space',4)
      laneMarking('Solid')];
l = lanespec(2,'Marking',lm);
road(scenario,[0 0 0; 25 0 0],'Lanes',l);

Add to the driving scenario a pedestrian crossing the road at 1 meter per second and a car following
the road at 10 meters per second.

ped = actor(scenario,'ClassID',4,'Length',0.2,'Width',0.4,'Height',1.7);
car = vehicle(scenario,'ClassID',1);
trajectory(ped,[15 -3 0; 15 3 0],1);
trajectory(car,[car.RearOverhang 0 0; 25-car.Length+car.RearOverhang 0 0],10);

Display the scenario and corresponding chase plot.

plot(scenario)
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chasePlot(car)
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Run the simulation.

1 Create a bird's-eye plot.
2 Create an outline plotter, lane boundary plotter, and lane marking plotter for the bird's-eye plot.
3 Obtain the road boundaries and target outlines.
4 Obtain the lane marking vertices and faces.
5 Display the lane boundaries and lane markers.
6 Run the simulation loop.

bep = birdsEyePlot('XLim',[-25 25],'YLim',[-10 10]);
olPlotter = outlinePlotter(bep);
lbPlotter = laneBoundaryPlotter(bep);
lmPlotter = laneMarkingPlotter(bep,'DisplayName','Lanes');
legend('off');
while advance(scenario)
    rb = roadBoundaries(car);
    [position,yaw,length,width,originOffset,color] = targetOutlines(car);
    [lmv,lmf] = laneMarkingVertices(car);
    plotLaneBoundary(lbPlotter,rb);
    plotLaneMarking(lmPlotter,lmv,lmf);
    plotOutline(olPlotter,position,yaw,length,width, ...
        'OriginOffset',originOffset,'Color',color);
end
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Input Arguments
scenario — Driving scenario
drivingScenario object

Driving scenario, specified as a drivingScenario object.

ac — Actor
Actor object | Vehicle object

Actor belonging to a drivingScenario object, specified as an Actor or Vehicle object. To create
these objects, use the actor and vehicle functions, respectively.

Output Arguments
lmv — Lane marking vertices
real-valued matrix

Lane marking vertices, returned as a real-valued matrix. Each row of the matrix represents the (x, y,
z) coordinates of a vertex.

lmf — Lane marking faces
real-valued matrix
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Lane marking faces, returned as a real-valued matrix. Each row of the matrix contains the vertex
connections that define a face for one lane marking. For more details, see “Faces”.

Algorithms
This function uses the patch function to define lane marking vertices and faces.

See Also
Objects
drivingScenario

Functions
actor | laneMarking | laneMarkingPlotter | patch | plotLaneMarking | road | vehicle

Introduced in R2018a
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laneBoundaries
Package: 

Get lane boundaries of actor lane

Syntax
lbdry = laneBoundaries(ac)
lbdry = laneBoundaries(ac,Name,Value)

Description
lbdry = laneBoundaries(ac) returns the lane boundaries, lbdry, of the lane in which the ego
vehicle actor, ac, is traveling. The lane boundaries are in the coordinate system of the ego vehicle.

lbdry = laneBoundaries(ac,Name,Value) specifies options using one or more name-value
pairs. For example, laneBoundaries(ac,'AllLaneBoundaries',true) returns all lane
boundaries of the road on which the ego vehicle actor is traveling.

Examples

Simulate Car Traveling on S-Curve

Simulate a driving scenario with one car traveling on an S-curve. Create and plot the lane
boundaries.

Create the driving scenario with one road having an S-curve.

scenario = drivingScenario('StopTime',3);
roadcenters = [-35 20 0; -20 -20 0; 0 0 0; 20 20 0; 35 -20 0];

Create the lanes and add them to the road.

lm = [laneMarking('Solid','Color','w'); ...
    laneMarking('Dashed','Color','y'); ...
    laneMarking('Dashed','Color','y'); ...
    laneMarking('Solid','Color','w')];
ls = lanespec(3,'Marking',lm);
road(scenario,roadcenters,'Lanes',ls);

Add an ego vehicle and specify its trajectory from its waypoints. By default, the car travels at a speed
of 30 meters per second.

car = vehicle(scenario, ...
    'ClassID',1, ...
    'Position',[-35 20 0]);
waypoints = [-35 20 0; -20 -20 0; 0 0 0; 20 20 0; 35 -20 0];
trajectory(car,waypoints);

Plot the scenario and corresponding chase plot.
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plot(scenario)

chasePlot(car)

 laneBoundaries

4-521



Run the simulation loop.

1 Initialize a bird's-eye plot and create an outline plotter, left-lane and right-lane boundary plotters,
and a road boundary plotter.

2 Obtain the road boundaries and rectangular outlines.
3 Obtain the lane boundaries to the left and right of the vehicle.
4 Advance the simulation and update the plotters.

bep = birdsEyePlot('XLim',[-40 40],'YLim',[-30 30]);
olPlotter = outlinePlotter(bep);
lblPlotter = laneBoundaryPlotter(bep,'Color','r','LineStyle','-');
lbrPlotter = laneBoundaryPlotter(bep,'Color','g','LineStyle','-');
rbsEdgePlotter = laneBoundaryPlotter(bep);
legend('off');
while advance(scenario)
    rbs = roadBoundaries(car);
    [position,yaw,length,width,originOffset,color] = targetOutlines(car);
    lb = laneBoundaries(car,'XDistance',0:5:30,'LocationType','Center', ...
        'AllBoundaries',false);
    plotLaneBoundary(rbsEdgePlotter,rbs)
    plotLaneBoundary(lblPlotter,{lb(1).Coordinates})
    plotLaneBoundary(lbrPlotter,{lb(2).Coordinates})
    plotOutline(olPlotter,position,yaw,length,width, ...
        'OriginOffset',originOffset,'Color',color)
end
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Input Arguments
ac — Actor
Actor object | Vehicle object

Actor belonging to a drivingScenario object, specified as an Actor or Vehicle object. To create
these objects, use the actor and vehicle functions, respectively.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'LocationType','center' specifies that lane boundaries are centered on the lane
markings.

XDistance — Distances from ego vehicle at which to compute lane boundaries
0 (default) | N-element real-valued vector

Distances from the ego vehicle at which to compute the lane boundaries, specified as the comma-
separated pair consisting of 'XDistance' and an N-element real-valued vector. N is the number of
distance values. When detecting lanes from rear-facing cameras, specify negative distances. When
detecting lanes from front-facing cameras, specify positive distances. Units are in meters.
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By default, the function computes the lane boundaries at a distance of 0 from the ego vehicle, which
are the boundaries to the left and right of the ego-vehicle origin.
Example: 1:0.1:10 computes a lane boundary every 0.1 meters over the range from 1 to 10 meters
ahead of the ego vehicle.
Example: linspace(-150,150,101) computes 101 lane boundaries over the range from 150
meters behind the ego vehicle to 150 meters ahead of the ego vehicle. These distances are linearly
spaced 3 meters apart.

LocationType — Lane boundary location
'Center' (default) | 'Inner'

Lane boundary location on the lane markings, specified as the comma-separated pair consisting of
'LocationType' and one of the options in this table.

Lane Boundary Location Description Example
'Center' Lane boundaries are centered

on the lane markings.
A three-lane road has four lane
boundaries: one per lane
marking.

'Inner' Lane boundaries are placed at
the inner edges of the lane
markings.

A three-lane road has six lane
boundaries: two per lane.

AllBoundaries — Return all lane boundaries on road
false (default) | true

Return all lane boundaries on which the ego vehicle is traveling, specified as the comma-separated
pair consisting of 'Value' and false or true.

Lane boundaries are returned from left to right relative to the ego vehicle. When 'AllBoundaries'
is false, only the lane boundaries to the left and right of the ego vehicle are returned.

Output Arguments
lbdry — Lane boundaries
array of lane boundary structures
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Lane boundaries, returned as an array of lane boundary structures. This table shows the fields for
each structure.

Field Description
Coordinates Lane boundary coordinates, specified as a real-

valued N-by-3 matrix, where N is the number of
lane boundary coordinates. Lane boundary
coordinates define the position of points on the
boundary at specified longitudinal distances away
from the ego vehicle, along the center of the
road.

• In MATLAB, specify these distances by using
the 'XDistance' name-value pair argument
of the laneBoundaries function.

• In Simulink, specify these distances by using
the Distances from ego vehicle for
computing boundaries (m) parameter of
the Scenario Reader block or the Distance
from parent for computing lane
boundaries parameter of the Simulation 3D
Vision Detection Generator block.

This matrix also includes the boundary
coordinates at zero distance from the ego vehicle.
These coordinates are to the left and right of the
ego-vehicle origin, which is located under the
center of the rear axle. Units are in meters.

Curvature Lane boundary curvature at each row of the
Coordinates matrix, specified as a real-valued
N-by-1 vector. N is the number of lane boundary
coordinates. Units are in radians per meter.

CurvatureDerivative Derivative of lane boundary curvature at each
row of the Coordinates matrix, specified as a
real-valued N-by-1 vector. N is the number of lane
boundary coordinates. Units are in radians per
square meter.

HeadingAngle Initial lane boundary heading angle, specified as
a real scalar. The heading angle of the lane
boundary is relative to the ego vehicle heading.
Units are in degrees.

LateralOffset Distance of the lane boundary from the ego
vehicle position, specified as a real scalar. An
offset to a lane boundary to the left of the ego
vehicle is positive. An offset to the right of the
ego vehicle is negative. Units are in meters.
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BoundaryType Type of lane boundary marking, specified as one
of these values:

• 'Unmarked' — No physical lane marker
exists

• 'Solid' — Single unbroken line
• 'Dashed' — Single line of dashed lane

markers
• 'DoubleSolid' — Two unbroken lines
• 'DoubleDashed' — Two dashed lines
• 'SolidDashed' — Solid line on the left and a

dashed line on the right
• 'DashedSolid' — Dashed line on the left

and a solid line on the right
Strength Saturation strength of the lane boundary

marking, specified as a real scalar from 0 to 1. A
value of 0 corresponds to a marking whose color
is fully unsaturated. The marking is gray. A value
of 1 corresponds to a marking whose color is fully
saturated.

Width Lane boundary width, specified as a positive real
scalar. In a double-line lane marker, the same
width is used for both lines and for the space
between lines. Units are in meters.

Length Length of dash in dashed lines, specified as a
positive real scalar. In a double-line lane marker,
the same length is used for both lines.

Space Length of space between dashes in dashed lines,
specified as a positive real scalar. In a dashed
double-line lane marker, the same space is used
for both lines.

See Also
Objects
drivingScenario | lanespec

Functions
laneBoundaryPlotter | laneMarking | laneMarkingPlotter | plotLaneBoundary |
plotLaneMarking | road

Introduced in R2018a
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clothoidLaneBoundary
Clothoid-shaped lane boundary model

Description
A clothoidLaneBoundary object contains information about a clothoid-shaped lane boundary
model. A clothoid is a type of curve whose rate of change of curvature varies linearly with distance.

Creation

Syntax
bdry = clothoidLaneBoundary
bdry = clothoidLaneBoundary(Name,Value)

Description

bdry = clothoidLaneBoundary creates a clothoid lane boundary model, bdry with default
property values.

bdry = clothoidLaneBoundary(Name,Value) sets properties using one or more name-value
pairs. For example, clothoidLaneBoundary('BoundaryType','Solid') creates a clothoid lane
boundary model with solid lane boundaries. Enclose each property name in quotes.

Properties
Curvature — Lane boundary curvature
0 (default) | real scalar

Lane boundary curvature, specified as a real scalar. This property represents the rate of change of
lane boundary direction with respect to distance. Units are in degrees per meter.
Example: -1.0
Data Types: single | double

CurvatureDerivative — Derivative of lane boundary curvature
0 (default) | real scalar

Derivative of lane boundary curvature, specified as a real scalar. This property represents the rate of
change of lane curvature with respect to distance. Units are in degrees per meter squared.
Example: -0.01
Data Types: single | double

CurveLength — Length of lane boundary along road
0 (default) | nonnegative real scalar
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Length of the lane boundary along the road, specified as a nonnegative real scalar. Units are in
meters.
Example: 25
Data Types: single | double

HeadingAngle — Initial lane boundary heading
0 (default) | real scalar

Initial lane boundary heading, specified as a real scalar. The heading angle of the lane boundary is
relative to the heading of the ego vehicle. Units are in degrees.
Example: 10
Data Types: single | double

LateralOffset — Distance of lane boundary
0 (default) | real scalar

Distance of the lane boundary from the ego vehicle position, specified as a real scalar. A lane
boundary offset to the left of the ego vehicle is positive. An offset to the right of the ego vehicle is
negative. Units are in meters.
Example: -1.2
Data Types: single | double

BoundaryType — Type of lane boundary marking
'Unmarked' (default) | 'Solid' | 'Dashed' | 'DoubleSolid' | 'DoubleDashed' |
'SolidDashed' | 'DashedSolid'

Type of lane boundary marking, specified as one of these values.

'Unmarked' 'Solid' 'Dashed' 'DoubleSol
id'

'DoubleDas
hed'

'SolidDash
ed'

'DashedSol
id'

No lane
marking

Solid line Dashed line Two solid
lines

Two dashed
lines

Solid line on
left, dashed
line on right

Dashed line
on left, solid
line on right
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'Unmarked' 'Solid' 'Dashed' 'DoubleSol
id'

'DoubleDas
hed'

'SolidDash
ed'

'DashedSol
id'

Strength — Visibility of lane boundary marking
1 (default) | real scalar in the range [0, 1]

Visibility of lane marking, specified as a real scalar in the range [0, 1]. A value of 0 corresponds to a
marking that is not visible. A value of 1 corresponds to a marking that is completely visible. For a
double lane marking, the same strength is used for both lines.
Example: 0.9
Data Types: single | double

XExtent — Extent of lane boundary marking along X-axis
[0 Inf] (default) | real-valued vector of the form [Xmin Xmax]

Extent of the lane boundary marking along the X-axis, specified as a real-valued vector of the form
[Xmin Xmax]. Units are in meters. The X-axis runs vertically and is positive in the forward direction of
the ego vehicle.
Example: [0 100]
Data Types: single | double

Width — Width of lane boundary marking
0 (default) | nonnegative real scalar

Width of lane boundary marking, specified as a nonnegative real scalar. For a double lane marking,
this value applies to the width of each lane marking and to the distance between those markings.
Units are in meters.
Example: 0.15
Data Types: single | double
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Object Functions
computeBoundaryModel Compute lane boundary points from clothoid lane boundary model

Examples

Create Clothoid Lane Boundaries

Create clothoid curves to represent left and right lane boundaries. Then, plot the curves.

Create the left boundary.

lb = clothoidLaneBoundary('BoundaryType','Solid', ...
'Strength',1,'Width',0.2,'CurveLength',40, ...
'Curvature',-0.8,'LateralOffset',2,'HeadingAngle',10);

Create the right boundary with almost identical properties.

rb = lb;
rb.LateralOffset = -2;

Create a bird's-eye plot. Then, create the lane boundary plotters and plot the boundaries.

bep = birdsEyePlot('XLimits',[0 50],'YLimits',[-10 10]);
lbPlotter = laneBoundaryPlotter(bep,'DisplayName','Left-lane boundary','Color','r');
rbPlotter = laneBoundaryPlotter(bep,'DisplayName','Right-lane boundary','Color','g');
plotLaneBoundary(lbPlotter,lb)
plotLaneBoundary(rbPlotter,rb);
grid
hold on

4 Objects

4-532



Plot the coordinates of selected points along the boundaries.

x = 0:5:50;
yl = computeBoundaryModel(lb,x);
yr = computeBoundaryModel(rb,x);
plot(x,yl,'ro')
plot(x,yr,'go')
hold off
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See Also
Objects
lanespec

Functions
laneBoundaries | laneBoundaryPlotter | laneMarking | plotLaneBoundary

Introduced in R2018a
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computeBoundaryModel
Compute lane boundary points from clothoid lane boundary model

Syntax
yworld = computeBoundaryModel(boundary,xworld)

Description
yworld = computeBoundaryModel(boundary,xworld) returns the y-coordinates of lane
boundary points, yworld, derived from a lane boundary, boundary, at points specified by the x-
coordinates, xworld. All points are in world coordinates.

Examples

Create Clothoid Lane Boundaries

Create clothoid curves to represent left and right lane boundaries. Then, plot the curves.

Create the left boundary.

lb = clothoidLaneBoundary('BoundaryType','Solid', ...
'Strength',1,'Width',0.2,'CurveLength',40, ...
'Curvature',-0.8,'LateralOffset',2,'HeadingAngle',10);

Create the right boundary with almost identical properties.

rb = lb;
rb.LateralOffset = -2;

Create a bird's-eye plot. Then, create the lane boundary plotters and plot the boundaries.

bep = birdsEyePlot('XLimits',[0 50],'YLimits',[-10 10]);
lbPlotter = laneBoundaryPlotter(bep,'DisplayName','Left-lane boundary','Color','r');
rbPlotter = laneBoundaryPlotter(bep,'DisplayName','Right-lane boundary','Color','g');
plotLaneBoundary(lbPlotter,lb)
plotLaneBoundary(rbPlotter,rb);
grid
hold on
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Plot the coordinates of selected points along the boundaries.

x = 0:5:50;
yl = computeBoundaryModel(lb,x);
yr = computeBoundaryModel(rb,x);
plot(x,yl,'ro')
plot(x,yr,'go')
hold off
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Input Arguments
boundary — Lane boundary model
clothoidLaneBoundary object

Lane boundary model, specified as a clothoidLaneBoundary object.

xworld — x-world coordinates
real-valued vector of length N

x-world coordinates, specified as a real-valued vector of length N, where N is the number of
coordinates.
Example: 2:2.5:100
Data Types: single | double

Output Arguments
yworld — y-world coordinates
real-valued vector of length N

y-world coordinates, returned as a real-valued vector of length N, where N is the number of
coordinates. The length and data type of yWorld are the same as for xWorld.
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Data Types: single | double

See Also
clothoidLaneBoundary | laneBoundaries

Introduced in R2018a
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driving.scenario.bicycleMesh
Mesh representation of bicycle in driving scenario

Syntax
mesh = driving.scenario.bicycleMesh

Description
mesh = driving.scenario.bicycleMesh creates a mesh representation of a bicycle as an
extendedObjectMesh object, mesh.

Examples

Generate Lidar Point Cloud by Using Bicycle Mesh

Add a prebuilt bicycle mesh to a driving scenario. Then, use a lidarPointCloudGenerator System
object to generate a point cloud of the bicycle mesh.

Create and show the prebuilt bicycle mesh.

mesh = driving.scenario.bicycleMesh;
egoMesh = driving.scenario.carMesh;
figure
show(mesh)
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ans = 
  Axes with properties:

             XLim: [-0.5000 0.5000]
             YLim: [-0.2000 0.2000]
           XScale: 'linear'
           YScale: 'linear'
    GridLineStyle: '-'
         Position: [0.1300 0.1100 0.7750 0.8150]
            Units: 'normalized'

  Show all properties

Create a driving scenario.

s = drivingScenario;

Add a straight road to the driving scenario. The road has one lane traveling in each direction.

road(s,[0 0 0; 30 0 0],'Lanes',lanespec([1 1]));

Add a car as an ego vehicle and a bicycle as a non-ego actor.

egoVehicle = vehicle(s,'ClassID',1,'Mesh',egoMesh);
bicycle = vehicle(s,'Position',[15 2 0],'Yaw',180,'ClassID',3,'Mesh',mesh);
trajectory(egoVehicle,[1 -2 0; 21.3 -2 0],20);
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Plot the driving scenario. Set name-value pair 'Meshes','on' to show the meshes of the actors in
the plot.

figure;
plot(s,'Meshes','on');

Create a lidarPointCloudGenerator System object. Set the actor profiles of the System object to
those in the driving scenario.

lidar = lidarPointCloudGenerator;
lidar.ActorProfiles = actorProfiles(s);

Generate a lidar point cloud of the driving scenario.

player = pcplayer([-20 20],[-10 10],[0 4]);
while advance(s)
 tgts = targetPoses(egoVehicle);
 rdmesh = roadMesh(egoVehicle);
 [ptCloud,isValidTime] = lidar(tgts,rdmesh,s.SimulationTime);
    if isValidTime
    view(player,ptCloud);
    end
end
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Output Arguments
mesh — Mesh representation of bicycle
extendedObjectMesh object

Mesh representation of bicycle, returned as an extendedObjectMesh object. The origin of the mesh
is located at its geometric center.

You can develop your own meshes by using this prebuilt bicycle mesh as a starting point. At the
MATLAB command line, enter:

edit driving.scenario.bicycleMesh

See Also
Objects
extendedObjectMesh
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Functions
applyTransform | driving.scenario.carMesh | driving.scenario.pedestrianMesh |
driving.scenario.truckMesh | join | rotate | scale | scaleToFit | show | translate

Introduced in R2020a
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driving.scenario.carMesh
Mesh representation of car in driving scenario

Syntax
mesh = driving.scenario.carMesh

Description
mesh = driving.scenario.carMesh creates a mesh representation of a car as an
extendedObjectMesh object, mesh.

Examples

Generate Lidar Point Cloud by Using Car Mesh

Add the prebuilt car mesh to a driving scenario. Then, use lidarPointCloudGenerator System
object to generate a point cloud of the car mesh.

Create and show the prebuilt car mesh.

mesh = driving.scenario.carMesh;
show(mesh);

4 Objects

4-544



Create a driving scenario.

s = drivingScenario;

Add a straight road to the driving scenario. The road has one lane in each direction.

road(s,[0 0 0; 25 0 0],'Lanes',lanespec([1 1]));

Add a car as an ego vehicle and as a non-ego actor.

egoVehicle = vehicle(s,'ClassID',1,'Mesh',mesh);
trajectory(egoVehicle,[1 -2 0; 21.3 -2 0],20);
car = vehicle(s,'Position',[15 2 0],'Yaw',180,'ClassID',1,'Mesh',mesh);

Plot the driving scenario. Set name-value pair 'Meshes','on' to show the meshes of the actors in
the plot.

plot(s,'Meshes','on');

Create a lidarPointCloudGenerator System object. Set the actor profiles of the System object to
those in the driving scenario.

lidar = lidarPointCloudGenerator;
lidar.ActorProfiles = actorProfiles(s);

Generate a lidar point cloud of the driving scenario.

player = pcplayer([-20 20],[-10 10],[0 4]);
 while advance(s)

 driving.scenario.carMesh

4-545



 tgts = targetPoses(egoVehicle);
 rdmesh = roadMesh(egoVehicle);
 [ptCloud,isValidTime] = lidar(tgts,rdmesh,s.SimulationTime);
    if isValidTime
    view(player,ptCloud);
    end
 end
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Output Arguments
mesh — Mesh representation of car
extendedObjectMesh object

Mesh representation of car, returned as an extendedObjectMesh object. The origin of the mesh is
located at its geometric center.

You can develop your own meshes by using this prebuilt car mesh as a starting point. At the MATLAB
command line, enter:

edit driving.scenario.carMesh

See Also
Objects
extendedObjectMesh
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Functions
applyTransform | driving.scenario.bicycleMesh | driving.scenario.pedestrianMesh |
driving.scenario.truckMesh | join | rotate | scale | scaleToFit | show | translate

Introduced in R2020a
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driving.scenario.pedestrianMesh
Mesh representation of pedestrian in driving scenario

Syntax
mesh = driving.scenario.pedestrianMesh

Description
mesh = driving.scenario.pedestrianMesh creates a mesh representation of a pedestrian as
an extendedObjectMesh object, mesh.

Examples

Generate Lidar Point Cloud by Using Pedestrian Mesh

Add the prebuilt pedestrian mesh to a driving scenario. Then, use lidarPointCloudGenerator
System object to generate a point cloud of the pedestrian mesh.

Create and show the prebuilt pedestrian mesh.

mesh = driving.scenario.pedestrianMesh;
egoMesh = driving.scenario.carMesh;
show(mesh);
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Create a driving scenario.

s = drivingScenario;

Add a straight road to the driving scenario. The road has one lane in each direction.

road(s,[0 0 0; 30 0 0],'Lanes',lanespec([1 1]));

Add a car as an ego vehicle and a pedestrian as a non-ego actor.

egoVehicle = vehicle(s,'ClassID',1,'Mesh',egoMesh);
trajectory(egoVehicle,[1 -2 0; 21.3 -2 0],20);
pedestrian = actor(s,'Length',0.24,'Width',0.45,'Height',1.7,'Position',[15 2 0],'ClassID',4,'Mesh',mesh);

Plot the driving scenario. Set name-value pair 'Meshes','on' to show the meshes of the actors in
the plot.

plot(s,'Meshes','on');

Create a lidarPointCloudGenerator System object. Set the actor profiles of the System object to
those in the driving scenario.

lidar = lidarPointCloudGenerator;
lidar.ActorProfiles = actorProfiles(s);

Generate a lidar point cloud of the driving scenario.

player = pcplayer([-20 20],[-10 10],[0 4]);
while advance(s)
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 tgts = targetPoses(egoVehicle);
 rdmesh = roadMesh(egoVehicle);
 [ptCloud,isValidTime] = lidar(tgts,rdmesh,s.SimulationTime);
    if isValidTime
    view(player,ptCloud);
    end
end
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Output Arguments
mesh — Mesh representation of pedestrian
extendedObjectMesh object

Mesh representation of pedestrian, returned as an extendedObjectMesh object. The origin of the
mesh is located at its geometric center.

You can develop your own meshes by using this prebuilt pedestrian mesh as a starting point. At the
MATLAB command line, enter:

edit driving.scenario.pedestrianMesh

See Also
Objects
extendedObjectMesh
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Functions
applyTransform | driving.scenario.bicycleMesh | driving.scenario.carMesh |
driving.scenario.truckMesh | join | rotate | scale | scaleToFit | show | translate

Introduced in R2020a
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driving.scenario.truckMesh
Mesh representation of truck in driving scenario

Syntax
mesh = driving.scenario.truckMesh

Description
mesh = driving.scenario.truckMesh creates a mesh representation of a truck as an
extendedObjectMesh object, mesh.

Examples

Generate Lidar Point Cloud by Using Truck Mesh

Add the prebuilt truck mesh to a driving scenario to generate a point cloud. Then, use
lidarPointCloudGenerator System object to generate a point cloud of the truck mesh.

Create and show the prebuilt truck mesh.

mesh = driving.scenario.truckMesh;
egoMesh = driving.scenario.carMesh;
show(mesh);
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pause(1);

Create a driving scenario.

s = drivingScenario;

Add a straight road to the driving scenario. The road has one lane in each direction.

road(s,[0 0 0; 30 0 0],'Lanes',lanespec([1 1]));

Add a car as the ego vehicle and a truck as a non-ego actor.

egoVehicle = vehicle(s,'ClassID',1,'Mesh',egoMesh);
trajectory(egoVehicle,[1 -2 0; 21.3 -2 0],20);
truck = vehicle(s,'Position',[15 2 0],'Yaw',180,'ClassID',2,'Mesh',mesh);

Plot the driving scenario. Set name-value pair 'Meshes','on' to show the meshes of the actors in
the plot.

plot(s,'Meshes','on');

Create a lidarPointCloudGenerator System object. Set the actor profiles of the System object to
those in the driving scenario.

lidar = lidarPointCloudGenerator;
lidar.ActorProfiles = actorProfiles(s);

Generate a lidar point cloud of the driving scenario.
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player = pcplayer([-20 20],[-10 10],[0 4]);
while advance(s)
 tgts = targetPoses(egoVehicle);
 rdmesh = roadMesh(egoVehicle);
 [ptCloud,isValidTime] = lidar(tgts,rdmesh,s.SimulationTime);
    if isValidTime
    view(player,ptCloud);
    end
end
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Output Arguments
mesh — Mesh representation of truck
extendedObjectMesh object

Mesh representation of truck, returned as an extendedObjectMesh object. The origin of the mesh
is located at its geometric center.

You can develop your own meshes by using this prebuilt truck mesh as a starting point. At the
MATLAB command line, enter:

edit driving.scenario.truckMesh

See Also
Objects
extendedObjectMesh
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Functions
applyTransform | driving.scenario.bicycleMesh | driving.scenario.carMesh |
driving.scenario.pedestrianMesh | join | rotate | scale | scaleToFit | show | translate

Introduced in R2020a
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groundTruthMultisignal
Ground truth label data for multiple signals

Description
The groundTruthMultisignal object contains information about the ground truth data source,
label definitions, and marked label annotations for multiple signals. The source of the signals can be a
video, image sequence, lidar point cloud, or any other custom format containing multiple signals. You
can export or import a groundTruthMultisignal object from the Ground Truth Labeler app.

To create training data for deep learning applications from arrays of groundTruthMultisignal
objects, use the gatherLabelData function.

Creation
To export a groundTruthMultisignal object from the Ground Truth Labeler app, on the app
toolstrip, select Export Labels > To Workspace. The app exports the object to the MATLAB
workspace. To create a groundTruthMultisignal object programmatically, use the
groundTruthMultisignal function (described here).

Syntax
gTruth = groundTruthMultisignal(dataSources,labelDefs,roiData,sceneData)

Description

gTruth = groundTruthMultisignal(dataSources,labelDefs,roiData,sceneData)
returns an object containing ground truth labels that can be imported into the Ground Truth
Labeler app.

• dataSources specifies the sources of the ground truth data and sets the DataSource property.
• labelDefs specifies the label, sublabel, and attribute definitions of the ground truth data and

sets the LabelDefinitions property.
• roiData specifies the identifying information, position, and timestamps for the marked region of

interest (ROI) labels and sets the ROILabelData property.
• sceneData specifies the identifying information and timestamps for marked scene labels and sets

the SceneLabelData property.

Properties
DataSource — Sources of ground truth data
vector of MultiSignalSource objects

Sources of ground truth data, specified as a vector of MultiSignalSource objects. These objects
contain information that describe the sources from which ground truth data was labeled. This table
describes the type of MultiSignalSource objects that you can specify in this vector.
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MultiSignalSource Object
Type

Data Source Class Reference

VideoSource Video file vision.labeler.loading.V
ideoSource

ImageSequenceSource Image sequence folder vision.labeler.loading.I
mageSequenceSource

VelodyneLidarSource Velodyne® packet capture
(PCAP) file

vision.labeler.loading.V
elodyneLidarSource

RosbagSource Rosbag file vision.labeler.loading.R
osbagSource

PointCloudSequenceSource Point cloud sequence folder vision.labeler.loading.P
ointCloudSequenceSource

CustomImageSource Custom image format vision.labeler.loading.C
ustomImageSource

To specify additional data sources, create a new type of MultiSignalSource object by using the
vision.labeler.loading.MultiSignalSource class.

LabelDefinitions — Label definitions
table

Label definitions, specified as a table. To create this table, use one of these options.

• In the Ground Truth Labeler app, create label definitions, and then export them as part of a
groundTruthMultisignal object.

• Use a labelDefinitionCreatorMultisignal object to generate a label definitions table. If
you save this table to a MAT-file, you can then load the label definitions into a Ground Truth
Labeler app session by selecting Open > Label Definitions from the app toolstrip.

• Create the label definitions table at the MATLAB command line.

This table describes the required and optional columns of the table specified in the
LabelDefinitions property.

Column Description Required or
Optional

Name Strings or character vectors specifying the name of each label
definition.

Required
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Column Description Required or
Optional

SignalType SignalType enumerations that specify the signal type supported
for each label definition. Valid values are Image for image signals
such as videos or image sequences, PointCloud for lidar signals,
or Time for scene label definitions.

If a label definition supports multiple signal types, then the label
definition has a separate row for each signal type. For example,
consider a label definition named car. In the Ground Truth
Labeler app, you draw this label as a rectangle in image signals
and a cuboid in lidar point cloud signals. In the
LabelDefinitions table, car appears twice and has these Name,
SignalType, and LabelType values.

Name SignalType LabelType
'car' Image Rectangle
'car' PointCloud Cuboid

Required

LabelType labelType enumerations that specify the type of each label
definition.

For ROI label definitions with a SignalType of Image, valid
LabelType enumerations are:

• labelType.Rectangle
• labelType.Line
• labelType.PixelLabel
• labelType.ProjectedCuboid

For ROI label definitions with a SignalType of PointCloud, the
only valid LabelType enumeration is labelType.Cuboid.

For scene label definitions, the only valid LabelType enumeration
is labelType.Scene.

You can also add ground truth data that is not an ROI or scene
label to a groundTruthMultisignal object. In the label
definitions table, specify a label definition whose labelType is
Custom.

Required
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Column Description Required or
Optional

Group Strings or character vectors specifying the group to which each
label definition belongs.

Optional

If you create
label
definitions at
the MATLAB
command line,
you do not
need to
include a
Group column.

If you export
label
definitions
from the
Ground Truth
Labeler app or
create them
using a
labelDefini
tionCreator
Multisignal
object, the
label
definitions
table includes
this column,
even if you did
not specify
groups. The
app assigns
each label
definition a
Group value of
'None'.
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Column Description Required or
Optional

Description Strings or character vectors that describe each label definition. Optional

If you create
label
definitions at
the MATLAB
command line,
you do not
need to
include a
Description
column.

If you export
label
definitions
from the
Ground Truth
Labeler app or
create them
using a
labelDefini
tionCreator
Multisignal
object, the
label
definitions
table includes
this column,
even if you did
not specify
descriptions.
The
Description
for these label
definitions is
an empty
character
vector.
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Column Description Required or
Optional

LabelColor 1-by-3 row vectors of RGB triplets that specify the colors of the
label definitions. Values are in the range [0, 1]. The color yellow
(RGB triplet [1 1 0]) is reserved for the color of selected labels in
the Ground Truth Labeler app.

Optional

When you
define labels in
the Ground
Truth Labeler
app, you must
specify a color.
Therefore, an
exported label
definitions
table always
includes this
column.

When you
create label
definitions
using the
labelDefini
tionCreator
Multisignal
object without
specifying
colors, the
returned label
definition table
includes this
column, but all
column values
are empty.
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Column Description Required or
Optional

PixelLabelI
D

Scalars, column vectors, M-by-3 matrices of integer-valued label
IDs. PixelLabelID specifies the pixel label values used to
represent a label definition. Pixel label ID values must be between
0 and 255.

Optional

When you
define pixel
labels in the
Ground Truth
Labeler app or
the
labelDefini
tionCreator
Multisignal
object, the
generated
label
definitions
table includes
this column.

When creating
a label
definitions
table at the
MATLAB
command line,
if you set
LabelType to
labelType.P
ixelLabel for
any label, then
this column is
required.

Hierarchy Structures containing sublabel and attribute data for each label
definition. For an example of the Hierarchy format, see “Export
and Explore Ground Truth Labels for Multiple Signals”.

Optional

When you
define
sublabels or
attributes in
the Ground
Truth Labeler
app or the
labelDefini
tionCreator
Multisignal
object, the
generated
label
definitions
table includes
this column.
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ROILabelData — ROI label data
ROILabelData object

ROI label data across all signals, specified as an ROILabelData object.

For Rectangle, Cuboid, ProjectedCuboid, and Line label types, ground truth data that is not a
floating-point array has a data type of single.

SceneLabelData — Scene label data
SceneLabelData object

Scene label data across all signals, specified as a SceneLabelData object.

Object Functions
selectLabelsByLabelName Select multisignal ground truth by label name
selectLabelsByLabelType Select multisignal ground truth by label type
selectLabelsByGroupName Select multisignal ground truth by label group name
selectLabelsBySignalName Select multisignal ground truth by signal name
selectLabelsBySignalType Select multisignal ground truth labels by signal type
gatherLabelData Gather synchronized label data from ground truth
writeFrames Write signal frames for ground truth data to disk
changeFilePaths Change file paths in multisignal ground truth data

Examples

Create Ground Truth from Multiple Signals

Create ground truth data for a video signal and a lidar point cloud sequence signal that captures the
same driving scene. Specify the signal sources, label definitions, and ROI and scene label data.

Create the video data source from an MP4 file.

sourceName = '01_city_c2s_fcw_10s.mp4';
sourceParams = [];
vidSource = vision.labeler.loading.VideoSource;
vidSource.loadSource(sourceName,sourceParams);

Create the point cloud sequence source from a folder of point cloud data (PCD) files.

pcSeqFolder = fullfile(toolboxdir('driving'),'drivingdata','lidarSequence');
addpath(pcSeqFolder)
load timestamps.mat
rmpath(pcSeqFolder)

lidarSourceData = load(fullfile(pcSeqFolder,'timestamps.mat'));

sourceName = pcSeqFolder;
sourceParams = struct;
sourceParams.Timestamps = timestamps;

pcseqSource = vision.labeler.loading.PointCloudSequenceSource;
pcseqSource.loadSource(sourceName,sourceParams);

Combine the signal sources into an array.
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dataSource = [vidSource pcseqSource]

dataSource = 

  1x2 heterogeneous MultiSignalSource (VideoSource, PointCloudSequenceSource) array with properties:

    SourceName
    SourceParams
    SignalName
    SignalType
    Timestamp
    NumSignals

Create a table of label definitions for the ground truth data by using a
labelDefinitionCreatorMultisignal object.

• The Car label definition appears twice. Even though Car is defined as a rectangle, you can draw
rectangles only for image signals, such as videos. The labelDefinitionCreatorMultisignal
object creates an additional row for lidar point cloud signals. In these signal types, you can draw
Car labels as cuboids only.

• The label definitions have no descriptions and no assigned colors, so the Description and
LabelColor columns are empty.

• The label definitions have no assigned groups, so for all label definitions, the corresponding cell in
the Group column is set to 'None'.

• Road is a pixel label definition, so the table includes a PixelLabelID column.
• No label definitions have sublabels or attributes, so the table does not include a Hierarchy

column for storing such information.

ldc = labelDefinitionCreatorMultisignal;
addLabel(ldc,'Car','Rectangle');
addLabel(ldc,'Truck','ProjectedCuboid');
addLabel(ldc,'Lane','Line');
addLabel(ldc,'Road','PixelLabel');
addLabel(ldc,'Sunny','Scene');
labelDefs = create(ldc)

labelDefs =

  6x7 table

      Name       SignalType       LabelType        Group      Description    LabelColor    PixelLabelID
    _________    __________    _______________    ________    ___________    __________    ____________

    {'Car'  }    Image         Rectangle          {'None'}       {' '}       {0x0 char}    {0x0 double}
    {'Car'  }    PointCloud    Cuboid             {'None'}       {' '}       {0x0 char}    {0x0 double}
    {'Truck'}    Image         ProjectedCuboid    {'None'}       {' '}       {0x0 char}    {0x0 double}
    {'Lane' }    Image         Line               {'None'}       {' '}       {0x0 char}    {0x0 double}
    {'Road' }    Image         PixelLabel         {'None'}       {' '}       {0x0 char}    {[       1]}
    {'Sunny'}    Time          Scene              {'None'}       {' '}       {0x0 char}    {0x0 double}

Create ROI label data for the first frame of the video.
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numVideoFrames = numel(vidSource.Timestamp{1});
carData = cell(numVideoFrames,1);
laneData = cell(numVideoFrames,1);
truckData = cell(numVideoFrames,1);
carData{1} = [304 212 37 33];
laneData{1} = [70 458; 311 261];
truckData{1} = [309,215,33,24,330,211,33,24];
videoData = timetable(vidSource.Timestamp{1},carData,laneData, ...
                      'VariableNames',{'Car','Lane'});

Create ROI label data for the first point cloud in the sequence.

numPCFrames = numel(pcseqSource.Timestamp{1});
carData = cell(numPCFrames, 1);
carData{1} = [27.35 18.32 -0.11 4.25 4.75 3.45 0 0 0];
lidarData = timetable(pcseqSource.Timestamp{1},carData,'VariableNames',{'Car'});

Combine the ROI label data for both sources.

signalNames = [dataSource.SignalName];
roiData = vision.labeler.labeldata.ROILabelData(signalNames,{videoData,lidarData})

roiData = 

  ROILabelData with properties:

    video_01_city_c2s_fcw_10s: [204x2 timetable]
                lidarSequence: [34x1 timetable]

Create scene label data for the first 10 seconds of the driving scene.

sunnyData = seconds([0 10]);
labelNames = ["Sunny"];
sceneData = vision.labeler.labeldata.SceneLabelData(labelNames,{sunnyData})

sceneData = 

  SceneLabelData with properties:

    Sunny: [0 sec    10 sec]

Create a ground truth object from the signal sources, label definitions, and ROI and scene label data.
You can import this object into the Ground Truth Labeler app for manual labeling or to run a
labeling automation algorithm on it. You can also extract training data from this object for deep
learning models by using the gatherLabelData function.

gTruth = groundTruthMultisignal(dataSource,labelDefs,roiData,sceneData)

gTruth = 

  groundTruthMultisignal with properties:

          DataSource: [1x2 vision.labeler.loading.MultiSignalSource]
    LabelDefinitions: [6x7 table]
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        ROILabelData: [1x1 vision.labeler.labeldata.ROILabelData]
      SceneLabelData: [1x1 vision.labeler.labeldata.SceneLabelData]

Tips
• groundTruthMultisignal objects with video-based data sources rely on the video reading

capabilities of your operating system. A groundTruthMultisignal object created using video
data sources remains consistent only for the same platform that was used to create it. To create a
platform-specific groundTruthMultisignal object, convert the videos into sequences of
images.

• To create a groundTruthMultisignal object containing ROI label data but no scene label data,
specify the SceneLabelData property as an empty array. To create this array, at the MATLAB
command prompt, enter this code.

sceneData = vision.labeler.labeldata.SceneLabelData.empty

See Also
Apps
Ground Truth Labeler

Objects
attributeType | labelDefinitionCreatorMultisignal | labelType

Topics
“Get Started with the Ground Truth Labeler”
“Share and Store Labeled Ground Truth Data” (Computer Vision Toolbox)
“How Labeler Apps Store Exported Pixel Labels” (Computer Vision Toolbox)

Introduced in R2020a
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selectLabelsByLabelName
Select multisignal ground truth by label name

Syntax
gtLabel = selectLabelsByLabelName(gTruth,labelNames)

Description
gtLabel = selectLabelsByLabelName(gTruth,labelNames) selects labels specified by
labelNames from a groundTruthMultisignal object, gTruth. The function returns a
corresponding groundTruthMultisignal object, gtLabel, that contains only the selected labels.
If gTruth is a vector of groundTruthMultisignal objects, then the function returns a vector of
corresponding groundTruthMultisignal objects that contain only the selected labels.

Examples

Select Ground Truth Labels by Label Name

Select ground truth labels from a groundTruthMultisignal object by specifying a label name.

Load a groundTruthMultisignal object containing ROI and scene label data for a video and
corresponding lidar point cloud sequence. The helper function used to load this object is attached to
the example as a supporting file.

gTruth = helperLoadGTruthVideoLidar;

Inspect the label definitions. The object contains ROI labels for different vehicle types and a scene
label. Because image and lidar point cloud signals represent ROIs differently, the car label has two
rows. On image signals, such as videos, you draw the label as a rectangle. On point cloud signals, you
draw the label as a cuboid.

gTruth.LabelDefinitions

ans =

  5x7 table

      Name       SignalType    LabelType       Group        Description     LabelColor      Hierarchy  
    _________    __________    _________    ____________    ___________    ____________    ____________

    {'car'  }    Image         Rectangle    {'Vehicles'}    {0x0 char}     {1x3 double}    {1x1 struct}
    {'car'  }    PointCloud    Cuboid       {'Vehicles'}    {0x0 char}     {1x3 double}    {1x1 struct}
    {'truck'}    Image         Rectangle    {'Vehicles'}    {0x0 char}     {1x3 double}    {0x0 double}
    {'truck'}    PointCloud    Cuboid       {'Vehicles'}    {0x0 char}     {1x3 double}    {0x0 double}
    {'sunny'}    Time          Scene        {'None'    }    {0x0 char}     {1x3 double}    {0x0 double}

Create a new groundTruthMultisignal object that contains labels for only the "sunny" label
definition.
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labelNames = "sunny";
gtLabel = selectLabelsByLabelName(gTruth,labelNames);

For the original and new objects, inspect the ROI label data. Because you did not select any ROI label
names, in the new object, the signals do not contain any ROI label data at any timestamp.

gTruth.ROILabelData
gtLabel.ROILabelData

ans = 

  ROILabelData with properties:

    video_01_city_c2s_fcw_10s: [204x2 timetable]
                lidarSequence: [34x2 timetable]

ans = 

  ROILabelData with properties:

    video_01_city_c2s_fcw_10s: [204x0 timetable]
                lidarSequence: [34x0 timetable]

For the original and new objects, inspect the scene label data. Because you selected the "sunny"
label, the original object and new object contain identical scene label data.

gTruth.SceneLabelData
gtLabel.SceneLabelData

ans = 

  SceneLabelData with properties:

    sunny: [0 sec    10.15 sec]

ans = 

  SceneLabelData with properties:

    sunny: [0 sec    10.15 sec]

Input Arguments
gTruth — Multisignal ground truth data
groundTruthMultisignal object | vector of groundTruthMultisignal objects

Multisignal ground truth data, specified as a groundTruthMultisignal object or vector of
groundTruthMultisignal objects.

labelNames — Label names
character vector | string scalar | cell array of character vectors | string vector
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Label names, specified as a character vector, string scalar, cell array of character vectors, or string
vector.

To view all label names in a groundTruthMultisignal object, gTruth, enter this command at the
MATLAB command prompt.

unique(gTruth.LabelDefinitions.Name)

Example: 'car'
Example: "car"
Example: {'car','lane'}
Example: ["car" "lane"]

Output Arguments
gtLabel — Ground truth with only selected labels
groundTruthMultisignal object | vector of groundTruthMultisignal objects

Ground truth with only the selected labels, returned as a groundTruthMultisignal object or
vector of groundTruthMultisignal objects.

Each groundTruthMultisignal object in gtLabel corresponds to a groundTruthMultisignal
object in the gTruth input. The returned objects contain only the labels that are of the label names
specified by the labelNames input.

Limitations
• Selecting pixel labels by label name is not supported. However, you can select all labels of type

pixel. Use the selectLabelsByLabelType function, specifying the label type as a
labelType.PixelLabel enumeration.

• Selecting sublabels by label name is not supported.

See Also
Objects
groundTruthMultisignal

Functions
selectLabelsByGroupName | selectLabelsByLabelType | selectLabelsBySignalName |
selectLabelsBySignalType

Introduced in R2020a
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selectLabelsByLabelType
Select multisignal ground truth by label type

Syntax
gtLabel = selectLabelsByLabelType(gTruth,labelTypes)

Description
gtLabel = selectLabelsByLabelType(gTruth,labelTypes) selects labels of the types
specified by labelTypes from a groundTruthMultisignal object, gTruth. The function returns a
corresponding groundTruthMultisignal object, gtLabel, that contains only the selected labels.
If gTruth is a vector of groundTruthMultisignal objects, then the function returns a vector of
corresponding groundTruthMultisignal objects that contain only the selected labels.

Examples

Select Ground Truth Labels by Label Type

Select ground truth labels from a groundTruthMultisignal object by specifying a label type.

Load a groundTruthMultisignal object containing ROI and scene label data for a video and
corresponding lidar point cloud sequence. The helper function used to load this object is attached to
the example as a supporting file.

gTruth = helperLoadGTruthVideoLidar;

Inspect the label definitions. The object contains definitions for rectangle, cuboid, and scene label
types.

gTruth.LabelDefinitions

ans =

  5x7 table

      Name       SignalType    LabelType       Group        Description     LabelColor      Hierarchy  
    _________    __________    _________    ____________    ___________    ____________    ____________

    {'car'  }    Image         Rectangle    {'Vehicles'}    {0x0 char}     {1x3 double}    {1x1 struct}
    {'car'  }    PointCloud    Cuboid       {'Vehicles'}    {0x0 char}     {1x3 double}    {1x1 struct}
    {'truck'}    Image         Rectangle    {'Vehicles'}    {0x0 char}     {1x3 double}    {0x0 double}
    {'truck'}    PointCloud    Cuboid       {'Vehicles'}    {0x0 char}     {1x3 double}    {0x0 double}
    {'sunny'}    Time          Scene        {'None'    }    {0x0 char}     {1x3 double}    {0x0 double}

Inspect the ROI labels. The object contains labels for the lidar point cloud sequence and the video.

gTruth.ROILabelData

 selectLabelsByLabelType

4-573



ans = 

  ROILabelData with properties:

    video_01_city_c2s_fcw_10s: [204x2 timetable]
                lidarSequence: [34x2 timetable]

Create a new groundTruthMultisignal object that contains only labels that are of type cuboid.

labelTypes = labelType.Cuboid;
gtLabel = selectLabelsByLabelType(gTruth,labelTypes);

For the original and new objects, inspect the first five rows of label data for the lidar point cloud
sequence. Because the lidar point cloud signal in the original object contains only cuboid labels, the
new object contains the same label data for the lidar sequence as the original object.

lidarLabels = gTruth.ROILabelData.lidarSequence;
lidarLabelsSelection = gtLabel.ROILabelData.lidarSequence;

numrows = 5;
head(lidarLabels,numrows)
head(lidarLabelsSelection,numrows)

ans =

  5x2 timetable

       Time            car            truck    
    ___________    ____________    ____________

    0 sec          {1x1 struct}    {1x0 struct}
    0.29926 sec    {1x1 struct}    {1x0 struct}
    0.59997 sec    {1x1 struct}    {1x0 struct}
    0.8485 sec     {1x1 struct}    {1x0 struct}
    1.1484 sec     {1x1 struct}    {1x0 struct}

ans =

  5x2 timetable

       Time            car            truck    
    ___________    ____________    ____________

    0 sec          {1x1 struct}    {1x0 struct}
    0.29926 sec    {1x1 struct}    {1x0 struct}
    0.59997 sec    {1x1 struct}    {1x0 struct}
    0.8485 sec     {1x1 struct}    {1x0 struct}
    1.1484 sec     {1x1 struct}    {1x0 struct}

For the original and new objects, inspect the first five rows of label data for the video. Because video
signals do not support the Cuboid label type, the new object contains no label data for the video.

videoLabels = gTruth.ROILabelData.video_01_city_c2s_fcw_10s;
videoLabelsSelection = gtLabel.ROILabelData.video_01_city_c2s_fcw_10s;
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head(videoLabels,numrows)
head(videoLabelsSelection,numrows)

ans =

  5x2 timetable

      Time          car            truck    
    ________    ____________    ____________

    0 sec       {1x3 struct}    {1x0 struct}
    0.05 sec    {1x3 struct}    {1x0 struct}
    0.1 sec     {1x3 struct}    {1x0 struct}
    0.15 sec    {1x3 struct}    {1x0 struct}
    0.2 sec     {1x3 struct}    {1x0 struct}

ans =

  5x0 empty timetable

Input Arguments
gTruth — Multisignal ground truth data
groundTruthMultisignal object | vector of groundTruthMultisignal objects

Multisignal ground truth data, specified as a groundTruthMultisignal object or vector of
groundTruthMultisignal objects.

labelTypes — Label types
labelType enumeration | vector of labelType enumerations

Label types, specified as a labelType enumeration or vector of labelType enumerations.

To view all label types in a groundTruthMultisignal object, gTruth, enter this command at the
MATLAB command prompt.

unique(gTruth.LabelDefinitions.LabelType)

Example: labelType.Cuboid
Example: [labelType.Cuboid labelType.Scene]

Output Arguments
gtLabel — Ground truth with only selected labels
groundTruthMultisignal object | vector of groundTruthMultisignal objects

Ground truth with only the selected labels, returned as a groundTruthMultisignal object or
vector of groundTruthMultisignal objects.
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Each groundTruthMultisignal object in gtLabel corresponds to a groundTruthMultisignal
object in the gTruth input. The returned objects contain only the labels that are of the label types
specified by the labelTypes input.

Limitations
• Selecting sublabels by label type is not supported.

See Also
Objects
groundTruthMultisignal

Functions
selectLabelsByGroupName | selectLabelsByLabelName | selectLabelsBySignalName |
selectLabelsBySignalType

Introduced in R2020a
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selectLabelsByGroupName
Select multisignal ground truth by label group name

Syntax
gtLabel = selectLabelsByGroupName(gTruth,labelGroups)

Description
gtLabel = selectLabelsByGroupName(gTruth,labelGroups) selects labels belonging to the
groups specified by labelGroups from a groundTruthMultisignal object, gTruth. The function
returns a corresponding groundTruthMultisignal object, gtLabel, that contains only the
selected labels. If gTruth is a vector of groundTruthMultisignal objects, then the function
returns a vector of corresponding groundTruthMultisignal objects that contain only the selected
labels.

Examples

Select Ground Truth Labels by Group Name

Select ground truth labels from a groundTruthMultisignal object by specifying a group name.

Load a groundTruthMultisignal object containing ROI and scene label data for a video and
corresponding lidar point cloud sequence. The helper function used to load this object is attached to
the example as a supporting file.

gTruth = helperLoadGTruthVideoLidar;

Inspect the label definitions. The object contains label definitions in a "Vehicles" group.
Ungrouped labels are in the group named "None".

gTruth.LabelDefinitions

ans =

  5x7 table

      Name       SignalType    LabelType       Group        Description     LabelColor      Hierarchy  
    _________    __________    _________    ____________    ___________    ____________    ____________

    {'car'  }    Image         Rectangle    {'Vehicles'}    {0x0 char}     {1x3 double}    {1x1 struct}
    {'car'  }    PointCloud    Cuboid       {'Vehicles'}    {0x0 char}     {1x3 double}    {1x1 struct}
    {'truck'}    Image         Rectangle    {'Vehicles'}    {0x0 char}     {1x3 double}    {0x0 double}
    {'truck'}    PointCloud    Cuboid       {'Vehicles'}    {0x0 char}     {1x3 double}    {0x0 double}
    {'sunny'}    Time          Scene        {'None'    }    {0x0 char}     {1x3 double}    {0x0 double}

Create a new groundTruthMultisignal object that contains labels for only the "Vehicles"
group.
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groupNames = "Vehicles";
gtLabel = selectLabelsByGroupName(gTruth,groupNames);

For the original and new objects, inspect the ROI label data. Because "Vehicles" is the only group
used for the ROI label data, the original and new object contain identical ROI label data.

gTruth.ROILabelData
gtLabel.ROILabelData

ans = 

  ROILabelData with properties:

    video_01_city_c2s_fcw_10s: [204x2 timetable]
                lidarSequence: [34x2 timetable]

ans = 

  ROILabelData with properties:

    video_01_city_c2s_fcw_10s: [204x2 timetable]
                lidarSequence: [34x2 timetable]

For the original and new objects, inspect the scene label data. The "None" group, which is used only
in scene labels, was not selected. Therefore, the new object contains no scene label data.

gTruth.SceneLabelData
gtLabel.SceneLabelData

ans = 

  SceneLabelData with properties:

    sunny: [0 sec    10.15 sec]

ans = 

  SceneLabelData with properties:

    sunny: [0x0 duration]

Input Arguments
gTruth — Multisignal ground truth data
groundTruthMultisignal object | vector of groundTruthMultisignal objects

Multisignal ground truth data, specified as a groundTruthMultisignal object or vector of
groundTruthMultisignal objects.

labelGroups — Label group names
character vector | string scalar | cell array of character vectors | string vector
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Label group names, specified as a character vector, string scalar, cell array of character vectors, or
string vector.

To view all label group names in a groundTruthMultisignal object, gTruth, enter this command
at the MATLAB command prompt.

unique(gTruth.LabelDefinitions.Group)

Example: 'Vehicles'
Example: "Vehicles"
Example: {'Vehicles','Signs'}
Example: ["Vehicles" "Signs"]

Output Arguments
gtLabel — Ground truth with only selected labels
groundTruthMultisignal object | vector of groundTruthMultisignal objects

Ground truth with only the selected labels, returned as a groundTruthMultisignal object or
vector of groundTruthMultisignal objects.

Each groundTruthMultisignal object in gtLabel corresponds to a groundTruthMultisignal
object in the gTruth input. The returned objects contain only the labels belonging to the groups
specified by the labelGroups input.

See Also
Objects
groundTruthMultisignal

Functions
selectLabelsByLabelName | selectLabelsByLabelType | selectLabelsBySignalName |
selectLabelsBySignalType

Introduced in R2020a
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selectLabelsBySignalName
Select multisignal ground truth by signal name

Syntax
gtLabel = selectLabelsBySignalName(gTruth,signalNames)

Description
gtLabel = selectLabelsBySignalName(gTruth,signalNames) selects labels for the signals
specified by signalNames from a groundTruthMultisignal object, gTruth. The function returns
a corresponding groundTruthMultisignal object, gtLabel, that contains only the selected labels.
If gTruth is a vector of groundTruthMultisignal objects, then the function returns a vector of
corresponding groundTruthMultisignal objects that contain only the selected labels.

Examples

Select Ground Truth Labels by Signal Name

Select ground truth labels from a groundTruthMultisignal object by specifying a signal name.

Load a groundTruthMultisignal object containing ROI and scene label data for a video and
corresponding lidar point cloud sequence. The helper function used to load this object is attached to
the example as a supporting file.

gTruth = helperLoadGTruthVideoLidar;

Inspect the ROI labels. The object contains labels for the lidar point cloud sequence and the video.

gTruth.ROILabelData

ans = 

  ROILabelData with properties:

    video_01_city_c2s_fcw_10s: [204x2 timetable]
                lidarSequence: [34x2 timetable]

Create a new groundTruthMultisignal object that contains labels for only the lidarSequence
signal.

signalNames = "lidarSequence";
gtLabel = selectLabelsBySignalName(gTruth,signalNames);

For the original and new objects, inspect the first five rows of label data for the lidar point cloud
sequence. The new object contains the same label data for the lidar sequence as the original object.

lidarLabels = gTruth.ROILabelData.lidarSequence;
lidarLabelsSelection = gtLabel.ROILabelData.lidarSequence;
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numrows = 5;
head(lidarLabels,numrows)
head(lidarLabelsSelection,numrows)

ans =

  5x2 timetable

       Time            car            truck    
    ___________    ____________    ____________

    0 sec          {1x1 struct}    {1x0 struct}
    0.29926 sec    {1x1 struct}    {1x0 struct}
    0.59997 sec    {1x1 struct}    {1x0 struct}
    0.8485 sec     {1x1 struct}    {1x0 struct}
    1.1484 sec     {1x1 struct}    {1x0 struct}

ans =

  5x2 timetable

       Time            car            truck    
    ___________    ____________    ____________

    0 sec          {1x1 struct}    {1x0 struct}
    0.29926 sec    {1x1 struct}    {1x0 struct}
    0.59997 sec    {1x1 struct}    {1x0 struct}
    0.8485 sec     {1x1 struct}    {1x0 struct}
    1.1484 sec     {1x1 struct}    {1x0 struct}

For the original and new objects, inspect the first five rows of label data for the video. The new object
contains no label data for the video.

videoLabels = gTruth.ROILabelData.video_01_city_c2s_fcw_10s;
videoLabelsSelection = gtLabel.ROILabelData.video_01_city_c2s_fcw_10s;

head(videoLabels,numrows)
head(videoLabelsSelection,numrows)

ans =

  5x2 timetable

      Time          car            truck    
    ________    ____________    ____________

    0 sec       {1x3 struct}    {1x0 struct}
    0.05 sec    {1x3 struct}    {1x0 struct}
    0.1 sec     {1x3 struct}    {1x0 struct}
    0.15 sec    {1x3 struct}    {1x0 struct}
    0.2 sec     {1x3 struct}    {1x0 struct}

 selectLabelsBySignalName

4-581



ans =

  5x0 empty timetable

Input Arguments
gTruth — Multisignal ground truth data
groundTruthMultisignal object | vector of groundTruthMultisignal objects

Multisignal ground truth data, specified as a groundTruthMultisignal object or vector of
groundTruthMultisignal objects.

signalNames — Signal names
character vector | string scalar | cell array of character vectors | string vector

Signal names, specified as a character vector, string scalar, cell array of character vectors, or string
vector.

To view all signal names in a groundTruthMultisignal object, gTruth, enter this command at the
MATLAB command prompt.

gTruth.DataSource.SignalName

Example: 'lidarSequence'
Example: "lidarSequence"
Example: {'lidarSequence','imageSequence'}
Example: ["lidarSequence" "imageSequence"]

Output Arguments
gtLabel — Ground truth with only selected labels
groundTruthMultisignal object | vector of groundTruthMultisignal objects

Ground truth with only the selected labels, returned as a groundTruthMultisignal object or
vector of groundTruthMultisignal objects.

Each groundTruthMultisignal object in gtLabel corresponds to a groundTruthMultisignal
object in the gTruth input. The returned objects contain only the labels with signal names specified
by the signalNames input.

See Also
Objects
groundTruthMultisignal

Functions
selectLabelsByGroupName | selectLabelsByLabelName | selectLabelsByLabelType |
selectLabelsBySignalType

Introduced in R2020a
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selectLabelsBySignalType
Select multisignal ground truth labels by signal type

Syntax
gtLabel = selectLabelsBySignalType(gTruth,signalTypes)

Description
gtLabel = selectLabelsBySignalType(gTruth,signalTypes) selects labels of the signal
types specified by signalTypes from a groundTruthMultisignal object, gTruth. The function
returns a corresponding groundTruthMultisignal object, gtLabel, that contains only the
selected labels. If gTruth is a vector of groundTruthMultisignal objects, then the function
returns a vector of corresponding groundTruthMultisignal objects that contain only the selected
labels.

Examples

Select Ground Truth Labels by Signal Type

Select ground truth labels from a groundTruthMultisignal object by specifying a signal type.

Load a groundTruthMultisignal object containing ROI and scene label data for a video and
corresponding lidar point cloud sequence. The helper function used to load this object is attached to
the example as a supporting file.

gTruth = helperLoadGTruthVideoLidar;

Inspect the label definitions. The object contains definitions for image, point cloud, and time signals.

gTruth.LabelDefinitions

ans =

  5x7 table

      Name       SignalType    LabelType       Group        Description     LabelColor      Hierarchy  
    _________    __________    _________    ____________    ___________    ____________    ____________

    {'car'  }    Image         Rectangle    {'Vehicles'}    {0x0 char}     {1x3 double}    {1x1 struct}
    {'car'  }    PointCloud    Cuboid       {'Vehicles'}    {0x0 char}     {1x3 double}    {1x1 struct}
    {'truck'}    Image         Rectangle    {'Vehicles'}    {0x0 char}     {1x3 double}    {0x0 double}
    {'truck'}    PointCloud    Cuboid       {'Vehicles'}    {0x0 char}     {1x3 double}    {0x0 double}
    {'sunny'}    Time          Scene        {'None'    }    {0x0 char}     {1x3 double}    {0x0 double}

Inspect the ROI labels. The object contains labels for the lidar point cloud sequence and the video.

gTruth.ROILabelData
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ans = 

  ROILabelData with properties:

    video_01_city_c2s_fcw_10s: [204x2 timetable]
                lidarSequence: [34x2 timetable]

Create a new groundTruthMultisignal object that contains labels for only point cloud signals.

signalTypes = vision.labeler.loading.SignalType.PointCloud;
gtLabel = selectLabelsBySignalType(gTruth,signalTypes);

For the original and new objects, inspect the first five rows of label data for the lidar point cloud
sequence. Because lidar signals are of type PointCloud, the new object contains the same label data
for the lidar sequence as the original object.

lidarLabels = gTruth.ROILabelData.lidarSequence;
lidarLabelsSelection = gtLabel.ROILabelData.lidarSequence;

numrows = 5;
head(lidarLabels,numrows)
head(lidarLabelsSelection,numrows)

ans =

  5x2 timetable

       Time            car            truck    
    ___________    ____________    ____________

    0 sec          {1x1 struct}    {1x0 struct}
    0.29926 sec    {1x1 struct}    {1x0 struct}
    0.59997 sec    {1x1 struct}    {1x0 struct}
    0.8485 sec     {1x1 struct}    {1x0 struct}
    1.1484 sec     {1x1 struct}    {1x0 struct}

ans =

  5x2 timetable

       Time            car            truck    
    ___________    ____________    ____________

    0 sec          {1x1 struct}    {1x0 struct}
    0.29926 sec    {1x1 struct}    {1x0 struct}
    0.59997 sec    {1x1 struct}    {1x0 struct}
    0.8485 sec     {1x1 struct}    {1x0 struct}
    1.1484 sec     {1x1 struct}    {1x0 struct}

For the original and new objects, inspect the first five rows of label data for the video. Because video
signals are of type Image, the new object contains no label data for the video.

videoLabels = gTruth.ROILabelData.video_01_city_c2s_fcw_10s;
videoLabelsSelection = gtLabel.ROILabelData.video_01_city_c2s_fcw_10s;

4 Objects

4-584



head(videoLabels,numrows)
head(videoLabelsSelection,numrows)

ans =

  5x2 timetable

      Time          car            truck    
    ________    ____________    ____________

    0 sec       {1x3 struct}    {1x0 struct}
    0.05 sec    {1x3 struct}    {1x0 struct}
    0.1 sec     {1x3 struct}    {1x0 struct}
    0.15 sec    {1x3 struct}    {1x0 struct}
    0.2 sec     {1x3 struct}    {1x0 struct}

ans =

  5x0 empty timetable

Input Arguments
gTruth — Multisignal ground truth data
groundTruthMultisignal object | vector of groundTruthMultisignal objects

Multisignal ground truth data, specified as a groundTruthMultisignal object or vector of
groundTruthMultisignal objects.

signalTypes — Signal types
vision.labeler.loading.SignalType enumeration | vector of
vision.labeler.loading.SignalType enumerations

Signal types, specified as a vision.labeler.loading.SignalType enumeration or vector of
vision.labeler.loading.SignalType enumerations.

To view all signal types in a groundTruthMultisignal object, gTruth, enter this command at the
MATLAB command prompt.

unique(gTruth.LabelDefinitions.SignalType)

Example: vision.labeler.loading.SignalType.Image
Example: [vision.labeler.loading.SignalType.Image
vision.labeler.loading.SignalType.PointCloud]

Output Arguments
gtLabel — Ground truth with only selected labels
groundTruthMultisignal object | vector of groundTruthMultisignal objects

Ground truth with only the selected labels, returned as a groundTruthMultisignal object or
vector of groundTruthMultisignal objects.
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Each groundTruthMultisignal object in gtLabel corresponds to a groundTruthMultisignal
object in the gTruth input. The returned objects contain only the labels that are of the signal types
specified by the signalTypes input.

Limitations
• Selecting sublabels by signal type is not supported.

See Also
Objects
groundTruthMultisignal

Functions
selectLabelsByGroupName | selectLabelsByLabelName | selectLabelsByLabelType |
selectLabelsBySignalName

Introduced in R2020a
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gatherLabelData
Gather synchronized label data from ground truth

Syntax
labelData = gatherLabelData(gTruth,signalNames,labelTypes)
[labelData,timestamps] = gatherLabelData( ___ )
[ ___ ] = gatherLabelData( ___ ,'SampleFactor',sampleFactor)

Description
labelData = gatherLabelData(gTruth,signalNames,labelTypes) returns synchronized
label data gathered from multisignal ground truth data, gTruth. The function returns label data for
the signals specified by signalNames and the label types specified by labelTypes.

[labelData,timestamps] = gatherLabelData( ___ ) additionally returns the signal
timestamps associated with the gathered label data, using the arguments from the previous syntax.

Use timestamps with the writeFrames function to write the associated signal frames from the
groundTruthMultisignal objects to disk. Use these frames and the associated labels as training
data for machine learning or deep learning models.

[ ___ ] = gatherLabelData( ___ ,'SampleFactor',sampleFactor) specifies the sample
factor used to subsample label data.

Examples

Gather Label Data and Write Associated Signal Frames

Gather label data for a video signal and a lidar point cloud sequence signal from a
groundTruthMultisignal object. Write the signal frames associated with that label data to disk
and visualize the frames.

Add the point cloud sequence folder path to the MATLAB® search path. The video is already on the
MATLAB search path.

pcSeqDir = fullfile(toolboxdir('driving'),'drivingdata', ...
    'lidarSequence');
addpath(pcSeqDir);

Load a groundTruthMultisignal object that contains label data for the video and the lidar point
cloud sequence.

data = load('MultisignalGTruth.mat');
gTruth = data.gTruth;

Specify the signals from which to gather label data.

signalNames = ["video_01_city_c2s_fcw_10s" "lidarSequence"];
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The video contains rectangle labels, whereas the lidar point cloud sequence contains cuboid labels.
Gather the rectangle labels from the video and the cuboid labels from the lidar point cloud sequence.

labelTypes = [labelType.Rectangle labelType.Cuboid];
[labelData,timestamps] = gatherLabelData(gTruth,signalNames,labelTypes);

Display the first eight rows of label data from the two signals. Both signals contain data for the Car
label. In the video, the Car label is drawn as a rectangle bounding box. In the lidar point cloud
sequence, the Car label is drawn as a cuboid bounding box.

videoLabelSample = head(labelData{1})
lidarLabelSample = head(labelData{2})

videoLabelSample =

  table

        Car     
    ____________

    {1x4 double}

lidarLabelSample =

  table

        Car     
    ____________

    {1x9 double}

Write signal frames associated with the gathered label data to temporary folder locations, with one
folder per signal. Use the timestamps returned by the gatherLabelData function to indicate which
signal frames to write.

outputFolder = fullfile(tempdir,["videoFrames" "lidarFrames"]);
fileNames = writeFrames(gTruth,signalNames,outputFolder,timestamps);

Writing 2 frames from the following signals:

* video_01_city_c2s_fcw_10s
* lidarSequence

Load the written video signal frames by using an imageDatastore object. Load the associated
rectangle label data by using a boxLabelDatastore (Computer Vision Toolbox) object.

imds = imageDatastore(fileNames{1});
blds = boxLabelDatastore(labelData{1});

Load the written lidar signal frames by using a fileDatastore object. Load the associated cuboid
label data by using a boxLabelDatastore object.

fds = fileDatastore(fileNames{2},'ReadFcn',@pcread);
clds = boxLabelDatastore(labelData{2});

4 Objects

4-588



Visualize the written video frames by using a vision.VideoPlayer (Computer Vision Toolbox)
object. Visualize the written lidar frames by using a pcplayer (Computer Vision Toolbox) object.

videoPlayer = vision.VideoPlayer;

ptCloud = preview(fds);
ptCloudPlayer = pcplayer(ptCloud.XLimits,ptCloud.YLimits,ptCloud.ZLimits);

while hasdata(imds)
    % Read video and lidar frames.
    I = read(imds);
    ptCloud = read(fds);

    % Visualize video and lidar frames.
    videoPlayer(I);
    view(ptCloudPlayer,ptCloud);
end
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Remove the path to the point cloud sequence folder.

rmpath(pcSeqDir);

Input Arguments
gTruth — Multisignal ground truth data
groundTruthMultisignal object | vector of groundTruthMultisignal objects

Multisignal ground truth data, specified as a groundTruthMultisignal object or vector of
groundTruthMultisignal objects.

Each groundTruthMultisignal object in gTruth must include all the signals specified in the
signalNames input.

In addition, each object must include at least one marked label per gathered label definition. Suppose
gTruth is a groundTruthMultisignal object containing label data for a single video signal named
video_front_camera. The object contains marked rectangle region of interest (ROI) labels for the
car label definition but not for the truck label definition. If you use this syntax to gather labels of
type Rectangle from this object, then the gatherLabelData function returns an error.
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labelData = gatherLabelData(gTruth,"video_front_camera",labelType.Rectangle);

signalNames — Names of signals
character vector | string scalar | cell array of character vectors | string array

Names of the signals from which to gather label data, specified as a character vector, string scalar,
cell array of character vectors, or string vector. The signal names must be valid signal names stored
in the input multisignal ground truth data, gTruth.

To obtain the signal names from a groundTruthMultisignal object, use this syntax, where
gTruth is the variable name of the object:

gTruth.DataSource.SignalName

Example: 'video_01_city_c2s_fcw_10s'
Example: "video_01_city_c2s_fcw_10s"
Example: {'video_01_city_c2s_fcw_10s','lidarSequence'}
Example: ["video_01_city_c2s_fcw_10s" "lidarSequence"]

labelTypes — Label types
labelType enumeration scalar | labelType enumeration vector | cell array of labelType
enumeration scalars and vectors

Label types from which to gather label data, specified as a labelType enumeration scalar,
labelType enumeration vector, or a cell array of labelType enumeration scalars and vectors. The
gatherLabelData function gathers label data for each signal specified by input signalNames and
each groundTruthMultisignal object specified by input gTruth. The number of elements in
labelTypes must match the number of signals in signalNames.

Gather Label Data for Single Label Type per Signal

To gather label data for a single label type per signal, specify labelTypes as a labelType
enumeration scalar or vector. Across all groundTruthMultisignal objects in gTruth, the
gatherLabelData function gathers labelTypes(n) label data from signalName(n), where n is
the index of the label type and the corresponding signal name whose label data is to be gathered.
Each returned table in the output labelData cell array contains data for only one label type per
signal.

In this code sample, the gatherLabelData function gathers labels of type Rectangle from a video
signal named video_front_camera. The function also gathers labels of type Cuboid from a lidar
point cloud sequence signal stored in a folder named lidarData. The gTruth input contains the
groundTruthMultisignal objects from which this data is to be gathered.

labelData = gatherLabelData(gTruth, ...
                            ["video_front_camera","lidarData"], ...
                            [labelType.Rectangle,labelType.Cuboid];

To gather label data for a single label type from separate signals, you must repeat the label type for
each signal. In this code sample, the gatherLabelData function gathers labels of type Rectangle
from the video_left_camera and video_right_camera video signals.

labelData = gatherLabelData(gTruth, ...
                            ["video_left_camera","video_right_camera"], ...
                            [labelType.Rectangle,labelType.Rectangle];
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Gather Label Data for Multiple Label Types per Signal

To gather label data for multiple label types per signal, specify labelTypes as a cell array of
labelType enumeration scalars and vectors. Across all groundTruthMultisignal objects in
gTruth, the gatherLabelData function gathers labelTypes{n} label data from signalName(n),
where n is the index of the label types and the corresponding signal name whose label data is to be
gathered. The function groups the data for these label types into one table per signal per
groundTruthMultisignal object.

In this code sample, the gatherLabelData function gathers labels of type Rectangle and Line
from the video_front_camera video signal. The function also gathers labels of type Cuboid from a
lidar point cloud sequence signal stored in a folder named lidarData. The gTruth input contains
the groundTruthMultisignal objects from which this data is to be gathered.

labelData = gatherLabelData(gTruth, ...
                            ["video_front_camera", ...
                             "lidarData"], ...
                            {[labelType.Rectangle labelType.Line], ...
                             labelType.Cuboid};

Valid Enumeration Types

You can specify one or more of these enumeration types.

• labelType.Rectangle — Rectangle ROI labels
• labelType.Cuboid — Cuboid ROI labels (point clouds)
• labelType.ProjectedCuboid — Projected cuboid ROI labels (images and video data)
• labelType.Line — Line ROI labels
• labelType.PixelLabel — Pixel ROI labels
• labelType.Scene — Scene labels

To gather label data for scenes, you must specify labelTypes as the labelType.Scene
enumeration scalar. You cannot specify any other label types with labelType.Scene.

sampleFactor — Sample factor
1 (default) | positive integer

Sample factor used to subsample label data, specified as a positive integer. A sample factor of K
includes every Kth signal frame. Increase the sample factor to drop redundant frames from signals
with high sample rates, such as videos.
Example: 'SampleFactor',5

Output Arguments
labelData — Label data
cell array of tables

Label data, returned as an M-by-N cell array of tables, where:

• M is the number of groundTruthMultisignal objects in gTruth.
• When labelTypes contains ROI labelType enumerations, N is the number of signals in

signalNames and the number of elements in labelTypes. In this case, labelData{m,n}
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contains a table of label data for the nth signal of signalNames that is in the mth
groundTruthMultisignal object of gTruth. The table contains label data for only the label
types in the nth position of labelTypes.

• When labelTypes contains only the labelType.Scene enumeration, N is equal to 1. In this
case, labelData{m} contains a table of scene label data across all signals in the mth
groundTruthMultisignal object of gTruth.

For a given label data table, tbl, the table is of size T-by-L, where:

• T is the number of timestamps in the signal for which label data exists.
• L is the number of label definitions that are of the label types gathered for that signal.
• tbl(t,l) contains the label data gathered for the lth label at the tth timestamp.

If one of the signals has no label data at a timestamp, then the corresponding label data table does
not include a row for that timestamp.

For each cell in the table, the format of the returned label data depends on the type of label.

Label Type Storage Format for Labels at Each
Timestamp

labelType.Rectangle M-by-4 numeric matrix of the form [x, y, w,
h], where:

• M is the number of labels in the frame.
• x and y specify the upper-left corner of the

rectangle.
• w specifies the width of the rectangle, which is

its length along the x-axis.
• h specifies the height of the rectangle, which

is its length along the y-axis.
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Label Type Storage Format for Labels at Each
Timestamp

labelType.Cuboid

labelType.ProjectedCuboid

M-by-9 numeric matrix with rows of the form
[xctr, yctr, zctr, xlen, ylen, zlen,
xrot, yrot, zrot], where:

• M is the number of labels in the frame.
• xctr, yctr, and zctr specify the center of

the cuboid.
• xlen, ylen, and zlen specify the length of

the cuboid along the x-axis, y-axis, and z-axis,
respectively, before rotation has been applied.

• xrot, yrot, and zrot specify the rotation
angles for the cuboid along the x-axis, y-axis,
and z-axis, respectively. These angles are
clockwise-positive when looking in the
forward direction of their corresponding axes.

The figure shows how these values determine the
position of a cuboid.

labelType.Line M-by-1 vector of cell arrays, where M is the
number of labels in the frame. Each cell array
contains an N-by-2 numeric matrix of the form
[x1 y1; x2 y2; ... ; xN yN] for N points
in the polyline.

labelType.PixelLabel Label data for all pixel label definitions is stored
in a single PixelLabelData column as a
categorical label matrix. The label matrix must be
stored on disk as a uint8 image.

labelType.Scene Logical 1 (true) if the scene label is applied,
otherwise logical 0 (false)
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Label Data Format

Consider a cell array of label data gathered by using the gatherLabelData function. The function
gathers labels from three groundTruthMultisignal objects with variable names gTruth1,
gTruth2, and gTruth3.

• For a video signal named video_front_camera, the function gathers labels of type Rectangle
and Line.

• For a lidar point cloud sequence signal stored in a folder named lidarData, the function gathers
labels of type Cuboid.

This code shows the call to the gatherLabelData function.

labelData = gatherLabelData([gTruth1 gTruth2 gTruth3], ...
                            ["video_front_camera", ...
                             "lidarData"], ...
                            {[labelType.Rectangle labelType.Line], ...
                             labelType.Cuboid};

The labelData output is a 3-by-2 cell array of tables. Each row of the cell array contains label data
for one of the groundTruthMultisignal objects. The first column contains the label data for the
video signal, video_front_camera. The second column contains the label data for the point cloud
sequence signal, lidarData. This figure shows the labelData cell array.

This figure shows the label data table for the video signal in the third groundTruthMultisignal
object. The gatherLabelData function gathered data for a Rectangle label named car and a Line
label named lane. The table contains label data at four timestamps in the signal.
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This figure shows the label data table for the lidar signal in the third groundTruthMultisignal
object. The gatherLabelData function gathered data for a Cuboid label, also named car. The car
label appears in both signal types because it is marked as a Rectangle label for video signals and a
Cuboid label for lidar signals. The table contains label data at four timestamps in the signal.

timestamps — Signal timestamps
cell array of duration vectors

Signal timestamps, returned as an M-by-N cell array of duration vectors, where:
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• M is the number of groundTruthMultisignal objects in gTruth.
• N is the number of signals in signalNames.
• labelData{m,n} contains the timestamps for the nth signal of signalNames that is in the mth

groundTruthMultisignal object of gTruth.

If you gather label data from multiple signals, the signal timestamps are synchronized to the
timestamps of the first signal specified by signalNames.

Limitations
• The gatherLabelData function does not gather label data for sublabels or attributes. If a label

contains sublabels or attributes, in the labelData output, the function returns the position of the
parent label only.

See Also
boxLabelDatastore | groundTruthMultisignal | writeFrames

Introduced in R2020a
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writeFrames
Write signal frames for ground truth data to disk

Syntax
fileNames = writeFrames(gTruth,signalNames,location)
fileNames = writeFrames(gTruth,signalNames,location,timestamps)
fileNames = writeFrames( ___ ,Name,Value)

Description
fileNames = writeFrames(gTruth,signalNames,location) writes the frames of ground
truth signal sources to the specified folder locations. The function returns the names of the files
containing the written frames. fileNames contains one file name per signal specified by
signalNames per groundTruthMultisignal object specified by gTruth.

Use these written frames and the associated ground truth labels obtained from the
gatherLabelData function as training data for machine learning or deep learning models.

fileNames = writeFrames(gTruth,signalNames,location,timestamps) specifies the
timestamps of the signal frames to write. To obtain signal timestamps, use the gatherLabelData
function.

fileNames = writeFrames( ___ ,Name,Value) specifies options using one or more name-value
pair arguments, in addition to any of the input argument combinations from previous syntaxes. For
example, you can specify the prefix and file type extension of the file names for the written frames.

Examples

Gather Label Data and Write Associated Signal Frames

Gather label data for a video signal and a lidar point cloud sequence signal from a
groundTruthMultisignal object. Write the signal frames associated with that label data to disk
and visualize the frames.

Add the point cloud sequence folder path to the MATLAB® search path. The video is already on the
MATLAB search path.

pcSeqDir = fullfile(toolboxdir('driving'),'drivingdata', ...
    'lidarSequence');
addpath(pcSeqDir);

Load a groundTruthMultisignal object that contains label data for the video and the lidar point
cloud sequence.

data = load('MultisignalGTruth.mat');
gTruth = data.gTruth;

Specify the signals from which to gather label data.
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signalNames = ["video_01_city_c2s_fcw_10s" "lidarSequence"];

The video contains rectangle labels, whereas the lidar point cloud sequence contains cuboid labels.
Gather the rectangle labels from the video and the cuboid labels from the lidar point cloud sequence.

labelTypes = [labelType.Rectangle labelType.Cuboid];
[labelData,timestamps] = gatherLabelData(gTruth,signalNames,labelTypes);

Display the first eight rows of label data from the two signals. Both signals contain data for the Car
label. In the video, the Car label is drawn as a rectangle bounding box. In the lidar point cloud
sequence, the Car label is drawn as a cuboid bounding box.

videoLabelSample = head(labelData{1})
lidarLabelSample = head(labelData{2})

videoLabelSample =

  table

        Car     
    ____________

    {1x4 double}

lidarLabelSample =

  table

        Car     
    ____________

    {1x9 double}

Write signal frames associated with the gathered label data to temporary folder locations, with one
folder per signal. Use the timestamps returned by the gatherLabelData function to indicate which
signal frames to write.

outputFolder = fullfile(tempdir,["videoFrames" "lidarFrames"]);
fileNames = writeFrames(gTruth,signalNames,outputFolder,timestamps);

Writing 2 frames from the following signals:

* video_01_city_c2s_fcw_10s
* lidarSequence

Load the written video signal frames by using an imageDatastore object. Load the associated
rectangle label data by using a boxLabelDatastore (Computer Vision Toolbox) object.

imds = imageDatastore(fileNames{1});
blds = boxLabelDatastore(labelData{1});

Load the written lidar signal frames by using a fileDatastore object. Load the associated cuboid
label data by using a boxLabelDatastore object.

 writeFrames

4-599



fds = fileDatastore(fileNames{2},'ReadFcn',@pcread);
clds = boxLabelDatastore(labelData{2});

Visualize the written video frames by using a vision.VideoPlayer (Computer Vision Toolbox)
object. Visualize the written lidar frames by using a pcplayer (Computer Vision Toolbox) object.

videoPlayer = vision.VideoPlayer;

ptCloud = preview(fds);
ptCloudPlayer = pcplayer(ptCloud.XLimits,ptCloud.YLimits,ptCloud.ZLimits);

while hasdata(imds)
    % Read video and lidar frames.
    I = read(imds);
    ptCloud = read(fds);

    % Visualize video and lidar frames.
    videoPlayer(I);
    view(ptCloudPlayer,ptCloud);
end
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Remove the path to the point cloud sequence folder.

rmpath(pcSeqDir);

Input Arguments
gTruth — Multisignal ground truth data
groundTruthMultisignal object | vector of groundTruthMultisignal objects

Multisignal ground truth data, specified as a groundTruthMultisignal object or vector of
groundTruthMultisignal objects.

signalNames — Names of signals
character vector | cell array of character vectors | string scalar | string vector

Names of the signals for which to write frames, specified as a character vector, string scalar, cell
array of character vectors, or string vector. The signal names must be valid signal names stored in
the input multisignal ground truth data, gTruth.
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To obtain the signal names from a groundTruthMultisignal object, use this syntax, where
gTruth is the variable name of the object:

gTruth.DataSource.SignalName

Example: 'video_01_city_c2s_fcw_10s'
Example: "video_01_city_c2s_fcw_10s"
Example: {'video_01_city_c2s_fcw_10s','lidarSequence'}
Example: ["video_01_city_c2s_fcw_10s" "lidarSequence"]

location — Folder locations
matrix of strings | cell array of character vectors

Folder locations to which to write frames, specified as an M-by-N matrix of strings or an M-by-N cell
array of character vectors, where:

• M is the number of groundTruthMultisignal objects in gTruth.
• N is the number of signals in signalNames.
• location(m,n) (for matrix inputs) or location{m,n} (for cell array inputs) contains the frame-

writing folder location for the nth signal of signalNames that is in the mth
groundTruthMultisignal object of gTruth.

You can specify folder locations as relative paths or full file paths. If any specified folder locations do
not exist, the writeFrames function creates the folders. All folder locations must be unique. If files
already exist in a specified folder location, and the existing files are writeable, then the
writeFrames function overwrites them.

timestamps — Timestamps of frames to write
duration vector | cell array of duration vectors

Timestamps of the frames to write, specified as a duration vector or an M-by-N cell array of
duration vectors, where:

• M is the number of groundTruthMultisignal objects in gTruth.
• N is the number of signals in signalNames.
• timestamps{m,n} contains the timestamps for the nth signal of signalNames that is in the mth

groundTruthMultisignal object of gTruth.

If you are writing frames for only one signal and one groundTruthMultisignal object, specify
timestamps as a single duration vector.

By default, the writeFrames function writes all signal frames. When a signal does not have a frame
at the specified timestamps, the function writes the frame with the nearest preceding timestamp.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'NamePrefix',["video" "lidar"],'FileType',["png" "ply"] writes video
frames with file names of the format video_001.png, video_002.png, and so on, and writes lidar
frames with file names of the format lidar_001.ply, lidar_002.ply, and so on.
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NamePrefix — File name prefix for each signal
character vector | string scalar | cell array of character vectors | string vector

File name prefix for each signal in signalNames, specified as the comma-separated pair consisting
of 'NamePrefix' and a character vector, string scalar, cell array of character vectors, or string
vector.

Each element of 'NamePrefix' specifies the file type for the signal in the corresponding position of
signalNames. By default, 'NamePrefix' is the name of each signal in signalNames.

FileType — File type for each signal
"jpg" for Image signals, "pcd" for PointCloud signals (default) | character vector | string scalar |
cell array of character vectors | string vector

File type for each signal in signalNames, specified as the comma-separated pair consisting of
'FileType' and a character vector, string scalar, cell array of character vectors, or string vector.

Each element of 'FileType' specifies the file type for the signal in the corresponding position of
signalNames. Use this name-value pair argument to specify the file extensions in the names of the
written files.

The supported file types for a signal depend on whether that signal is of type Image or PointCloud.

Signal Type Supported File Types
Image All file types supported by the imwrite function
PointCloud "pcd" or "ply"

Point cloud data (PCD) and polygon (PLY) files
are written using binary encoding. For more
details on these file formats, see the pcwrite
function.

To view the signal types for signals stored in a groundTruthMultisignal object, gTruth, use this
code:

gTruth.DataSource.SignalType

Example: 'FileType','png'
Example: 'FileType',"png"
Example: 'FileType',{'png','ply'}
Example: 'FileType',["png" "ply"]

Verbose — Display writing progress information
trueor 1 (default) | false or 0

Display writing progress information at the MATLAB command line, specified as the comma-
separated pair consisting of 'Verbose' and logical 1 (true) or 0 (false).

Output Arguments
fileNames — File names of written frames
cell array of string column vectors
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File names of the written frames, returned as an M-by-N cell array of string vectors, where:

• M is the number of groundTruthMultisignal objects in gTruth.
• N is the number of signals in signalNames.
• fileNames{m,n} contains the file names for the frames of the nth signal of signalNames that is

in the mth groundTruthMultisignal object of gTruth.

The file names for each signal are returned in a string column vector, where each row contains the
file name for a written frame. If you specified the input timestamps, then each file name represents
a written frame at the timestamp in the corresponding position of timestamps.

Each output file is named NamePrefix_UID.FileType, where:

• NamePrefix is the file name prefix. To set the file name prefix, use the 'NamePrefix' name-
value pair argument.

• UID is the unique integer index for each written frame. The writeFrames function generates
these indices.

• FileType is the file type extension. To set the file type extension, use the 'FileType' name-
value pair argument.

See Also
gatherLabelData | groundTruthMultisignal | imformats | imwrite | pcwrite

Introduced in R2020a
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changeFilePaths
Change file paths in multisignal ground truth data

Syntax
unresolvedPaths = changeFilePaths(gTruth,alternativePaths)

Description
unresolvedPaths = changeFilePaths(gTruth,alternativePaths) changes the file paths
stored in a groundTruthMultisignal object, gTruth, based on pairs of current paths and
alternative paths, alternativePaths. If gTruth is a vector of groundTruthMultisignal objects,
the function changes the file paths across all objects. The function returns the unresolved paths in
unresolvedPaths. An unresolved path is any current path in alternativePaths not found in
gTruth or any alternative path in alternativePaths not found at the specified path location. In
both cases, unresolvedPaths returns only the current paths.

Use this function to update the file paths of ground truth data that changes folder locations. You can
change file paths for the ground truth data sources and pixel label data.

Examples

Change File Paths in Multisignal Ground Truth Data

Change the file paths to the data sources and pixel label data in a groundTruthMultisignal
object.

Load a groundTruthMultisignal object containing ground truth data into the workspace. The
data source and pixel label data of the object contain file paths corresponding to an image sequence
showing a building. MATLAB® displays a warning that the path to the data source cannot be found.

load('gTruthMultiOldPaths.mat')

Warning: The data source for the following source names could not be loaded. Update the data sources using <a href="matlab:doc('changeFilePaths')">changeFilePaths</a> method.
  'C:\Sources\building'

Display the current path to the data source.

gTruth.DataSource

ans = 
  ImageSequenceSource with properties:

            Name: "Image Sequence"
     Description: "An image sequence reader"
      SourceName: "C:\Sources\building"
    SourceParams: [1×1 struct]
      SignalName: "building"
      SignalType: Image
       Timestamp: {[5×1 duration]}
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      NumSignals: 1

Specify the current path to the data source and an alternative path and store these paths in a cell
array. Use the changeFilePaths function to update the data source path based on the paths in the
cell array. Because the function does not find the pixel label data at the specified new path, it returns
the current unresolved paths.

currentPathDataSource = "C:\Sources\building";
newPathDataSource = fullfile(matlabroot,"toolbox\vision\visiondata\building");
alternativePaths = {[currentPathDataSource newPathDataSource]};
unresolvedPaths = changeFilePaths(gTruth,alternativePaths)

unresolvedPaths = 5×1 string
    "C:\Pixels\Label_1.png"
    "C:\Pixels\Label_2.png"
    "C:\Pixels\Label_3.png"
    "C:\Pixels\Label_4.png"
    "C:\Pixels\Label_5.png"

Verify that the paths in the groundTruthMultisignal object match the unresolved paths returned
by the changeFilePaths function. The unresolved paths are stored in the ROILabelData property
of the groundTruthMultisignal object, in the PixelLabelData column of the table for the
building image sequence signal.

gTruth.ROILabelData.building.PixelLabelData

ans = 5×1 cell
    {'C:\Pixels\Label_1.png'}
    {'C:\Pixels\Label_2.png'}
    {'C:\Pixels\Label_3.png'}
    {'C:\Pixels\Label_4.png'}
    {'C:\Pixels\Label_5.png'}

Specify the current path and an alternative path for the pixel label files and change the file paths. The
function updates the paths for all pixel labels. Because the function resolves all paths, it returns an
empty array of unresolved paths.

currentPathPixels = "C:\Pixels";
newPathPixels = fullfile(matlabroot,"toolbox\vision\visiondata\buildingPixellabels");
alternativePaths = {[currentPathPixels newPathPixels]};
unresolvedPaths = changeFilePaths(gTruth,alternativePaths)

unresolvedPaths = 

  0×0 empty string array

To view the new data source path, use the gTruth.DataSource command. To view the new pixel
label data paths, use the gTruth.ROILabelData.building.PixelLabelData command.

Input Arguments
gTruth — Multisignal ground truth data
groundTruthMultisignal object | vector of groundTruthMultisignal objects
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Multisignal ground truth data, specified as a groundTruthMultisignal object or vector of
groundTruthMultisignal objects.

alternativePaths — Alternative file paths
1-by-2 string vector | cell array of 1-by-2 string vectors

Alternative file paths, specified as a 1-by-2 string vector or cell array of 1-by-2 string vectors of the
form [pcurrent pnew].

• pcurrent is a current file path in gTruth. This file path can be from the data source or pixel label
data of gTruth. Specify pcurrent using backslashes as the path separators.

• pnew is the new path to which you want to change pcurrent. Specify pnew using either forward slashes
or backslashes as the path separators.

You can specify alternatives paths to these files.

• Signal data sources — The DataSource property of gTruth contains one MultiSignalSource
object per signal. The changeFilePaths function updates the signal paths stored in these
objects.

• Pixel label data — The ROILabelData property of gTruth contains an ROILabelData object,
which contains a table of ROI label data for each signal. For signals with pixel label data, which is
stored in the PixelLabelData column of the table for that signal, the function updates the paths
to the pixel label data.

If gTruth is a vector of groundTruthMultisignal objects, the function changes the file paths
across all objects.
Example: ["C:\Pixels\PixelLabelData_1" "C:\Pixels\PixelLabelData_2] changes the
path to the pixel label data folder. The function updates the path in all pixel label files stored in that
folder.
Example: {["B:\Sources\video1.mp4" "C:\Sources\video1.mp4"]; ["B:\Sources
\video2.mp4" "C:\Sources\video2.mp4"]} changes the drive letter in the paths to the data
sources.

Output Arguments
unresolvedPaths — Unresolved file paths
string array

Unresolved file paths, returned as a string array. If the changeFilePaths function cannot find
either the current path or new path in the string vectors specified by the alternativePaths input,
then it returns the unresolved current paths in unresolvedPaths.

If the function finds and resolves all file paths, then it returns unresolvedPaths as an empty string
array.

See Also
groundTruthMultisignal

Topics
“Share and Store Labeled Ground Truth Data” (Computer Vision Toolbox)
“How Labeler Apps Store Exported Pixel Labels” (Computer Vision Toolbox)
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geoplayer
Visualize streaming geographic map data

Description
A geoplayer object is a geographic player that displays the streaming coordinates of a driving route
on a map.

• To display the driving route of a vehicle, use the plotRoute function.
• To display the position of a vehicle as it drives along a route, use the plotPosition function. You

can plot the position of multiple vehicles on different routes simultaneously by specifying a unique
track ID for each route. For more information, see the 'TrackID' name-value pair argument on
plotPosition.

• To change the underlying map, or basemap, of the geoplayer object, update the Basemap
property of the object. For more information, see “Custom Basemaps” on page 4-628.

Creation

Syntax
player = geoplayer(latCenter,lonCenter)
player = geoplayer(latCenter,lonCenter,zoomLevel)
player = geoplayer( ___ ,Name,Value)

Description

player = geoplayer(latCenter,lonCenter) creates a geographic player, centered at latitude
coordinate latCenter and longitude coordinate lonCenter.

player = geoplayer(latCenter,lonCenter,zoomLevel) creates a geographic player with a
map magnification specified by zoomLevel.

player = geoplayer( ___ ,Name,Value) sets properties on page 4-610 using one or more
name-value pairs, in addition to specifying input arguments from previous syntaxes. For example,
geoplayer(45,0,'HistoryDepth',5) creates a geographic player centered at the latitude-
longitude coordinate (45, 0), and sets the HistoryDepth property such that the player displays the
five previous geographic coordinates.

Input Arguments

latCenter — Latitude coordinate
real scalar in the range (–90, 90)

Latitude coordinate at which the geographic player is centered, specified as a real scalar in the range
(–90, 90).
Data Types: single | double
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lonCenter — Longitude coordinate
real scalar in the range [–180, 180]

Longitude coordinate at which the geographic player is centered, specified as a real scalar in the
range [–180, 180].
Data Types: single | double

zoomLevel — Magnification
15 | integer in the range [0, 25]

Magnification of the geographic player, specified as an integer in the range [0, 25]. This magnification
occurs on a logarithmic scale with base 2. Increasing zoomLevel by one doubles the map scale.

Properties
HistoryDepth — Number of previous geographic coordinates to display
0 (default) | nonnegative integer | Inf

Number of previous geographic coordinates to display, specified as a nonnegative integer or Inf. A
value of 0 displays only the current geographic coordinates. A value of Inf displays all geographic
coordinates previously plotted using the plotPosition function.

You can set this property only when you create the object. After you create the object, this property is
read-only.

HistoryStyle — Style of displayed geographic coordinates
'point' (default) | 'line'

Style of displayed geographic coordinates, specified as one of these values:

• 'point' — Display the coordinates as discrete, unconnected points.
• 'line' — Display the coordinates as a single connected line.

You can set this property when you create the object. After you create the object, this property is
read-only.

Basemap — Map on which to plot data
'streets' (default) | 'darkwater' | 'grayterrain' | 'grayland' | 'colorterrain' | ...

Map on which to plot data, specified as one of the basemap names in this table, 'none', or a custom
basemap defined using the addCustomBasemap function. For more information on adding custom
basemaps, see “Custom Basemaps” on page 4-628. For examples on how to add custom basemaps,
see “Display Data on OpenStreetMap Basemap” on page 4-615 and “Display Map Data on HERE
Basemap” on page 4-620.
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'streets' (default)

Street map data
composed of geographic
map tiles using the
World Street Map
provided by Esri. For
more information about
the map, see World
Street Map on the Esri
ArcGIS website.

Hosted by Esri.

'darkwater'

Land areas: light-to-
moderate gray

Ocean and water areas:
darker gray

Created using Natural
Earth.

'grayterrain'

Worldwide terrain
depicted
monochromatically in
shades of gray,
combining shaded relief
that emphasizes both
high mountains and the
micro terrain found in
lowlands.

Created using Natural
Earth.

'grayland'

Land areas: light-to-
moderate gray land

Ocean and water areas:
white

Created using Natural
Earth.

'colorterrain'

Shaded relief map
blended with a land
cover palette. Humid
lowlands are green and
arid lowlands brown.

Created using Natural
Earth.

'bluegreen'

Land areas: light green

Ocean and water areas:
light blue

Created using Natural
Earth.
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'landcover'

Satellite-derived land
cover data and shaded
relief presented with a
light, natural palette
suitable for making
thematic and reference
maps (includes ocean-
bottom relief).

Created using Natural
Earth.

N/A 'none'

Geographic axes plots
your data with latitude-
longitude grid, ticks,
and labels but does not
include a map.

By default, access to basemaps requires an Internet connection. The exception is the 'darkwater'
basemap, which is installed with MATLAB.

If you do not have consistent access to the Internet, you can download the basemaps hosted by
MathWorks® onto your local system. For more information about downloading basemaps, see “Access
Basemaps for Geographic Axes and Charts”. You cannot download basemaps hosted by Esri.

Alignment of boundaries and region labels are a presentation of the feature provided by the data
vendors and do not imply endorsement by MathWorks.
Example: player = geoplayer(latCenter,lonCenter,'Basemap','darkwater')
Example: player.Basemap = 'darkwater'
Data Types: char | string

CenterOnID — Recenter display based on specified track ID
[](center on first track) (default) | positive integer

Recenter display based on the specified track ID, specified as a positive integer. The geoplayer
object recenters the map when the new position, specified by latCenter and lonCenter, moves
outside of the current viewable map area. You can also use this property to recenter the map on a
previously drawn track that is outside of the viewable area. Define the track ID by using the
'TrackID' name-value pair argument when you call the plotPosition object function.

Parent — Parent axes of geographic player
Figure graphics object | Panel graphics object

Parent axes of the geographic player, specified as a Figure graphics object or Panel graphics
object. If you do not specify Parent, then geoplayer creates the geographic player in a new figure.

You can set this property when you create the object. After you create the object, this property is
read-only.

Axes — Axes used by geographic player
GeographicAxes object

Axes used by geographic player, specified as a GeographicAxes object. Use this axes to customize
the map that the geographic player displays. For an example, see “Customize Geographic Axes” on
page 4-622. For details on the properties that you can customize, see GeographicAxes Properties.
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Object Functions
plotPosition Display current position in geoplayer figure
plotRoute Display continuous route in geoplayer figure
reset Remove all existing plots from geoplayer figure
show Make geoplayer figure visible
hide Make geoplayer figure invisible
isOpen Return true if geoplayer figure is visible

Examples

Animate Sequence of Latitude and Longitude Coordinates

Load a sequence of latitude and longitude coordinates.

data = load('geoSequence.mat');

Create a geographic player and configure it to display all points in its history.

zoomLevel = 17;
player = geoplayer(data.latitude(1),data.longitude(1),zoomLevel,'HistoryDepth',Inf);

Display the sequence of coordinates.

  for i = 1:length(data.latitude)
      plotPosition(player,data.latitude(i),data.longitude(i));
      pause(0.01)
  end

 geoplayer

4-613



View Position of Vehicle Along Route

Load a sequence of latitude and longitude coordinates.

data = load('geoRoute.mat');

Create a geographic player and set the zoom level to 12. Compared to the default zoom level, this
zoom level zooms the map out by a factor of 8.

player = geoplayer(data.latitude(1),data.longitude(1),12);

Display the full route.

plotRoute(player,data.latitude,data.longitude);

Display the coordinates in a sequence. The circle marker indicates the current position.

for i = 1:length(data.latitude)
    plotPosition(player,data.latitude(i),data.longitude(i));
    pause(0.05)
end
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Display Data on OpenStreetMap Basemap

This example shows how to display a driving route and vehicle positions on an OpenStreetMap®
basemap.

Add the OpenStreetMap basemap to the list of basemaps available for use with the geoplayer
object. After you add the basemap, you do not need to add it again in future sessions.

name = 'openstreetmap';
url = 'https://a.tile.openstreetmap.org/${z}/${x}/${y}.png';
copyright = char(uint8(169));
attribution = copyright + "OpenStreetMap contributors";
addCustomBasemap(name,url,'Attribution',attribution)

Load a sequence of latitude and longitude coordinates.

data = load('geoRoute.mat');

Create a geographic player. Center the geographic player on the first position of the driving route and
set the zoom level to 12.
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zoomLevel = 12;
player = geoplayer(data.latitude(1),data.longitude(1),zoomLevel);

Display the full route.

plotRoute(player,data.latitude,data.longitude);
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By default, the geographic player uses the World Street Map basemap ('streets') provided by
Esri®. Update the geographic player to use the added OpenStreetMap basemap instead.

player.Basemap = 'openstreetmap';
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Display the route again.

plotRoute(player,data.latitude,data.longitude);
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Display the positions of the vehicle in a sequence.

for i = 1:length(data.latitude)
   plotPosition(player,data.latitude(i),data.longitude(i))
end
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Display Map Data on HERE Basemap

Display a driving route on a basemap provided by HERE Technologies. To use this example, you must
have a valid license from HERE Technologies.

Specify the basemap name and map URL.

name = 'herestreets';
url  = ['https://2.base.maps.cit.api.here.com/maptile/2.1/maptile/', ...
        'newest/normal.day/${z}/${x}/${y}/256/png?app_id=%s&app_code=%s'];

Maps from HERE Technologies require a valid license. Create a dialog box. In the dialog box, enter
the App ID and App Code corresponding to your HERE license.

prompt = {'HERE App ID:','HERE App Code:'};
title = 'HERE Tokens';
dims = [1 40]; % Text edit field height and width
hereTokens = inputdlg(prompt,title,dims);
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If the license is valid, specify the HERE credentials and a custom attribution, load coordinate data,
and display the coordinates on the HERE basemap using a geoplayer object. If the license is not
valid, display an error message.

if ~isempty(hereTokens)
        
    % Add HERE basemap with custom attribution.
    url = sprintf(url,hereTokens{1},hereTokens{2});
    copyrightSymbol = char(169); % Alt code
    attribution = [copyrightSymbol,' ',datestr(now,'yyyy'),' HERE'];
    addCustomBasemap(name,url,'Attribution',attribution);

    % Load sample lat,lon coordinates.
    data = load('geoSequence.mat');

    % Create geoplayer with HERE basemap.
    player = geoplayer(data.latitude(1),data.longitude(1), ...
        'Basemap','herestreets','HistoryDepth',Inf);
 
    % Display the coordinates in a sequence.
    for i = 1:length(data.latitude)
        plotPosition(player,data.latitude(i),data.longitude(i));
    end

else
    error('You must enter valid credentials to access maps from HERE Technologies');
end
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Customize Geographic Axes

Customize the geographic axes of a geoplayer object by adding a custom line between route
endpoints.

Load a driving route and vehicle positions along that route.

data = load('geoRoute.mat');

Create a geographic player that is centered on the first position of the vehicle.

zoomLevel = 10;
player = geoplayer(data.latitude(1),data.longitude(1),zoomLevel);
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Display the full route.

plotRoute(player,data.latitude,data.longitude);
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Display positions of the vehicle along the route.

for i = 1:length(data.latitude)
    plotPosition(player,data.latitude(i),data.longitude(i))
end
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Customize the geographic axes by adding a line between the two endpoints of the route.

geoplot(player.Axes,[data.latitude(1) data.latitude(end)], ...
    [data.longitude(1) data.longitude(end)],'g-*')
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Plot the Tracks of Two Vehicles

Plot multiple routes simultaneously in a geographic player. First, assign each route a unique
identifier. Then, when plotting points on the routes using the plotPosition object function, specify
the route identifier using the 'TrackID' name-value pair argument. In this example, the routes are
labeled Vehicle 1 and Vehicle 2. This screen capture shows the point where the two routes are about
to cross paths.
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Load data for a route.

data = load('geoRoute.mat');

Extract data for the first vehicle.

lat1 = data.latitude;
lon1 = data.longitude;

Create a synthetic route for the second vehicle that drives the same route in the opposite direction.

lat2 = flipud(lat1);
lon2 = flipud(lon1);

Create a geoplayer object. Initialize the player to display the last 10 positions as a line trailing the
current position.

zoomLevel = 12;
player = geoplayer(lat1(1),lon1(1),zoomLevel,...
    'HistoryDepth',10,'HistoryStyle','line');

Plot the positions of both vehicles as they move over the route. Specify an ID for each track by using
the 'TrackID' name-value pair argument. By default, the geoplayer object centers the display of
the vehicle on the first track. You can center the display on other tracks by using the CenterOnID
property of the geoplayer object.
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loopCounter = length(lat1);
for i = 1:loopCounter
     plotPosition(player,lat1(i),lon1(i),'TrackID',1,'Label','Vehicle 1');
     plotPosition(player,lat2(i),lon2(i),'TrackID',2,'Label','Vehicle 2');
end

Limitations
• Geographic map tiles are not available for all locations.

More About
Custom Basemaps

The geoplayer object can use custom basemaps from providers such as HERE Technologies and
OpenStreetMap.

To make a custom basemap available for use with the geoplayer object, use the
addCustomBasemap function. After you add a custom basemap, it remains available for use in future
MATLAB sessions, until you remove the basemap by using the removeCustomBasemap function.
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To display streaming coordinates on a custom basemap, specify the name of the basemap in the
Basemap property of the geoplayer object.

Note For some custom basemaps, access to the map servers requires a valid license from the map
provider.

Tips
• When the geoplayer object plots a position that is outside the current view of the map, the

object automatically scrolls the map.

See Also
Functions
addCustomBasemap | geoaxes | geobasemap | geobubble | geolimits | geoplot |
latlon2local | local2latlon | removeCustomBasemap

Properties
GeographicAxes Properties

Introduced in R2018a
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plotPosition
Display current position in geoplayer figure

Syntax
plotPosition(player,lat,lon)
plotPosition(player,lat,lon,Name,Value)

Description
plotPosition(player,lat,lon) plots the point specified by latitude and longitude coordinates,
(lat,lon), in the geoplayer figure, specified by player. To plot multiple routes simultaneously,
specify a unique identifier for each route using the TrackID parameter.

plotPosition(player,lat,lon,Name,Value) uses Name,Value pair arguments to modify
aspects of the plotted points.

For example, plotPosition(player,45,0,'Color','w','Marker','*') plots a point in the
geoplayer figure as a white star.

Examples

View Position of Vehicle Along Route

Load a sequence of latitude and longitude coordinates.

data = load('geoRoute.mat');

Create a geographic player and set the zoom level to 12. Compared to the default zoom level, this
zoom level zooms the map out by a factor of 8.

player = geoplayer(data.latitude(1),data.longitude(1),12);

Display the full route.

plotRoute(player,data.latitude,data.longitude);

Display the coordinates in a sequence. The circle marker indicates the current position.

for i = 1:length(data.latitude)
    plotPosition(player,data.latitude(i),data.longitude(i));
    pause(0.05)
end
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Plot the Tracks of Two Vehicles

Plot multiple routes simultaneously in a geographic player. First, assign each route a unique
identifier. Then, when plotting points on the routes using the plotPosition object function, specify
the route identifier using the 'TrackID' name-value pair argument. In this example, the routes are
labeled Vehicle 1 and Vehicle 2. This screen capture shows the point where the two routes are about
to cross paths.
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Load data for a route.

data = load('geoRoute.mat');

Extract data for the first vehicle.

lat1 = data.latitude;
lon1 = data.longitude;

Create a synthetic route for the second vehicle that drives the same route in the opposite direction.

lat2 = flipud(lat1);
lon2 = flipud(lon1);

Create a geoplayer object. Initialize the player to display the last 10 positions as a line trailing the
current position.

zoomLevel = 12;
player = geoplayer(lat1(1),lon1(1),zoomLevel,...
    'HistoryDepth',10,'HistoryStyle','line');

Plot the positions of both vehicles as they move over the route. Specify an ID for each track by using
the 'TrackID' name-value pair argument. By default, the geoplayer object centers the display of
the vehicle on the first track. You can center the display on other tracks by using the CenterOnID
property of the geoplayer object.
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loopCounter = length(lat1);
for i = 1:loopCounter
     plotPosition(player,lat1(i),lon1(i),'TrackID',1,'Label','Vehicle 1');
     plotPosition(player,lat2(i),lon2(i),'TrackID',2,'Label','Vehicle 2');
end

Input Arguments
player — Streaming geographic player
geoplayer object

Streaming geographic player, specified as a geoplayer object.5

lat — Latitude coordinate
real scalar in the range [–90, 90]

Latitude coordinate of the point to display in the geographic player, specified as a real scalar in the
range [–90, 90].
Data Types: single | double

5. Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks.
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lon — Longitude coordinate
real scalar in the range [–180, 180]

Longitude coordinate of the point to display in the geographic player, specified as a real scalar in the
range [–180, 180].
Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Color','k'

Label — Text description
'' (default) | character vector | string scalar

Text description of the point, specified as the comma-separated pair consisting of 'Label' and a
character vector or string scalar.
Example: 'Label','07:45:00AM'

Color — Marker color
color name | short color name | RGB triplet

Marker color, specified as the comma-separated pair consisting of 'Color' and a color name, short
color name, or RGB triplet. By default, the marker color is selected automatically.

For a custom color, specify an RGB triplet. An RGB triplet is a three-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1]; for example, [0.4 0.6 0.7]. Alternatively, you can specify some
common colors by name. This table lists the named color options and the equivalent RGB triplet
values.

Color Name Color Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Example: 'Color',[1 0 1]
Example: 'Color','m'
Example: 'Color','magenta'

Marker — Marker symbol
'o' (default) | '+' | '*' | '.' | 'x' | ...
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Marker symbol, specified as the comma-separated pair consisting of 'Marker' and one of the
markers in this table.

Marker Description
'o' Circle
'+' Plus sign
'*' Asterisk
'.' Point
'x' Cross
'_' Horizontal line
'|' Vertical line
's' Square
'd' Diamond
'^' Upward-pointing triangle
'v' Downward-pointing triangle
'>' Right-pointing triangle
'<' Left-pointing triangle
'p' Pentagram
'h' Hexagram

MarkerSize — Diameter of marker
6 (default) | positive real scalar

Approximate diameter of marker in points, specified as the comma-separated pair consisting of
'MarkerSize' and a positive real scalar. 1 point = 1/72 inch. A marker size larger than 6 can reduce
the rendering performance.

TrackID — Unique identifier for plotted track
1 (default) | positive integer

Unique identifier for plotted track, specified as a positive integer. Use this value to identify individual
tracks when you plot multiple tracks. When you specify this value, all other name-value pair
arguments for this function apply to only the track specified by this unique identifier.

Tips
• When a vehicle's track goes outside of viewable area, the map automatically re-centers based on

the value of the geoplayer CenterOnID property.

See Also
geoplayer | latlon2local | local2latlon | plotRoute | reset

Introduced in R2018a
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plotRoute
Display continuous route in geoplayer figure

Syntax
plotRoute(player,lat,lon)
plotRoute(player,lat,lon,Name,Value)

Description
plotRoute(player,lat,lon) displays a route, as defined by a series of latitude-longitude
coordinates, in a geoplayer figure. The route appears as a continuous line on a map. To plot
multiple routes in a geoplayer, call plotRoute for each route.

plotRoute(player,lat,lon,Name,Value) uses Name,Value pair arguments to modify the
visual style of the route.

For example, plotRoute(player,[45 46],[0 0],'Color','k') plots a route in a geoplayer
figure as a black line.

Examples

View Position of Vehicle Along Route

Load a sequence of latitude and longitude coordinates.

data = load('geoRoute.mat');

Create a geographic player and set the zoom level to 12. Compared to the default zoom level, this
zoom level zooms the map out by a factor of 8.

player = geoplayer(data.latitude(1),data.longitude(1),12);

Display the full route.

plotRoute(player,data.latitude,data.longitude);

Display the coordinates in a sequence. The circle marker indicates the current position.

for i = 1:length(data.latitude)
    plotPosition(player,data.latitude(i),data.longitude(i));
    pause(0.05)
end
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Plot Multiple Routes

Plot multiple routes in a geographic player by calling plotRoute multiple times.

Load data for a route.

data = load('geoRoute.mat');

Extract data for the first vehicle.

lat1 = data.latitude;
lon1 = data.longitude;

Create a synthetic route for the second vehicle. Add a small offset for better visibility.

lat2 = lat1 + 0.002; % add a small offset in degrees
lon2 = lon1;

Create a geoplayer object, specifying the starting coordinates for one of the routes.

player = geoplayer(lat1(1),lon1(1));

Plot the routes in the geographic player by calling plotRoute for each route.
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plotRoute(player,lat1,lon1);
plotRoute(player,lat2,lon2);

Input Arguments
player — Streaming geographic player
geoplayer object

Streaming geographic player, specified as a geoplayer object.6

lat — Latitude coordinates
real-valued vector

Latitude coordinates of points along the route, specified as a real-valued vector with elements in the
range [–90, 90].
Data Types: single | double

lon — Longitude coordinates
real-valued vector

6. Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks.
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Longitude coordinates of points along the route, specified as a real-valued vector with elements in the
range [–180, 180].
Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Color','g'

Color — Line color
color name | short color name | RGB triplet

Line color, specified as the comma-separated pair consisting of 'Color' and a color name, short
color name, or RGB triplet. By default, the line color is selected automatically.

For a custom color, specify an RGB triplet. An RGB triplet is a three-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1]; for example, [0.4 0.6 0.7]. Alternatively, you can specify some
common colors by name. This table lists the named color options and the equivalent RGB triplet
values.

Color Name Color Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Example: 'Color',[1 0 1]
Example: 'Color','m'
Example: 'Color','magenta'

LineWidth — Line width
2 (default) | positive number

Line width in points, specified as the comma-separated pair consisting of 'LineWidth' and a
positive number. 1 point = 1/72 inch.

ShowEndpoints — Display origin and destination
'on' (default) | 'off'

Display the origin and destination points, specified as the comma-separated pair consisting of
'ShowEndpoints' and 'on' or 'off'. Specify 'on' to display the origin and destination points.
The origin marker is white and the destination marker is filled with color.
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See Also
geoplayer | latlon2local | local2latlon | plotPosition | reset

Introduced in R2018a
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reset
Remove all existing plots from geoplayer figure

Syntax
reset(player)

Description
reset(player) removes all previously plotted points and routes from the geoplayer figure.

Examples

Reset Geographic Player

Load a sequence of latitude and longitude coordinates.

data = load('geoRoute.mat');

Create a geographic player with a zoom level of 12. Configure the geographic player to display all
points in its history.

player = geoplayer(data.latitude(1),data.longitude(1),12,'HistoryDepth',Inf);

Display the full route.

plotRoute(player,data.latitude,data.longitude);

Display the coordinates in a sequence. The circle marker indicates the current position. At the 200th
point, reset the geographic player. Observe that the route and all previously plotted points are
removed.

for i = 1:length(data.latitude)
    plotPosition(player,data.latitude(i),data.longitude(i));
   
    if i == 200
        reset(player)
    end
    
    pause(.05)
end
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Input Arguments
player — Streaming geographic player
geoplayer object

Streaming geographic player, specified as a geoplayer object.7

See Also
geoplayer | plotPosition | plotRoute

Introduced in R2018a

7. Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks.
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show
Make geoplayer figure visible

Syntax
show(player)

Description
show(player) makes the geoplayer figure visible again after closing or hiding it.

Examples

Hide and Show Geographic Player

Load a sequence of latitude and longitude coordinates.

data = load('geoRoute.mat');

Create a geographic player with a zoom level of 10. Configure the player to show its complete history
of plotted points.

player = geoplayer(data.latitude(1),data.longitude(1),10,'HistoryDepth',Inf);

Display the first half of the geographic coordinates in a sequence. The circle marker indicates the
current position.

halfLength = round(length(data.latitude)/2);

for i = 1:halfLength
    plotPosition(player,data.latitude(i),data.longitude(i));
end
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Hide the player and confirm that it is no longer visible.

hide(player)
isOpen(player)

ans = logical
   0

Add the remaining half of the geographic coordinates to the map.

for i = halfLength+1:length(data.latitude)
    plotPosition(player,data.latitude(i),data.longitude(i));
end

Show the player. The player now displays both halves of the route.

show(player)

4 Objects

4-644



Input Arguments
player — Streaming geographic player
geoplayer object

Streaming geographic player, specified as a geoplayer object.8

See Also
geoplayer | hide | isOpen

Introduced in R2018a

8. Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks.
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hide
Make geoplayer figure invisible

Syntax
hide(player)

Description
hide(player) hides the geoplayer figure. To redisplay this figure, use show(player).

Examples

Hide and Show Geographic Player

Load a sequence of latitude and longitude coordinates.

data = load('geoRoute.mat');

Create a geographic player with a zoom level of 10. Configure the player to show its complete history
of plotted points.

player = geoplayer(data.latitude(1),data.longitude(1),10,'HistoryDepth',Inf);

Display the first half of the geographic coordinates in a sequence. The circle marker indicates the
current position.

halfLength = round(length(data.latitude)/2);

for i = 1:halfLength
    plotPosition(player,data.latitude(i),data.longitude(i));
end
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Hide the player and confirm that it is no longer visible.

hide(player)
isOpen(player)

ans = logical
   0

Add the remaining half of the geographic coordinates to the map.

for i = halfLength+1:length(data.latitude)
    plotPosition(player,data.latitude(i),data.longitude(i));
end

Show the player. The player now displays both halves of the route.

show(player)
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Input Arguments
player — Streaming geographic player
geoplayer object

Streaming geographic player, specified as a geoplayer object.9

See Also
geoplayer | isOpen | show

Introduced in R2018a

9. Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks.
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isOpen
Return true if geoplayer figure is visible

Syntax
tf = isOpen(player)

Description
tf = isOpen(player) returns logical 1 (true) if the geoplayer figure is visible. Otherwise,
isOpen returns logical 0 (false).

Examples

Plot Points While Geographic Player Is Open

Load a sequence of latitude and longitude coordinates.

data = load('geoRoute.mat');

Create a geographic player with a zoom level of 12. Configure the player to display all points in its
history.

player = geoplayer(data.latitude(1),data.longitude(1),12,'HistoryDepth',Inf);

Display the geographic coordinates in a sequence by using the plotPosition function. Put the call
to plotPosition inside a while loop, so that the player plots points only while the figure is open.
You can exit the loop by closing the figure. If you do not close the figure, then the loop automatically
exits when all points are plotted.

i = 1;
numPoints = length(data.latitude);
while isOpen(player) && i<=numPoints
    plotPosition(player,data.latitude(i),data.longitude(i))
    pause(0.1)
    i=i+1;
end

To make the figure visible again, use the show function.

show(player)
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Input Arguments
player — Streaming geographic player
geoplayer object

Streaming geographic player, specified as a geoplayer object.10

Output Arguments
tf — Visibility of geographic player
1 (true) | 0 (false)

Visibility of geographic player, returned as logical 1 (true) when the geoplayer figure is open, and
logical 0 (false) otherwise.

See Also
geoplayer | hide | show

10. Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks.
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Introduced in R2018a
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hereHDLMReader
HERE HD Live Map reader

Description
Use a hereHDLMReader object to read high-definition map data for selected map tiles from the
HERE HD Live Map11 (HERE HDLM) web service, provided by HERE Technologies. HERE HDLM
data provides highly detailed and accurate information about the vehicle environment, such as road
and lane topology, and is suitable for developing automated driving applications.

You can select specific map tiles from which to read data or select map tiles based on the coordinates
of a driving route. To read map data for tiles, use the read function and specify the reader as an
input argument. For more details, see “Read and Visualize HERE HD Live Map Data”.

Note Use of the hereHDLMReader object requires valid HERE HDLM credentials. If you have not
previously set up credentials, a dialog box prompts you to enter them. Enter the Access Key ID and
Access Key Secret that you obtained from HERE Technologies, and click OK.

Creation

Syntax
reader = hereHDLMReader(lat,lon)
reader = hereHDLMReader(tileID)
reader = hereHDLMReader( ___ ,Name,Value)

Description

reader = hereHDLMReader(lat,lon) creates a HERE HDLM reader that can read map data for
the HERE map tiles that correspond to a set of latitude and longitude coordinates. The map tiles are
at a zoom level of 14.

reader = hereHDLMReader(tileID) creates a HERE HDLM reader that can read map data for
the map tiles with the specified HERE tile IDs. These tile IDs are stored in the TileIDs property of
the HERE HDLM reader.

reader = hereHDLMReader( ___ ,Name,Value) sets the Configuration, WriteLocation, and
CoordinateFormat properties using one or more name-value pairs. For example,
hereHDLMReader(tileID,'Configuration',config) creates a reader that is configured to read
map tile data from a specific HERE HDLM production catalog or catalog version, where config is a
hereHDLMConfiguration object.

11. You need to enter into a separate agreement with HERE in order to gain access to the HDLM services and to get the
required credentials (access_key_id and access_key_secret) for using the HERE Service.
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Input Arguments

lat — Latitude coordinates
vector of real values in the range [–90, 90]

Latitude coordinates, specified as a vector of real values in the range [–90, 90].

Use this vector, along with lon, to specify the coordinates of a driving route that you want to read
map data from.

lat and lon must be the same size.
Data Types: double

lon — Longitude coordinates
vector of real values in the range [–180, 180]

Longitude coordinates, specified as a vector of real values in the range [–180, 180].

Use this vector, along with lat, to specify the coordinates of a driving route that you want to read
map data from.

lat and lon must be the same size.
Data Types: double

tileID — HERE tile IDs
vector of unsigned 32-bit integers

HERE tile IDs from which to read data, specified as a vector of unsigned 32-bit integers. These tile
IDs are stored in the TileIDs property of the hereHDLMReader object. The specified map tiles must
all come from the same HERE HDLM production catalog.

If you configure the hereHDLMReader object to read data from a specific catalog using the
hereHDLMConfiguration object, then all tile IDs must be found within that catalog. Otherwise, the
reader object returns an error.
Example: uint32([386497368 386497369])
Data Types: uint32

Properties
TileIDs — HERE tile IDs
vector of unsigned 32-bit integers

This property is read-only.

HERE tile IDs from which to read data, specified as a vector of unsigned 32-bit integers. These tiles
correspond to either the specified lat and lon coordinates or the specified tileID tiles.
Example: uint32([386497368 386497369])
Data Types: uint32

Layers — Map data layers
string array
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This property is read-only.

Map data layers available for the selected HERE tile IDs, specified as a string array of layer names.
The available map layers vary depending on the geographic region.

To read data from these layers, specify these layer names as inputs to the read function.

Configuration — Catalog configuration
hereHDLMConfiguration object

This property is read-only.

Catalog configuration, specified as a hereHDLMConfiguration object. This configuration contains
the specific HERE HDLM catalog and catalog version that the hereHDLMReader object reads data
from.

If you do not specify a configuration at creation, the reader object computes the default configuration
by searching the latest version of each production catalog. If all selected map tile IDs are found
within a catalog, then the hereHDLMReader object is configured to read data from the latest version
of that catalog.

You can set this property when you create the reader object. After you create the object, this property
is read-only.

WriteLocation — Folder name of downloaded map data
tempdir (temporary directory) (default) | string scalar | character vector

This property is read-only.

Name of folder to which HERE HDLM data is downloaded, specified as a string scalar or character
vector. The specified folder must exist and have write permissions.

By default, data from the HERE HDLM web service is downloaded to a temporary file location. This
temporary file location is deleted at the end of your MATLAB session.

You can set this property when you create the reader object. After you create the object, this property
is read-only.
Example: "C:\Users\myName\HERE"

CoordinateFormat — Type of coordinate encoding format
'geographic' (default) | 'raw'

Type of coordinate encoding format to apply to geographic coordinate values, specified as either
'geographic' or 'raw'.

Format Description Example
'geographic' Coordinate values are returned

as (latitude, longitude) pairs
with decimal degrees.

[42.3743 -71.0266]

'raw' Coordinate values are returned
in the default coordinate
encoding format of the HERE
HDLM service.

int64(597884226128524083
2)
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Object Functions
read Read HERE HD Live Map layer data
plot Plot HERE HD Live Map layer data

Examples

Plot and Stream Lane Topology Data from Driving Route

Use the HERE HD Live Map (HERE HDLM) service to read the lane topology data of a driving route
and its surrounding area. Plot this data, and then stream the route on a geographic player.

Load the latitude and longitude coordinates of a driving route in Natick, Massachusetts, USA.

route = load('geoSequenceNatickMA.mat');
lat = route.latitude;
lon = route.longitude;

Stream the coordinates on a geographic player.

player = geoplayer(lat(1),lon(1),'HistoryDepth',5);
plotRoute(player,lat,lon)

for idx = 1:length(lat)
    plotPosition(player,lat(idx),lon(idx))
end
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Create a HERE HDLM reader from the route coordinates. If you have not previously set up HERE
HDLM credentials, a dialog box prompts you to enter them. The reader contains map data for the two
map tiles that the route crosses.

reader = hereHDLMReader(lat,lon);

Read lane topology data from the LaneTopology layer of the map tiles. Plot the lane topology.

laneTopology = read(reader,'LaneTopology');
plot(laneTopology)
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Overlay the route data on the plot.

hold on
geoplot(lat,lon,'bo-','DisplayName','Route');
hold off
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Overlay the lane topology data on the geographic player. Stream the route again.

plot(laneTopology,'Axes',player.Axes)
for idx = 1:length(lat)
    plotPosition(player,lat(idx),lon(idx))
end
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Plot 3-D Lane Geometry on Custom Basemap

Use the HERE HD Live Map (HERE HDLM) web service to read 3-D lane geometry data from a map
tile. Then, plot the data on an OpenStreetMap® basemap.

Create a HERE HDLM reader for a map tile ID representing an area of Berlin, Germany. If you have
not previously set up HERE HDLM credentials, a dialog box prompts you to enter them.

tileID = uint32(377894435);
reader = hereHDLMReader(tileID);

Add the OpenStreetMap basemap to the list of basemaps available for use with the HERE HDLM
service. After you add the basemap, you do not need to add it again in future sessions.

name = 'openstreetmap';
url = 'https://a.tile.openstreetmap.org/${z}/${x}/${y}.png';
copyright = char(uint8(169));
attribution = copyright + "OpenStreetMap contributors";
addCustomBasemap(name,url,'Attribution',attribution)

Read 3-D lane geometry data from the LaneGeometryPolyline layer of the map tile. Plot the lane
geometry on the openstreetmap basemap.
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laneGeometryPolyline = read(reader,'LaneGeometryPolyline');
gx = plot(laneGeometryPolyline);
geobasemap(gx,'openstreetmap')

Zoom in on the central coordinate of the map tile.

latcenter = laneGeometryPolyline.TileCenterHere3dCoordinate.Here2dCoordinate(1);
loncenter = laneGeometryPolyline.TileCenterHere3dCoordinate.Here2dCoordinate(2);

offset = 0.001;
latlim = [latcenter-offset,latcenter+offset];
lonlim = [loncenter-offset,loncenter+offset];

geolimits(latlim,lonlim)
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Find Shortest Path Between Two Nodes

Use the HERE HD Live Map (HERE HDLM) web service to read the topology geometry data from a
map tile. Use this data to find the shortest path between two nodes within the map tile.

Define a HERE tile ID for an area of Stockholm, Sweden.

tileID = uint32(378373553);

Create a HERE HDLM reader for the tile ID. Configure the reader to search for the tile in only the
Western Europe catalog. If you have not previously set up HERE HDLM credentials, a dialog box
prompts you to enter them. The reader contains map data for the specified map tile.

config = hereHDLMConfiguration('hrn:here:data::olp-here-had:here-hdlm-protobuf-weu-2');
reader = hereHDLMReader(tileID,'Configuration',config);

Read the link definitions from the TopologyGeometry layer of the map tile. The returned layer
object contains the specified LinksStartingInTile field and the required map tile fields, such as
the tile ID. The other fields are empty. Your map data and catalog version might differ from the ones
shown here.

topology = read(reader,'TopologyGeometry','LinksStartingInTile')

topology = 
  TopologyGeometry with properties:

 hereHDLMReader

4-661



   Data:
                    HereTileId: 378373553
          IntersectingLinkRefs: []
           LinksStartingInTile: [1249×1 struct]
                   NodesInTile: []
    TileCenterHere2dCoordinate: [59.3372 18.0505]

   Metadata:
                       Catalog: 'hrn:here:data::olp-here-had:here-hdlm-protobuf-weu-2'
                CatalogVersion: 5597

  Use plot to visualize TopologyGeometry data.

Find the start and end nodes for each link in the LinksStartingInTile field.

startNodes = [topology.LinksStartingInTile.StartNodeId];
endNodesRef = [topology.LinksStartingInTile.EndNodeRef];
endNodes = [endNodesRef.NodeId];

Find the length of each link in meters.

linkLengths = [topology.LinksStartingInTile.LinkLengthMeters];

Create an undirected graph for the links in the map tile.

G = graph(string(startNodes),string(endNodes),double(linkLengths));
H = plot(G,'Layout','force');
title('Undirected Graph')
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Specify a start and end node to find the shortest path between them. Use the first and last node in the
graph as the start and end nodes, respectively. Overlay the nodes on the graph.

startNode = G.Nodes.Name(1);
endNode = G.Nodes.Name(end);

highlight(H,[startNode endNode],'NodeColor','red','MarkerSize',6)
title('Undirected Graph - Start and End Nodes')
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Find the shortest path between the two nodes. Plot the path.

path = shortestpath(G,startNode,endNode);
highlight(H,path,'EdgeColor','red','LineWidth',2);
title('Undirected Graph - Shortest Path')
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Limitations
• The HERE HDLM web service determines the geographic coverage of the map data. Map data is

not available for all locations.

Tips
• To speed up the performance of the reader, when creating the reader, specify a

hereHDLMConfiguration object for the Configuration property. This object configures the
reader to search for the selected map tiles only a specific HERE HD Live Map production catalog.
If you do not specify a configuration object when you create the reader, the reader searches for
the map tiles across all catalogs.

• To save HERE HDLM credentials between MATLAB sessions, select the corresponding option in
the HERE HD Live Map Credentials dialog box. To manage HERE HDLM credentials, use the
hereHDLMCredentials function.

See Also
geoplayer | geoplot | hereHDLMConfiguration | hereHDLMCredentials

Topics
“Read and Visualize HERE HD Live Map Data”
“HERE HD Live Map Layers”
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“Use HERE HD Live Map Data to Verify Lane Configurations”

Introduced in R2019a
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read
Read HERE HD Live Map layer data

Syntax
layerData = read(reader,layerType)
layerData = read(reader,layerType,fields)

Description
layerData = read(reader,layerType) reads HERE HD Live Map12 (HERE HDLM) data of a
specified layer type from a hereHDLMReader object and returns an array of layer objects. These
layer objects contain map layer data for the HERE map tiles whose IDs correspond to the IDs stored
in the TileIds property of reader.

layerData = read(reader,layerType,fields) returns an array of layer objects containing
data for only the required fields, such as the HereTileId field, and for the specified fields. All other
fields in the returned layer objects are returned as empty: []. If you do not require data from all
fields within the layer objects, use this syntax to speed up performance of this function.

Examples

Plot and Stream Lane Topology Data from Driving Route

Use the HERE HD Live Map (HERE HDLM) service to read the lane topology data of a driving route
and its surrounding area. Plot this data, and then stream the route on a geographic player.

Load the latitude and longitude coordinates of a driving route in Natick, Massachusetts, USA.

route = load('geoSequenceNatickMA.mat');
lat = route.latitude;
lon = route.longitude;

Stream the coordinates on a geographic player.

player = geoplayer(lat(1),lon(1),'HistoryDepth',5);
plotRoute(player,lat,lon)

for idx = 1:length(lat)
    plotPosition(player,lat(idx),lon(idx))
end

12. You need to enter into a separate agreement with HERE in order to gain access to the HDLM services and to get the
required credentials (access_key_id and access_key_secret) for using the HERE Service.
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Create a HERE HDLM reader from the route coordinates. If you have not previously set up HERE
HDLM credentials, a dialog box prompts you to enter them. The reader contains map data for the two
map tiles that the route crosses.

reader = hereHDLMReader(lat,lon);

Read lane topology data from the LaneTopology layer of the map tiles. Plot the lane topology.

laneTopology = read(reader,'LaneTopology');
plot(laneTopology)
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Overlay the route data on the plot.

hold on
geoplot(lat,lon,'bo-','DisplayName','Route');
hold off
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Overlay the lane topology data on the geographic player. Stream the route again.

plot(laneTopology,'Axes',player.Axes)
for idx = 1:length(lat)
    plotPosition(player,lat(idx),lon(idx))
end
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Find Shortest Path Between Two Nodes

Use the HERE HD Live Map (HERE HDLM) web service to read the topology geometry data from a
map tile. Use this data to find the shortest path between two nodes within the map tile.

Define a HERE tile ID for an area of Stockholm, Sweden.

tileID = uint32(378373553);

Create a HERE HDLM reader for the tile ID. Configure the reader to search for the tile in only the
Western Europe catalog. If you have not previously set up HERE HDLM credentials, a dialog box
prompts you to enter them. The reader contains map data for the specified map tile.

config = hereHDLMConfiguration('hrn:here:data::olp-here-had:here-hdlm-protobuf-weu-2');
reader = hereHDLMReader(tileID,'Configuration',config);

Read the link definitions from the TopologyGeometry layer of the map tile. The returned layer
object contains the specified LinksStartingInTile field and the required map tile fields, such as
the tile ID. The other fields are empty. Your map data and catalog version might differ from the ones
shown here.

topology = read(reader,'TopologyGeometry','LinksStartingInTile')
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topology = 
  TopologyGeometry with properties:

   Data:
                    HereTileId: 378373553
          IntersectingLinkRefs: []
           LinksStartingInTile: [1249×1 struct]
                   NodesInTile: []
    TileCenterHere2dCoordinate: [59.3372 18.0505]

   Metadata:
                       Catalog: 'hrn:here:data::olp-here-had:here-hdlm-protobuf-weu-2'
                CatalogVersion: 5597

  Use plot to visualize TopologyGeometry data.

Find the start and end nodes for each link in the LinksStartingInTile field.

startNodes = [topology.LinksStartingInTile.StartNodeId];
endNodesRef = [topology.LinksStartingInTile.EndNodeRef];
endNodes = [endNodesRef.NodeId];

Find the length of each link in meters.

linkLengths = [topology.LinksStartingInTile.LinkLengthMeters];

Create an undirected graph for the links in the map tile.

G = graph(string(startNodes),string(endNodes),double(linkLengths));
H = plot(G,'Layout','force');
title('Undirected Graph')
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Specify a start and end node to find the shortest path between them. Use the first and last node in the
graph as the start and end nodes, respectively. Overlay the nodes on the graph.

startNode = G.Nodes.Name(1);
endNode = G.Nodes.Name(end);

highlight(H,[startNode endNode],'NodeColor','red','MarkerSize',6)
title('Undirected Graph - Start and End Nodes')
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Find the shortest path between the two nodes. Plot the path.

path = shortestpath(G,startNode,endNode);
highlight(H,path,'EdgeColor','red','LineWidth',2);
title('Undirected Graph - Shortest Path')
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Input Arguments
reader — Input HERE HDLM reader
hereHDLMReader object

Input HERE HDLM reader, specified as a hereHDLMReader object.

layerType — Layer type
string scalar | character vector

Layer type from which to read data, specified as a string scalar or character vector. layerType must
be a valid layer type for the map tiles stored in reader. To see the list of valid layers, use the Layers
property of reader.
Example: "AdasAttributes"
Example: 'LaneTopology'

fields — Layer object fields
string scalar | character vector | string array | cell array of character vectors

Layer object fields from which to read data, specified as a string scalar, character vector, string array,
or cell array of character vectors. All fields must be valid fields of the layer specified by layerType.
You can specify only the top-level fields of this layer. You cannot specify its metadata fields.

 read
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In the returned array of layer objects, only required fields, such as the HereTileId field, and the
specified fields contain data. All other fields are returned as empty: [].

For a list of the valid top-level data fields for each layer type, see the data output argument.
Example: 'LinkAttribution'
Example: "NodeAttribution"
Example: ["LinkAttribution" "NodeAttribution"]
Example: {'LinkAttribution','NodeAttribution'}

Output Arguments
layerData — HERE HDLM layer data
T-by-1 array of layer objects

HERE HDLM layer data, returned as a T-by-1 array of layer objects. T is the number of map tile IDs
stored in the TileIds property of the specified reader. Each layer object contains map data that is
of type layerType for a HERE map tile that was read from reader. Such data can include:

• The geometry of links (streets) and nodes (intersections and dead ends) within map tiles
• Various road-level and lane-level attributes
• Landmark-based localization information, such as the barriers, signs, and poles along a road

The layer objects also contain metadata specifying the catalog name and catalog version from which
the read function obtained the data.

The properties of the layer objects correspond to valid HERE HDLM layer fields. In these layer
objects, the names of the layer fields are modified to fit the MATLAB naming convention for object
properties. For each layer field name, the first letter and first letter after each underscore are
capitalized and the underscores are removed. This table shows sample name changes.

HERE HDLM Layer Fields MATLAB Layer Object Property
here_tile_id HereTileId
tile_center_here_2d_coordinate TileCenterHere2dCoordinate
nodes_in_tile NodesInTile

The layer objects are MATLAB structures whose properties correspond to structure fields. To access
data from these fields, use dot notation.

For example, this code selects the NodeId subfield from the NodeAttribution field of a layer:

layerData.NodeAttribution.NodeId

This table summarizes the valid types of layer objects and their top-level data fields. The available
layers are for the Road Centerline Model, HD Lane Model, and HD Localization Model. For an
overview of HERE HDLM layers and the models that they belong to, see “HERE HD Live Map
Layers”.
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Layer Object Description Top-Level Data Fields
(Layer Object
Properties)

Plot Support

AdasAttributes Precision geometry
measurements, such as
slope, elevation, and
curvature of roads. Use
this data to develop
advanced driver
assistance systems
(ADAS).

• HereTileId
• LinkAttribution
• NodeAttribution

Not available

ExternalReferenceA
ttributes

References to external
map links, nodes, and
topologies for other
HERE maps.

• HereTileId
• LinkAttribution
• NodeAttribution

Not available

LaneAttributes Lane-level attributes,
such as direction of
travel and lane type.

• HereTileId
• LaneGroupAttribu

tion

Not available

LaneGeometryPolyli
ne

3-D lane geometry
composed of a set of 3-
D points joined into
polylines.

• HereTileId
• TileCenterHere3d

Coordinate
• LaneGroupGeometr

ies

Available — Use the
plot function.

LaneRoadReferences Road and lane group
references and range
information. Use this
data to translate
positions between the
Road Centerline Model
and the HD Lane Model.

• HereTileId
• LaneGroupLinkRef

erences
• LinkLaneGroupRef

erences

Not available
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Layer Object Description Top-Level Data Fields
(Layer Object
Properties)

Plot Support

LaneTopology Topologies of the HD
Lane model, including
lane group, lane group
connector, lane, and
lane connector
topologies. This layer
also contains the
simplified 2-D boundary
geometry of the lane
model for determining
map tile affinity and
overflow.

• HereTileId
• TileCenterHere2d

Coordinate
• LaneGroupsStarti

ngInTile
• LaneGroupConnect

orsInTile
• IntersectingLane

GroupRefs

Available — Use the
plot function.

LocalizationBarrie
r

Positions, dimensions,
and attributes of
barriers such as
guardrails and Jersey
barriers found along
roads

• HereTileId
• TileCenterHere3d

Coordinate
• Barriers
• RoadToBarriersRe

ferences
• IntersectingBarr

ierRefs

Not available

LocalizationPole Positions, dimensions,
and attributes of traffic
signal poles and other
poles found along or
hanging over roads

• HereTileId
• TileCenterHere3d

Coordinate
• Signs
• RoadToSignsRefer

ences

Not available

LocalizationSign Positions, dimensions,
and attributes of traffic-
sign faces found along
roads

• HereTileId
• TileCenterHere3d

Coordinate
• Poles
• RoadToPolesRefer

ences

Not available
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Layer Object Description Top-Level Data Fields
(Layer Object
Properties)

Plot Support

RoutingAttributes Road attributes related
to navigation and
conditions. These
attributes are mapped
parametrically to the 2-
D polyline geometry in
the topology layer.

• HereTileId
• LinkAttribution
• NodeAttribution
• StrandAttributio

n
• AttributionGroup

List

Not available

RoutingLaneAttribu
tes

Core navigation lane
attributes and
conditions, such as the
number of lanes in a
road. These values are
mapped parametrically
to 2-D polylines along
the road links.

• HereTileId
• LinkAttribution

Not available

SpeedAttributes Speed-related road
attributes, such as
speed limits. These
attributes are mapped
to the 2-D polyline
geometry of the
topology layer.

• HereTileId
• LinkAttribution

Not available

TopologyGeometry Topology and 2-D line
geometry of the road.
This layer also contains
definitions of the nodes
and links in the map
tile.

• HereTileId
• TileCenterHere2d

Coordinate
• NodesInTile
• LinksStartingInT

ile
• IntersectingLink

Refs

Available — Use the
plot function.
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See Also
hereHDLMConfiguration | hereHDLMCredentials | hereHDLMReader | plot

Topics
“Read and Visualize HERE HD Live Map Data”
“HERE HD Live Map Layers”
“Use HERE HD Live Map Data to Verify Lane Configurations”

Introduced in R2019a
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plot
Package: driving.heremaps

Plot HERE HD Live Map layer data

Syntax
plot(layerData)
plot(layerData,'Axes',gxIn)
gxOut = plot( ___ )

Description
plot(layerData) plots HERE HD Live Map13 (HERE HDLM) layer data on a geographic axes.
layerData is a map layer object that was read from the selected tiles of a hereHDLMReader object
by using the read function.

plot(layerData,'Axes',gxIn) plots the layer data in the specified geographic axes, gxIn.

gxOut = plot( ___ ) plots the layer data and returns the geographic axes on which the data was
plotted, using the inputs from any of the preceding syntaxes. Use gxOut to modify properties of the
geographic axes.

Examples

Plot Road Topology Data from Driving Route

Load a sequence of latitude and longitude coordinates from a driving route.

data = load('geoSequence.mat')

data = struct with fields:
     latitude: [1000×1 double]
    longitude: [1000×1 double]

Create a HERE HD Live Map (HERE HDLM) reader from the specified coordinates. If you have not
previously set up HERE HDLM credentials, a dialog box prompts you to enter them. The reader
contains layered map data for the tile that the driving route is on.

reader = hereHDLMReader(data.latitude,data.longitude);

Read road topology data from the TopologyGeometry layer. Plot the data.

roadTopology = read(reader,'TopologyGeometry');
plot(roadTopology)
legend('Location','northeastoutside')

13. You need to enter into a separate agreement with HERE in order to gain access to the HDLM services and to get the
required credentials (access_key_id and access_key_secret) for using the HERE Service.
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Overlay the driving route coordinates on the plot.

hold on
geoplot(data.latitude,data.longitude,'bo-','DisplayName','Route')
hold off
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Zoom in on the route.

latcenter = median(data.latitude);
loncenter = median(data.longitude);

offset = 0.005;
latlim = [latcenter-offset,latcenter+offset];
lonlim = [loncenter-offset,loncenter+offset];

geolimits(latlim,lonlim)

 plot
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Plot and Stream Lane Topology Data from Driving Route

Use the HERE HD Live Map (HERE HDLM) service to read the lane topology data of a driving route
and its surrounding area. Plot this data, and then stream the route on a geographic player.

Load the latitude and longitude coordinates of a driving route in Natick, Massachusetts, USA.

route = load('geoSequenceNatickMA.mat');
lat = route.latitude;
lon = route.longitude;

Stream the coordinates on a geographic player.

player = geoplayer(lat(1),lon(1),'HistoryDepth',5);
plotRoute(player,lat,lon)

for idx = 1:length(lat)
    plotPosition(player,lat(idx),lon(idx))
end
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Create a HERE HDLM reader from the route coordinates. If you have not previously set up HERE
HDLM credentials, a dialog box prompts you to enter them. The reader contains map data for the two
map tiles that the route crosses.

reader = hereHDLMReader(lat,lon);

Read lane topology data from the LaneTopology layer of the map tiles. Plot the lane topology.

laneTopology = read(reader,'LaneTopology');
plot(laneTopology)
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Overlay the route data on the plot.

hold on
geoplot(lat,lon,'bo-','DisplayName','Route');
hold off
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Overlay the lane topology data on the geographic player. Stream the route again.

plot(laneTopology,'Axes',player.Axes)
for idx = 1:length(lat)
    plotPosition(player,lat(idx),lon(idx))
end
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Plot 3-D Lane Geometry on Custom Basemap

Use the HERE HD Live Map (HERE HDLM) web service to read 3-D lane geometry data from a map
tile. Then, plot the data on an OpenStreetMap® basemap.

Create a HERE HDLM reader for a map tile ID representing an area of Berlin, Germany. If you have
not previously set up HERE HDLM credentials, a dialog box prompts you to enter them.

tileID = uint32(377894435);
reader = hereHDLMReader(tileID);

Add the OpenStreetMap basemap to the list of basemaps available for use with the HERE HDLM
service. After you add the basemap, you do not need to add it again in future sessions.

name = 'openstreetmap';
url = 'https://a.tile.openstreetmap.org/${z}/${x}/${y}.png';
copyright = char(uint8(169));
attribution = copyright + "OpenStreetMap contributors";
addCustomBasemap(name,url,'Attribution',attribution)

Read 3-D lane geometry data from the LaneGeometryPolyline layer of the map tile. Plot the lane
geometry on the openstreetmap basemap.
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laneGeometryPolyline = read(reader,'LaneGeometryPolyline');
gx = plot(laneGeometryPolyline);
geobasemap(gx,'openstreetmap')

Zoom in on the central coordinate of the map tile.

latcenter = laneGeometryPolyline.TileCenterHere3dCoordinate.Here2dCoordinate(1);
loncenter = laneGeometryPolyline.TileCenterHere3dCoordinate.Here2dCoordinate(2);

offset = 0.001;
latlim = [latcenter-offset,latcenter+offset];
lonlim = [loncenter-offset,loncenter+offset];

geolimits(latlim,lonlim)
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Input Arguments
layerData — HERE HDLM layer data
LaneGeometryPolyline object | LaneTopology object | TopologyGeometry object

HERE HDLM layer data to plot, specified as one of the layer objects shown in the table.
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Layer Object Description Sample Plot
LaneGeometryPolyline 3-D lane geometry composed of

a set of 3-D points joined into
polylines.

LaneTopology Topologies of the HD Lane
model, including lane group,
lane group connector, lane, and
lane connector topologies. This
layer also contains the
simplified 2-D boundary
geometry of the lane model for
determining map tile affinity
and overflow.

 plot
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Layer Object Description Sample Plot
TopologyGeometry Topology and 2-D line geometry

of the road. This layer also
contains definitions of the links
(streets) and nodes
(intersections and dead-ends) in
the map tile.

To obtain these layers from map tiles selected by a hereHDLMReader object, use the read function.

gxIn — Geographic axes on which to plot data
GeographicAxes object

Geographic axes on which to plot data, specified as a GeographicAxes object.14

Output Arguments
gxOut — Geographic axes on which data is plotted
GeographicAxes object

Geographic axes on which data is plotted, returned as a GeographicAxes object. Use this object to
customize the map display. For more details, see GeographicAxes Properties.

See Also
geoaxes | geobasemap | geoplayer | geoplot | hereHDLMReader | read

Topics
GeographicAxes Properties
“Read and Visualize HERE HD Live Map Data”
“Use HERE HD Live Map Data to Verify Lane Configurations”

Introduced in R2019a

14. Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks.
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hereHDLMConfiguration
Configure HERE HD Live Map reader

Description
A hereHDLMConfiguration object configures a hereHDLMReader object to search for map data in
only a specific HERE HD Live Map15 (HDLM) production catalog or catalog version. These catalogs
roughly correspond to various geographic regions, such as Western Europe and North America. Using
this configuration object can speed up the performance of the reader, so that it does not search
unnecessary catalogs. The configuration object is stored in the Configuration property of a
hereHDLMReader object.

Note Use of the hereHDLMConfiguration object requires valid HERE HDLM credentials. If you
have not previously set up credentials, a dialog box prompts you to enter them. Enter the Access Key
ID and Access Key Secret that you obtained from HERE Technologies, and click OK.

Creation
Syntax
config = hereHDLMConfiguration(catalog)
config = hereHDLMConfiguration(catalog,catalogVersion)

Description

config = hereHDLMConfiguration(catalog) creates a hereHDLMConfiguration object for
the latest version of the specified HERE HDLM catalog. A hereHDLMReader object with this
configuration searches for the selected map tiles within only the catalog and version specified by that
configuration.

config = hereHDLMConfiguration(catalog,catalogVersion) creates a
hereHDLMConfiguration object for the specified version of the catalog.

Input Arguments

catalog — Name of HERE HDLM production catalog
string scalar | character vector

Name of HERE HDLM production catalog, specified as a string scalar or character vector. You can
obtain production catalog names from HERE Technologies.
Example: 'hrn:here:data::olp-here-had:here-hdlm-protobuf-na-2' specifies a catalog
that roughly corresponds to the North America region.
Example: 'hrn:here:data::olp-here-had:here-hdlm-protobuf-weu-2' specifies a catalog
that roughly corresponds to the Western Europe region.

15. You need to enter into a separate agreement with HERE in order to gain access to the HDLM services and to get the
required credentials (access_key_id and access_key_secret) for using the HERE Service.
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catalogVersion — Version number of HERE HDLM production catalog
positive integer

Version number of a HERE HDLM production catalog, specified as a positive integer. The HERE
HDLM web service determines the availability of previous versions of the catalog. If you specify a
version of a catalog that is not available, then hereHDLMConfiguration returns an error.

Properties
Catalog — Name of HERE HDLM production catalog
string scalar | character vector

This property is read-only.

Name of a HERE HDLM production catalog, specified as a string scalar or character vector. This
property is set to the name of the catalog specified by the catalog input.

CatalogVersion — Version number of HERE HDLM production catalog
positive integer

This property is read-only.

Version number of a HERE HDLM production catalog, specified as a positive integer. The version
number corresponds to the value specified in the catalogVersion input argument. If you do not
specify catalogVersion, then this property is set to the latest version of the specified catalog.

Examples

Create Configuration for Specific Catalog

Define a HERE tile ID for an area of Berlin, Germany.

tileID = uint32(377894435);

Create a HERE HD Live Map (HERE HDLM) configuration object for the catalog that roughly
corresponds to Western Europe. If you have not previously set up HERE HDLM credentials, a dialog
box prompts you to enter them. Your catalog version might differ from the one shown here.

config = hereHDLMConfiguration('hrn:here:data::olp-here-had:here-hdlm-protobuf-weu-2')

config = 
  hereHDLMConfiguration with properties:

           Catalog: 'hrn:here:data::olp-here-had:here-hdlm-protobuf-weu-2'
    CatalogVersion: 5597

Create a HERE HDLM reader using the specified HERE tile ID and configuration object. During
creation, hereHDLMReader searches for the tile ID within only the Western Europe catalog. This
reader is configured to read map data from only that catalog.

reader = hereHDLMReader(tileID,'Configuration',config);
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Create Configuration for Specific Catalog Version

Create a HERE HD Live Map (HERE HDLM) configuration object for the previous version of a
catalog.

Load a sequence of latitude and longitude coordinates for a driving route in Los Altos, California,
USA.

data = load('geoSequence.mat')

data = struct with fields:
     latitude: [1000×1 double]
    longitude: [1000×1 double]

Create a HERE HDLM configuration object for the latest version of a catalog that roughly
corresponds to North America. If you have not previously set up HERE HDLM credentials, a dialog
box prompts you to enter them. Your catalog version might differ from the one shown here.

catalog = 'hrn:here:data::olp-here-had:here-hdlm-protobuf-na-2';
configLatest = hereHDLMConfiguration(catalog)

configLatest = 
  hereHDLMConfiguration with properties:

           Catalog: 'hrn:here:data::olp-here-had:here-hdlm-protobuf-na-2'
    CatalogVersion: 3320

Create a configuration object for the previous version of the catalog.

previousVersion = configLatest.CatalogVersion - 1;
config = hereHDLMConfiguration(catalog,previousVersion)

config = 
  hereHDLMConfiguration with properties:

           Catalog: 'hrn:here:data::olp-here-had:here-hdlm-protobuf-na-2'
    CatalogVersion: 3319

Create a HERE HDLM reader using the specified configuration object. The reader is configured to
read data from only the previous version of the North America catalog.

reader = hereHDLMReader(data.latitude,data.longitude,'Configuration',config);

Tips
• To save HERE HDLM credentials between MATLAB sessions, select the Save my credentials

between MATLAB sessions option in the HERE HD Live Map Credentials dialog box. To manage
HERE HDLM credentials, use the hereHDLMCredentials function.

Compatibility Considerations
hereHDLMConfiguration(region) syntax will be removed
Warns starting in R2020b
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In hereHDLMConfiguration objects, the syntax for configuring a hereHDLMReader object to
search catalogs from a specific region, hereHDLMConfiguration(region), will be removed in a
future release. Instead, specify the catalog name that corresponds to that region by using the
hereHDLMConfiguration(catalog) syntax.

Previously, the catalog names for regions such as North America were not available to customers.
HERE Technologies now makes these catalog names available through the HERE HD Live Map
Marketplace, making the region syntax unnecessary.

Update Code

The table shows a typical usage of the hereHDLMConfiguration(region) syntax. It also shows
how to update your code using the hereHDLMConfiguration(catalog) syntax.

Discouraged Usage Recommended Replacement
catalog = hereHDLMConfiguration('North America')catalog = hereHDLMConfiguration('hrn:here:data::olp-here-had:here-hdlm-protobuf-na-2')

See Also
hereHDLMCredentials | hereHDLMReader

Topics
“Read and Visualize HERE HD Live Map Data”

Introduced in R2019a
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inflationCollisionChecker
Collision-checking configuration for costmap based on inflation

Description
The inflationCollisionChecker function creates an InflationCollisionChecker object,
which holds the collision-checking configuration of a vehicle costmap. A vehicle costmap with this
configuration inflates the size of obstacles in the vehicle environment. This inflation is based on the
specified InflationCollisionChecker properties, such as the dimensions of the vehicle and the
radius of circles required to enclose the vehicle. For more details, see “Algorithms” on page 4-703.
Path planning algorithms, such as pathPlannerRRT, use this costmap collision-checking
configuration to avoid inflated obstacles and plan collision-free paths through an environment.

Use the InflationCollisionChecker object to set the CollisionChecker property of your
vehicleCostmap object. This collision-checking configuration affects the return values of the
checkFree and checkOccupied functions used by vehicleCostmap. These values indicate
whether a vehicle pose is free or occupied.

Creation

Syntax
ccConfig = inflationCollisionChecker
ccConfig = inflationCollisionChecker(vehicleDims)
ccConfig = inflationCollisionChecker(vehicleDims,numCircles)
ccConfig = inflationCollisionChecker( ___ ,Name,Value)

Description

ccConfig = inflationCollisionChecker creates an InflationCollisionChecker object,
ccConfig, that holds the collision-checking configuration of a vehicle costmap. This object uses one
circle to enclose the vehicle. The dimensions of the vehicle correspond to the values of a default
vehicleDimensions object.

ccConfig = inflationCollisionChecker(vehicleDims) specifies the dimensions of the
vehicle, where vehicleDims is a vehicleDimensions object. The vehicleDims input sets the
VehicleDimensions property of ccConfig.

ccConfig = inflationCollisionChecker(vehicleDims,numCircles) also specifies the
number of circles used to enclose the vehicle. The numCircles input sets the NumCircles property
of ccConfig.

ccConfig = inflationCollisionChecker( ___ ,Name,Value) sets the CenterPlacements
and InflationRadius properties using name-value pairs and the inputs from any of the preceding
syntaxes. Enclose each property name in quotes.
Example: inflationCollisionChecker('CenterPlacements',[0.2 0.5
0.8],'InflationRadius',1.2)

 inflationCollisionChecker

4-697



Properties
NumCircles — Number of circles enclosing the vehicle
1 (default) | positive integer

Number of circles used to enclose the vehicle and calculate the inflation radius, specified as a positive
integer. Typical values are from 1 to 5.

• For faster but more conservative collision checking, decrease the number of circles. This approach
improves performance because the path planning algorithm makes fewer collision checks.

• For slower but more precise collision checking, increase the number of circles. This approach is
useful when planning a path around tight corners or through narrow corridors, such as in a
parking lot.

CenterPlacements — Normalized placement of circle centers
1-by-NumCircles vector of real values in the range [0, 1]

Normalized placement of circle centers along the longitudinal axis of the vehicle, specified as a 1-by-
NumCircles vector of real values in the range [0, 1].

• A value of 0 places a circle center at the rear of the vehicle.
• A value of 1 places a circle center at the front of the vehicle.

Specify CenterPlacements when you want to align the circles with exact positions on the vehicle. If
you leave CenterPlacements unspecified, the object computes the center placements so that the
circles completely enclose the vehicle. If you change the number of center placements, NumCircles
is updated to the number of elements in CenterPlacements.

VehicleDimensions — Vehicle dimensions
vehicleDimensions object

Vehicle dimensions used to compute the inflation radius, specified as a vehicleDimensions object.
By default, the InflationCollisionChecker object uses the dimensions of a default
vehicleDimensions object. Vehicle dimensions are in world units.

InflationRadius — Inflation radius
nonnegative real number

Inflation radius, specified as a nonnegative real number. By default, the object computes the inflation
radius based on the values of NumCircles, CenterPlacements, and VehicleDimensions. For
more details, see “Algorithms” on page 4-703.
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Object Functions
plot Plot collision configuration

Examples

Plan Path Using Different Collision-Checking Configurations

Plan a vehicle path to a narrow parking spot by using the optimized rapidly exploring random tree
(RRT*) algorithm. Try different collision-checking configurations in the costmap used by the RRT*
path planner.

Load and display a costmap of a parking lot. The costmap is a vehicleCostmap object. By default,
vehicleCostmap uses a collision-checking configuration that inflates obstacles based on a radius of
only one circle enclosing the vehicle. The costmap overinflates the obstacles (the parking spot
boundaries).

data = load('parkingLotCostmap.mat');
costmap = data.parkingLotCostmap;

figure
plot(costmap)
title('Collision Checking with One Circle')

Use inflationCollisionChecker to create a new collision-checking configuration for the
costmap.
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• To decrease inflation of the obstacles, increase the number of circles enclosing the vehicle.
• To specify the dimensions of the vehicle, use a vehicleDimensions object.

Specify the collision-checking configuration in the CollisionChecker property of the costmap.

vehicleDims = vehicleDimensions(4.5,1.7);  % 4.5 m long, 1.7 m wide
numCircles = 3;
ccConfig = inflationCollisionChecker(vehicleDims,numCircles);
costmap.CollisionChecker = ccConfig;

Display the costmap with the new collision-checking configuration. The inflated areas are reduced.

figure
plot(costmap)
title('Collision Checking with Three Circles')

Define a planning problem: a vehicle starts near the left entrance of the parking lot and ends in a
parking spot.

startPose = [11 10 0];   % [meters, meters, degrees]
goalPose = [31.5 17 90]; 

Use a pathPlannerRRT object to plan a path to the parking spot. Plot the planned path.

planner = pathPlannerRRT(costmap);
refPath = plan(planner,startPose,goalPose);
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hold on
plot(refPath)
hold off

Create Collision-Checking Configuration with Center Placements

Create a collision-checking configuration for a costmap. Manually specify the circle centers so that
they fully enclose the vehicle.

Define the dimensions of a vehicle by using a vehicleDimensions object.

length = 5; % meters
width = 2; % meters
vehicleDims = vehicleDimensions(length,width);

Define three circle centers and the inflation radius to use for collision checking. Place one center at
the vehicle's midpoint. Offset the other two centers by an equal amount on either end of the vehicle.

distFromSide = 0.175;
centerPlacements = [distFromSide 0.5 1-distFromSide];
inflationRadius = 1.2;

Create and display the collision-checking configuration.

ccConfig = inflationCollisionChecker(vehicleDims, ...
    'CenterPlacements',centerPlacements,'InflationRadius',inflationRadius);
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figure
plot(ccConfig)

In this configuration, the corners of the vehicle are not enclosed within the circles. To fully enclose
the vehicle, increase the inflation radius. Display the updated configuration.

ccConfig.InflationRadius = 1.3;
plot(ccConfig)
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Use this collision-checking configuration to create a 10-by-20 meter costmap.

costmap = vehicleCostmap(10,20,0.1,'CollisionChecker',ccConfig);

Tips
• To visually verify that the circles completely enclose the vehicle, use the plot function. If the

circles do not completely enclose the vehicle, some of the free poses returned by checkFree (or
unoccupied poses returned by checkOccupied) might actually be in collision.

Algorithms
The InflationRadius property of InflationCollisionChecker determines the amount, in
world units, by which to inflate obstacles. By default, InflationRadius is equal to the radius of the
smallest set of overlapping circles required to completely enclose the vehicle, as determined by the
following properties:

• NumCircles — Number of circles used to enclose the vehicle
• CenterPlacements — Placements of the circle centers along the longitudinal axis of the vehicle
• VehicleDimensions — Dimensions of the vehicle
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For more details about how this collision-checking configuration defines inflated areas in a costmap,
see the “Algorithms” on page 4-913 section of vehicleCostmap.

References
[1] Ziegler, J., and C. Stiller. "Fast Collision Checking for Intelligent Vehicle Motion Planning." IEEE

Intelligent Vehicle Symposium. June 21–24, 2010.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• All inputs to inflationCollisionChecker must be compile-time constants.

See Also
Objects
pathPlannerRRT | vehicleCostmap | vehicleDimensions

Topics
“Automated Parking Valet”

Introduced in R2018b
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plot
Plot collision configuration

Syntax
plot(ccConfig)
plot(ccConfig,Name,Value)

Description
plot(ccConfig) plots the collision-checking configuration of an InflationCollisionChecker
object. Use plot to visually verify that the circles in the configuration fully enclose the vehicle.

plot(ccConfig,Name,Value) specifies options using one or more Name,Value pair arguments.
For example, plot(ccConfig,'Ruler','Off') turns off the ruler that indicates the locations of
the circle centers.

Examples

Create Collision-Checking Configuration with Center Placements

Create a collision-checking configuration for a costmap. Manually specify the circle centers so that
they fully enclose the vehicle.

Define the dimensions of a vehicle by using a vehicleDimensions object.

length = 5; % meters
width = 2; % meters
vehicleDims = vehicleDimensions(length,width);

Define three circle centers and the inflation radius to use for collision checking. Place one center at
the vehicle's midpoint. Offset the other two centers by an equal amount on either end of the vehicle.

distFromSide = 0.175;
centerPlacements = [distFromSide 0.5 1-distFromSide];
inflationRadius = 1.2;

Create and display the collision-checking configuration.

ccConfig = inflationCollisionChecker(vehicleDims, ...
    'CenterPlacements',centerPlacements,'InflationRadius',inflationRadius);

figure
plot(ccConfig)
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In this configuration, the corners of the vehicle are not enclosed within the circles. To fully enclose
the vehicle, increase the inflation radius. Display the updated configuration.

ccConfig.InflationRadius = 1.3;
plot(ccConfig)
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Use this collision-checking configuration to create a 10-by-20 meter costmap.

costmap = vehicleCostmap(10,20,0.1,'CollisionChecker',ccConfig);

Input Arguments
ccConfig — Collision-checking configuration
InflationCollisionChecker object

Collision-checking configuration, specified as an InflationCollisionChecker object. To create a
collision-checking configuration, use the inflationCollisionChecker function.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: plot(ccConfig,'Parent',ax) plots the collision configuration in axes ax.

Parent — Axes on which to plot collision configuration
Axes object

Axes on which to plot the collision configuration, specified as the comma-separated pair consisting of
'Parent' and an Axes object. To create an Axes object, use the axes function.
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To plot the collision configuration in a new figure, leave 'Parent' unspecified.

Ruler — Display ruler
'on' (default) | 'off'

Display the ruler that shows the locations of the circle centers, specified as the comma-separated pair
consisting of 'Ruler' and 'on' or 'off'.

See Also
inflationCollisionChecker

Introduced in R2018b
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parabolicLaneBoundary
Parabolic lane boundary model

Description
The parabolicLaneBoundary object contains information about a parabolic lane boundary model.

Creation
To generate parabolic lane boundary models that fit a set of boundary points and an approximate
width, use the findParabolicLaneBoundaries function. If you already know your parabolic
parameters, create lane boundary models by using the parabolicLaneBoundary function
(described here).

Syntax
boundaries = parabolicLaneBoundary(parabolicParameters)

Description

boundaries = parabolicLaneBoundary(parabolicParameters) creates an array of parabolic
lane boundary models from an array of [A B C] parameters for the parabolic equation y = Ax2 + Bx
+ C. Points within the lane boundary models are in world coordinates.

Input Arguments

parabolicParameters — Coefficients for parabolic models
[A B C] real-valued vector | matrix of [A B C] values

Coefficients for parabolic models of the form y = Ax2 + Bx + C, specified as an [A B C] real-valued
vector or as a matrix of [A B C] values. Each row of parabolicParameters describes a separate
parabolic lane boundary model.

Properties
Parameters — Coefficients for parabolic model
[A B C] real-valued vector

Coefficients for a parabolic model of the form y = Ax2 + Bx + C, specified as an [A B C] real-valued
vector.

BoundaryType — Type of boundary
LaneBoundaryType

Type of boundary, specified as a LaneBoundaryType of supported lane boundaries. The supported
lane boundary types are:
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• Unmarked
• Solid
• Dashed
• BottsDots
• DoubleSolid

Specify a lane boundary type as LaneBoundaryType.BoundaryType. For example:

LaneBoundaryType.BottsDots

Strength — Strength of boundary model
real scalar

Strength of the boundary model, specified as a real scalar. Strength is the ratio of the number of
unique x-axis locations on the boundary to the length of the boundary specified by the XExtent
property. A solid line without any breaks has a higher strength than a dotted line that has breaks
along the full length of the boundary.

XExtent — Length of boundary along x-axis
[minX maxX] real-valued vector

Length of the boundary along the x-axis, specified as a [minX maxX] real-valued vector that
describes the minimum and maximum x-axis locations.

Object Functions
computeBoundaryModel Obtain y-coordinates of lane boundaries given x-coordinates

Examples

Create Parabolic Lane Boundaries

Create left-lane and right-lane parabolic boundary models.

llane = parabolicLaneBoundary([-0.001 0.01  0.5]);
rlane = parabolicLaneBoundary([-0.001 0.01 -0.5]);

Create a bird's-eye plot and lane boundary plotter. Plot the lane boundaries.

bep = birdsEyePlot('XLimits',[0 30],'YLimits',[-5 5]);
lbPlotter = laneBoundaryPlotter(bep,'DisplayName','Lane boundaries');
plotLaneBoundary(lbPlotter, [llane rlane]);
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Find Parabolic Lane Boundaries in Bird's-Eye-View Image

Find lanes in an image by using parabolic lane boundary models. Overlay the identified lanes on the
original image and on a bird's-eye-view transformation of the image.

Load an image of a road with lanes. The image was obtained from a camera sensor mounted on the
front of a vehicle.

I = imread('road.png');

Transform the image into a bird's-eye-view image by using a preconfigured sensor object. This object
models the sensor that captured the original image.

bevSensor = load('birdsEyeConfig');
birdsEyeImage = transformImage(bevSensor.birdsEyeConfig,I);
imshow(birdsEyeImage)
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Set the approximate lane marker width in world units (meters).

approxBoundaryWidth = 0.25;

Detect lane features and display them as a black-and-white image.

birdsEyeBW = segmentLaneMarkerRidge(rgb2gray(birdsEyeImage), ...
    bevSensor.birdsEyeConfig,approxBoundaryWidth);
imshow(birdsEyeBW)
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Obtain lane candidate points in world coordinates.

[imageX,imageY] = find(birdsEyeBW);
xyBoundaryPoints = imageToVehicle(bevSensor.birdsEyeConfig,[imageY,imageX]);

Find lane boundaries in the image by using the findParabolicLaneBoundaries function. By
default, the function returns a maximum of two lane boundaries. The boundaries are stored in an
array of parabolicLaneBoundary objects.

boundaries = findParabolicLaneBoundaries(xyBoundaryPoints,approxBoundaryWidth);
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Use insertLaneBoundary to overlay the lanes on the original image. The XPoints vector
represents the lane points, in meters, that are within range of the ego vehicle's sensor. Specify the
lanes in different colors. By default, lanes are yellow.

XPoints = 3:30;

figure
sensor = bevSensor.birdsEyeConfig.Sensor;
lanesI = insertLaneBoundary(I,boundaries(1),sensor,XPoints);
lanesI = insertLaneBoundary(lanesI,boundaries(2),sensor,XPoints,'Color','green');
imshow(lanesI)

View the lanes in the bird's-eye-view image.

figure
BEconfig = bevSensor.birdsEyeConfig;
lanesBEI = insertLaneBoundary(birdsEyeImage,boundaries(1),BEconfig,XPoints);
lanesBEI = insertLaneBoundary(lanesBEI,boundaries(2),BEconfig,XPoints,'Color','green');
imshow(lanesBEI)
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Apps
Ground Truth Labeler
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Objects
cubicLaneBoundary

Functions
evaluateLaneBoundaries | findParabolicLaneBoundaries | insertLaneBoundary

Introduced in R2017a
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cubicLaneBoundary
Cubic lane boundary model

Description
The cubicLaneBoundary object contains information about a cubic lane boundary model.

Creation
To generate cubic lane boundary models that fit a set of boundary points and an approximate width,
use the findCubicLaneBoundaries function. If you already know your cubic parameters, create
lane boundary models by using the cubicLaneBoundary function (described here).

Syntax
boundaries = cubicLaneBoundary(cubicParameters)

Description

boundaries = cubicLaneBoundary(cubicParameters) creates an array of cubic lane boundary
models from an array of [A B C D] parameters for the cubic equation y = Ax3 + Bx2 + Cx + D.
Points within the lane boundary models are in world coordinates.

Input Arguments

cubicParameters — Parameters for cubic models
[A B C D] real-valued vector | matrix of [A B C D] values

Parameters for cubic models of the form y = Ax3 + Bx2 + Cx + D, specified as an [A B C D] real-
valued vector or as a matrix of [A B C D] values. Each row of cubicParameters describes a
separate cubic lane boundary model.

Properties
Parameters — Coefficients for cubic model
[A B C D] real-valued vector

Coefficients for a cubic model of the form y = Ax3 + Bx2 + Cx + D, specified as an [A B C D] real-
valued vector.

BoundaryType — Type of boundary
LaneBoundaryType

Type of boundary, specified as a LaneBoundaryType of supported lane boundaries. The supported
lane boundary types are:

• Unmarked
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• Solid
• Dashed
• BottsDots
• DoubleSolid

Specify a lane boundary type as LaneBoundaryType.BoundaryType. For example:

LaneBoundaryType.BottsDots

Strength — Strength of boundary model
real scalar

Strength of the boundary model, specified as a real scalar. Strength is the ratio of the number of
unique x-axis locations on the boundary to the length of the boundary specified by the XExtent
property. A solid line without any breaks has a higher strength than a dotted line that has breaks
along the full length of the boundary.

XExtent — Length of boundary along x-axis
[minX maxX] real-valued vector

Length of the boundary along the x-axis, specified as a [minX maxX] real-valued vector that
describes the minimum and maximum x-axis locations.

Object Functions
computeBoundaryModel Obtain y-coordinates of lane boundaries given x-coordinates

Examples

Create Cubic Lane Boundaries

Create left-lane and right-lane cubic boundary models.

llane = cubicLaneBoundary([-0.0001 0.0 0.003  1.6]);
rlane = cubicLaneBoundary([-0.0001 0.0 0.003 -1.8]);

Create a bird's-eye plot and lane boundary plotter. Plot the lane boundaries.

bep = birdsEyePlot('XLimits',[0 30],'YLimits',[-10 10]);
lbPlotter = laneBoundaryPlotter(bep,'DisplayName','Lane boundaries');

plotLaneBoundary(lbPlotter, [llane rlane]);
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Find Cubic Lane Boundaries in Bird's-Eye-View Image

Find lanes in an image by using cubic lane boundary models. Overlay the identified lanes on the
original image and on a bird's-eye-view transformation of the image.

Load an image of a road with lanes. The image was obtained from a camera sensor mounted on the
front of a vehicle.

I = imread('road.png');

Transform the image into a bird's-eye-view image by using a preconfigured sensor object. This object
models the sensor that captured the original image.

bevSensor = load('birdsEyeConfig');
birdsEyeImage = transformImage(bevSensor.birdsEyeConfig,I);
imshow(birdsEyeImage)
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Set the approximate lane marker width in world units (meters).

approxBoundaryWidth = 0.25;

Detect lane features and display them as a black-and-white image.

birdsEyeBW = segmentLaneMarkerRidge(rgb2gray(birdsEyeImage), ...
    bevSensor.birdsEyeConfig,approxBoundaryWidth);
imshow(birdsEyeBW)
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Obtain lane candidate points in world coordinates.

[imageX,imageY]  = find(birdsEyeBW);
xyBoundaryPoints = imageToVehicle(bevSensor.birdsEyeConfig,[imageY,imageX]);

Find lane boundaries in the image by using the findCubicLaneBoundaries function. By default,
the function returns a maximum of two lane boundaries. The boundaries are stored in an array of
cubicLaneBoundary objects.

boundaries = findCubicLaneBoundaries(xyBoundaryPoints,approxBoundaryWidth);
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Use insertLaneBoundary to overlay the lanes on the original image. The XPoints vector
represents the lane points, in meters, that are within range of the ego vehicle's sensor. Specify the
lanes in different colors. By default, lanes are yellow.

XPoints = 3:30;

figure
sensor = bevSensor.birdsEyeConfig.Sensor;
lanesI = insertLaneBoundary(I,boundaries(1),sensor,XPoints);
lanesI = insertLaneBoundary(lanesI,boundaries(2),sensor,XPoints,'Color','green');
imshow(lanesI)

View the lanes in the bird's-eye-view image.

figure
BEconfig = bevSensor.birdsEyeConfig;
lanesBEI = insertLaneBoundary(birdsEyeImage,boundaries(1),BEconfig,XPoints);
lanesBEI = insertLaneBoundary(lanesBEI,boundaries(2),BEconfig,XPoints,'Color','green');
imshow(lanesBEI)
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Apps
Ground Truth Labeler
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Objects
parabolicLaneBoundary

Functions
evaluateLaneBoundaries | findCubicLaneBoundaries | insertLaneBoundary

Introduced in R2018a
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computeBoundaryModel
Obtain y-coordinates of lane boundaries given x-coordinates

Syntax
yWorld = computeBoundaryModel(boundaries,xWorld)

Description
yWorld = computeBoundaryModel(boundaries,xWorld) computes the y-axis world coordinates
of lane boundary models at the specified x-axis world coordinates.

• If boundaries is a single lane boundary model, then yWorld is a vector of coordinates
corresponding to the coordinates in xWorld.

• If boundaries is an array of lane boundary models, then yWorld is a matrix. Each row or column
of yWorld corresponds to a lane boundary model computed at the x-coordinates in row or column
vector xWorld.

Examples

Compute Lane Boundary

Create a parabolicLaneBoundary object to model a lane boundary. Compute the positions of the
lane along a set of x-axis locations.

Specify the parabolic parameters and create a lane boundary model.

parabolicParams = [-0.005 0.15 0.55];
lb = parabolicLaneBoundary(parabolicParams);

Compute the y-axis locations for given x-axis locations within the range of a camera sensor mounted
to the front of a vehicle.

xWorld = 3:30; % in meters
yWorld = computeBoundaryModel(lb,xWorld);

Plot the lane boundary points. To fit the coordinate system, flip the axis order and change the x-
direction.

plot(yWorld,xWorld)
axis equal
set(gca,'XDir','reverse')
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Plot Path of Ego Vehicle

Create a 3-meter-wide lane.

lb = parabolicLaneBoundary([-0.001,0.01,1.5]);
rb = parabolicLaneBoundary([-0.001,0.01,-1.5]);

Compute the lane boundary model manually from 0 to 30 meters along the x-axis.

xWorld = (0:30)';
yLeft = computeBoundaryModel(lb,xWorld);
yRight = computeBoundaryModel(rb,xWorld);

Create a bird's-eye plot and lane boundary plotter. Display the lane information on the bird's-eye plot.

bep = birdsEyePlot('XLimits',[0 30],'YLimits',[-5 5]);
lanePlotter = laneBoundaryPlotter(bep,'DisplayName','Lane boundaries');
plotLaneBoundary(lanePlotter,{[xWorld,yLeft],[xWorld,yRight]});
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Create a path plotter. Create and display the path of an ego vehicle that travels through the center of
the lane.

yCenter = (yLeft + yRight)/2;
egoPathPlotter = pathPlotter(bep,'DisplayName','Ego vehicle path');
plotPath(egoPathPlotter,{[xWorld,yCenter]});
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Find Candidate Ego Lane Boundaries

Find candidate ego lane boundaries from an array of lane boundaries.

Create an array of cubic lane boundaries.

lbs = [cubicLaneBoundary([-0.0001, 0.0, 0.003,  1.6]), ...
       cubicLaneBoundary([-0.0001, 0.0, 0.003,  4.6]), ...
       cubicLaneBoundary([-0.0001, 0.0, 0.003, -1.6]), ...
       cubicLaneBoundary([-0.0001, 0.0, 0.003, -4.6])];

For each lane boundary, compute the y-axis location at which the x-coordinate is 0.

xWorld = 0; % meters
yWorld = computeBoundaryModel(lbs,0);

Use the computed locations to find the ego lane boundaries that best meet the criteria.

leftEgoBoundaryIndex = find(yWorld == min(yWorld(yWorld>0)));            
rightEgoBoundaryIndex = find(yWorld == max(yWorld(yWorld<=0)));
leftEgoBoundary = lbs(leftEgoBoundaryIndex);
rightEgoBoundary = lbs(rightEgoBoundaryIndex);

Plot the boundaries using a bird's-eye plot and lane boundary plotter.
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bep = birdsEyePlot('XLimits',[0 30],'YLimits',[-5 5]);
lbPlotter = laneBoundaryPlotter(bep,'DisplayName','Left-lane boundary','Color','r');
rbPlotter = laneBoundaryPlotter(bep,'DisplayName','Right-lane boundary','Color','g');
plotLaneBoundary(lbPlotter,leftEgoBoundary)
plotLaneBoundary(rbPlotter,rightEgoBoundary)

Input Arguments
boundaries — Lane boundary models
lane boundary object | array of lane boundary objects

Lane boundary models containing the parameters used to compute the y-axis coordinates, specified
as a lane boundary object or an array of lane boundary objects. Valid objects are
parabolicLaneBoundary and cubicLaneBoundary.

xWorld — x-axis locations of boundaries
real scalar | real-valued vector

x-axis locations of the boundaries in world coordinates, specified as a real scalar or real-valued
vector.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
Objects
cubicLaneBoundary | parabolicLaneBoundary

Functions
insertLaneBoundary

Introduced in R2017a
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monoCamera
Configure monocular camera sensor

Description
The monoCamera object holds information about the configuration of a monocular camera sensor.
Configuration information includes the camera intrinsics, camera extrinsics such as its orientation (as
described by pitch, yaw, and roll), and the camera location within the vehicle. To estimate the
intrinsic and extrinsic camera parameters, see “Calibrate a Monocular Camera”.

For images captured by the camera, you can use the imageToVehicle and vehicleToImage
functions to transform point locations between image coordinates and vehicle coordinates. These
functions apply projective transformations (homography), which enable you to estimate distances
from a camera mounted on the vehicle to locations on a flat road surface.

Creation
Syntax
sensor = monoCamera(intrinsics,height)
sensor = monoCamera(intrinsics,height,Name,Value)

Description

sensor = monoCamera(intrinsics,height) creates a monoCamera object that contains the
configuration of a monocular camera sensor, given the intrinsic parameters of the camera and the
height of the camera above the ground. intrinsics and height set the Intrinsics and Height
properties of the camera.

sensor = monoCamera(intrinsics,height,Name,Value) sets properties on page 4-731 using
one or more name-value pairs. For example, monoCamera(intrinsics,1.5,'Pitch',1) creates a
monocular camera sensor that is 1.5 meters above the ground and has a 1-degree pitch toward the
ground. Enclose each property name in quotes.

Properties
Intrinsics — Intrinsic camera parameters
cameraIntrinsics object | cameraParameters object

Intrinsic camera parameters, specified as either a cameraIntrinsics or cameraParameters
object. The intrinsic camera parameters include the focal length and optical center of the camera,
and the size of the image produced by the camera.

You can set this property when you create the object. After you create the object, this property is
read-only.

Height — Height from road surface to camera sensor
real scalar
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Height from the road surface to the camera sensor, specified as a real scalar. The height is the
perpendicular distance from the ground to the focal point of the camera. Specify the height in world
units, such as meters. To estimate this value, use the estimateMonoCameraParameters function.

Pitch — Pitch angle
real scalar

Pitch angle between the horizontal plane of the vehicle and the optical axis of the camera, specified
as a real scalar in degrees. To estimate this value, use the estimateMonoCameraParameters
function.

Pitch uses the ISO convention for rotation, with a clockwise positive angle direction when looking in
the positive direction of the vehicle's YV axis.

For more details, see “Angle Directions” on page 4-741.

Yaw — Yaw angle
real scalar

Yaw angle between the XV axis of the vehicle and the optical axis of the camera, specified as a real
scalar in degrees. To estimate this value, use the estimateMonoCameraParameters function.

Yaw uses the ISO convention for rotation, with a clockwise positive angle direction when looking in
the positive direction of the vehicle's ZV axis.
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For more details, see “Angle Directions” on page 4-741.

Roll — Roll angle
real scalar

Roll angle of the camera around its optical axis, returned as a real scalar in degrees. To estimate this
value, use the estimateMonoCameraParameters function.

Roll uses the ISO convention for rotation, with a clockwise positive angle direction when looking in
the positive direction of the vehicle's XV axis.

For more details, see “Angle Directions” on page 4-741.

SensorLocation — Location of center of camera sensor
[0 0] (default) | two-element vector

Location of the center of the camera sensor, specified as a two-element vector of the form [x y]. Use
this property to change the placement of the camera. Units are in the vehicle coordinate system (XV,
YV, ZV).

By default, the camera sensor is located at the (XV, YV) origin, at the height specified by Height.
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WorldUnits — World coordinate system units
'meters' | character vector | string scalar

World coordinate system units, specified as a character vector or string scalar. This property only
stores the unit type and does not affect any calculations. Any text is valid.

You can set this property when you create the object. After you create the object, this property is
read-only.

Object Functions
imageToVehicle Convert image coordinates to vehicle coordinates
vehicleToImage Convert vehicle coordinates to image coordinates

Examples

Create Monocular Camera Object

Create a forward-facing monocular camera sensor mounted on an ego vehicle. Examine an image
captured from the camera and determine locations within the image in both vehicle and image
coordinates.
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Set the intrinsic parameters of the camera. Specify the focal length, the principal point of the image
plane, and the output image size. Units are in pixels. Save the intrinsics as a cameraIntrinsics
(Computer Vision Toolbox) object.

focalLength = [800 800];
principalPoint = [320 240];
imageSize = [480 640];

intrinsics = cameraIntrinsics(focalLength,principalPoint,imageSize);

Specify the position of the camera. Position the camera 2.18 meters above the ground with a 14-
degree pitch toward the ground.

height = 2.18;
pitch = 14;

Define a monocular camera sensor using the intrinsic camera parameters and the position of the
camera. Load an image from the camera.

sensor = monoCamera(intrinsics,height,'Pitch',pitch);

Ioriginal = imread('road.png');
figure
imshow(Ioriginal)
title('Original Image')
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Determine the image coordinates of a point 10 meters directly in front of the camera. The X-axis
points forward from the camera and the Y-axis points to the left.

xyVehicleLoc1 = [10 0];
xyImageLoc1 = vehicleToImage(sensor,xyVehicleLoc1)

xyImageLoc1 = 1×2

  320.0000  216.2296

Display the point on the image.

IvehicleToImage = insertMarker(Ioriginal,xyImageLoc1);
IvehicleToImage = insertText(IvehicleToImage,xyImageLoc1 + 5,'10 meters');
figure
imshow(IvehicleToImage)
title('Vehicle-to-Image Point')
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Determine the vehicle coordinates of a point that lies on the road surface in the image.

xyImageLoc2 = [300 300];
xyVehicleLoc2 = imageToVehicle(sensor,xyImageLoc2)

xyVehicleLoc2 = 1×2

    6.5959    0.1732

The point is about 6.6 meters in front of the vehicle and about 0.17 meters to the left of the vehicle
center.

Display the vehicle coordinates of the point on the image.

IimageToVehicle = insertMarker(Ioriginal,xyImageLoc2);
displayText = sprintf('(%.2f m, %.2f m)',xyVehicleLoc2);
IimageToVehicle = insertText(IimageToVehicle,xyImageLoc2 + 5,displayText);

figure
imshow(IimageToVehicle)
title('Image-to-Vehicle Point')
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Generate Visual Detections from Monocular Camera

Create a vision sensor by using a monocular camera configuration, and generate detections from that
sensor.

Specify the intrinsic parameters of the camera and create a monoCamera object from these
parameters. The camera is mounted on top of an ego vehicle at a height of 1.5 meters above the
ground and a pitch of 1 degree toward the ground.

focalLength = [800 800];
principalPoint = [320 240];
imageSize = [480 640];
intrinsics = cameraIntrinsics(focalLength,principalPoint,imageSize);

height = 1.5;
pitch = 1;
monoCamConfig = monoCamera(intrinsics,height,'Pitch',pitch);

Create a vision detection generator using the monocular camera configuration.

visionSensor = visionDetectionGenerator(monoCamConfig);
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Generate a driving scenario with an ego vehicle and two target cars. Position the first target car 30
meters directly in front of the ego vehicle. Position the second target car 20 meters in front of the ego
vehicle but offset to the left by 3 meters.

scenario = drivingScenario;
egoVehicle = vehicle(scenario,'ClassID',1);
targetCar1 = vehicle(scenario,'ClassID',1,'Position',[30 0 0]);
targetCar2 = vehicle(scenario,'ClassID',1,'Position',[20 3 0]);

Use a bird's-eye plot to display the vehicle outlines and sensor coverage area.

figure
bep = birdsEyePlot('XLim',[0 50],'YLim',[-20 20]);

olPlotter = outlinePlotter(bep);
[position,yaw,length,width,originOffset,color] = targetOutlines(egoVehicle);
plotOutline(olPlotter,position,yaw,length,width);

caPlotter = coverageAreaPlotter(bep,'DisplayName','Coverage area','FaceColor','blue');
plotCoverageArea(caPlotter,visionSensor.SensorLocation,visionSensor.MaxRange, ...
    visionSensor.Yaw,visionSensor.FieldOfView(1))

Obtain the poses of the target cars from the perspective of the ego vehicle. Use these poses to
generate detections from the sensor.

poses = targetPoses(egoVehicle);
[dets,numValidDets] = visionSensor(poses,scenario.SimulationTime);
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Display the (X,Y) positions of the valid detections. For each detection, the (X,Y) positions are the first
two values of the Measurement field.

for i = 1:numValidDets
    XY = dets{i}.Measurement(1:2);
    detXY = sprintf('Detection %d: X = %.2f meters, Y = %.2f meters',i,XY);
    disp(detXY)
end

Detection 1: X = 19.09 meters, Y = 2.79 meters
Detection 2: X = 27.81 meters, Y = 0.08 meters

More About
Vehicle Coordinate System

In the vehicle coordinate system (XV, YV, ZV) defined by monoCamera:

• The XV-axis points forward from the vehicle.
• The YV-axis points to the left, as viewed when facing forward.
• The ZV-axis points up from the ground to maintain the right-handed coordinate system.

The default origin of this coordinate system is on the road surface, directly below the camera center.
The focal point of the camera defines this center point.
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To change the placement of the origin within the vehicle coordinate system, update the
SensorLocation property.

For more details about the vehicle coordinate system, see “Coordinate Systems in Automated Driving
Toolbox”.

Angle Directions

The monocular camera sensor uses clockwise positive angle directions when looking in the positive
direction of the Z-, Y-, and X-axes, respectively.
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Compatibility Considerations
Direction of yaw angle rotation adjusted
Behavior changed in R2018a

Starting in R2018a, the monoCamera object uses the correct direction of rotation for the yaw angle.
When you look in the positive direction of the vehicle's Z-axis, the yaw angle is now positive in the
clockwise direction. Previously, this angle was positive in the counterclockwise direction.

If you are using R2017b or earlier, to use the correct direction of rotation, update the yaw angle to its
negative value. For example, to update the yaw angle for a monoCamera object named sensor, use
this code:

sensor.Yaw = -sensor.Yaw;

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Apps
Camera Calibrator

Functions
estimateCameraParameters | estimateMonoCameraParameters | extrinsics

Objects
birdsEyeView | cameraIntrinsics | cameraParameters

Topics
“Calibrate a Monocular Camera”
“Configure Monocular Fisheye Camera”
“Visual Perception Using Monocular Camera”
“Coordinate Systems in Automated Driving Toolbox”

Introduced in R2017a
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vehicleToImage
Convert vehicle coordinates to image coordinates

Syntax
imagePoints = vehicleToImage(monoCam,vehiclePoints)

Description
imagePoints = vehicleToImage(monoCam,vehiclePoints) converts [x y] or [x y z] vehicle
coordinates to [x y] image coordinates by applying a projective transformation. The monocular
camera object, monoCam, contains the camera parameters.

Examples

Create Monocular Camera Object

Create a forward-facing monocular camera sensor mounted on an ego vehicle. Examine an image
captured from the camera and determine locations within the image in both vehicle and image
coordinates.

Set the intrinsic parameters of the camera. Specify the focal length, the principal point of the image
plane, and the output image size. Units are in pixels. Save the intrinsics as a cameraIntrinsics
(Computer Vision Toolbox) object.

focalLength = [800 800];
principalPoint = [320 240];
imageSize = [480 640];

intrinsics = cameraIntrinsics(focalLength,principalPoint,imageSize);

Specify the position of the camera. Position the camera 2.18 meters above the ground with a 14-
degree pitch toward the ground.

height = 2.18;
pitch = 14;

Define a monocular camera sensor using the intrinsic camera parameters and the position of the
camera. Load an image from the camera.

sensor = monoCamera(intrinsics,height,'Pitch',pitch);

Ioriginal = imread('road.png');
figure
imshow(Ioriginal)
title('Original Image')
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Determine the image coordinates of a point 10 meters directly in front of the camera. The X-axis
points forward from the camera and the Y-axis points to the left.

xyVehicleLoc1 = [10 0];
xyImageLoc1 = vehicleToImage(sensor,xyVehicleLoc1)

xyImageLoc1 = 1×2

  320.0000  216.2296

Display the point on the image.

IvehicleToImage = insertMarker(Ioriginal,xyImageLoc1);
IvehicleToImage = insertText(IvehicleToImage,xyImageLoc1 + 5,'10 meters');
figure
imshow(IvehicleToImage)
title('Vehicle-to-Image Point')
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Determine the vehicle coordinates of a point that lies on the road surface in the image.

xyImageLoc2 = [300 300];
xyVehicleLoc2 = imageToVehicle(sensor,xyImageLoc2)

xyVehicleLoc2 = 1×2

    6.5959    0.1732

The point is about 6.6 meters in front of the vehicle and about 0.17 meters to the left of the vehicle
center.

Display the vehicle coordinates of the point on the image.

IimageToVehicle = insertMarker(Ioriginal,xyImageLoc2);
displayText = sprintf('(%.2f m, %.2f m)',xyVehicleLoc2);
IimageToVehicle = insertText(IimageToVehicle,xyImageLoc2 + 5,displayText);

figure
imshow(IimageToVehicle)
title('Image-to-Vehicle Point')
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Input Arguments
monoCam — Monocular camera parameters
monoCamera object

Monocular camera parameters, specified as a monoCamera object.

vehiclePoints — Vehicle points
M-by-2 matrix | M-by-3 matrix

Vehicle points, specified as an M-by-2 or M-by-3 matrix containing M number of [x y] or [x y z] vehicle
coordinates.

Output Arguments
imagePoints — Image points
M-by-2 matrix

Image points, returned as an M-by-2 matrix containing M number of [x y] image coordinates.
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See Also
Objects
monoCamera

Functions
imageToVehicle

Topics
“Coordinate Systems in Automated Driving Toolbox”

Introduced in R2017a
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imageToVehicle
Convert image coordinates to vehicle coordinates

Syntax
vehiclePoints = imageToVehicle(monoCam,imagePoints)

Description
vehiclePoints = imageToVehicle(monoCam,imagePoints) converts image coordinates to [x
y] vehicle coordinates by applying a projective transformation. The monocular camera object,
monoCam, contains the camera parameters.

Examples

Create Monocular Camera Object

Create a forward-facing monocular camera sensor mounted on an ego vehicle. Examine an image
captured from the camera and determine locations within the image in both vehicle and image
coordinates.

Set the intrinsic parameters of the camera. Specify the focal length, the principal point of the image
plane, and the output image size. Units are in pixels. Save the intrinsics as a cameraIntrinsics
(Computer Vision Toolbox) object.

focalLength = [800 800];
principalPoint = [320 240];
imageSize = [480 640];

intrinsics = cameraIntrinsics(focalLength,principalPoint,imageSize);

Specify the position of the camera. Position the camera 2.18 meters above the ground with a 14-
degree pitch toward the ground.

height = 2.18;
pitch = 14;

Define a monocular camera sensor using the intrinsic camera parameters and the position of the
camera. Load an image from the camera.

sensor = monoCamera(intrinsics,height,'Pitch',pitch);

Ioriginal = imread('road.png');
figure
imshow(Ioriginal)
title('Original Image')
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Determine the image coordinates of a point 10 meters directly in front of the camera. The X-axis
points forward from the camera and the Y-axis points to the left.

xyVehicleLoc1 = [10 0];
xyImageLoc1 = vehicleToImage(sensor,xyVehicleLoc1)

xyImageLoc1 = 1×2

  320.0000  216.2296

Display the point on the image.

IvehicleToImage = insertMarker(Ioriginal,xyImageLoc1);
IvehicleToImage = insertText(IvehicleToImage,xyImageLoc1 + 5,'10 meters');
figure
imshow(IvehicleToImage)
title('Vehicle-to-Image Point')
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Determine the vehicle coordinates of a point that lies on the road surface in the image.

xyImageLoc2 = [300 300];
xyVehicleLoc2 = imageToVehicle(sensor,xyImageLoc2)

xyVehicleLoc2 = 1×2

    6.5959    0.1732

The point is about 6.6 meters in front of the vehicle and about 0.17 meters to the left of the vehicle
center.

Display the vehicle coordinates of the point on the image.

IimageToVehicle = insertMarker(Ioriginal,xyImageLoc2);
displayText = sprintf('(%.2f m, %.2f m)',xyVehicleLoc2);
IimageToVehicle = insertText(IimageToVehicle,xyImageLoc2 + 5,displayText);

figure
imshow(IimageToVehicle)
title('Image-to-Vehicle Point')
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Input Arguments
monoCam — Monocular camera parameters
monoCamera object

Monocular camera parameters, specified as a monoCamera object.

imagePoints — Image points
M-by-2 matrix

Image points, specified as an M-by-2 matrix containing M number of [x y] image coordinates.

Output Arguments
vehiclePoints — Vehicle points
M-by-2 matrix

Vehicle points, returned as an M-by-2 matrix containing M number of [x y] vehicle coordinates.

4 Objects

4-752



See Also
Objects
monoCamera

Functions
vehicleToImage

Topics
“Coordinate Systems in Automated Driving Toolbox”

Introduced in R2017a
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vision.labeler.loading.MultiSignalSource class
Package: vision.labeler.loading vision.labeler.loading vision.labeler.loading
vision.labeler.loading vision.labeler.loading vision.labeler.loading
Superclasses: matlab.mixin.Heterogeneous

Interface for loading signal data into Ground Truth Labeler app

Description
The vision.labeler.loading.MultiSignalSource class creates an interface for loading signals
from a data source into the Ground Truth Labeler app. The data source can be a file format or any
custom source.

The interface created using this class enables you to customize the panel for loading custom data
sources in the Add/Remove Signal dialog box of the app. The figure shows a sample loading panel.

The class also provides an interface to read frames from loaded signals. The app renders these
frames for labeling.

To define a custom class to load a data source into the app, follow these steps.

1 Create a class that inherits from the vision.labeler.loading.MultiSignalSource class.
The class definition must have this format, where customSourceClass is the name of your
custom data source class.

classdef customSourceClass < vision.labeler.loading.MultiSignalSource
2 Save the class to this folder, where matlabroot is the full path to your MATLAB installation

folder as returned by the matlabroot function.

<matlabroot>\toolbox\vision\vision\+vision\+labeler\+loading

Alternatively, create a +vision/+labeler/+loading folder structure, add these folders to the
MATLAB search path, and save the class to the +vision/+labeler/+loading folder. The
Ground Truth Labeler app recognizes data source classes in folders with this path only.

3 Define the class properties and methods required to load the data source into the app. This table
shows the predefined custom classes that you can use as starting points for defining these
properties and methods.
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Class Data Source Loaded by
Class

Command to View Class
Source Code

vision.labeler.loading
.VideoSource

Video file edit vision.labeler.loading.VideoSource

vision.labeler.loading
.ImageSequenceSource

Image sequence folder edit vision.labeler.loading.ImageSequenceSource

vision.labeler.loading
.VelodyneLidarSource

Velodyne packet capture
(PCAP) file

edit vision.labeler.loading.VelodyneLidarSource

vision.labeler.loading
.RosbagSource

Rosbag file edit vision.labeler.loading.RosbagSource

vision.labeler.loading
.PointCloudSequenceSou
rce

Point cloud sequence folder edit vision.labeler.loading.PointCloudSequenceSource

vision.labeler.loading
.CustomImageSource

Custom image format edit vision.labeler.loading.CustomImageSource

For an explanation of the required properties and methods used for defining a custom data
source class, see the “Create Class for Loading Custom Ground Truth Data Sources” example.

The vision.labeler.loading.MultiSignalSource class is a handle class.

Class Attributes

Abstract true

For information on class attributes, see “Class Attributes”.

Properties
Name — Name of source type
string scalar

Name of the type of source that this class loads, specified as a string scalar.

Attributes:

GetAccess public
Abstract true
Constant true
NonCopyable true

Description — Description of class functionality
string scalar

Description of the functionality that this class provides, specified as a string scalar.

 vision.labeler.loading.MultiSignalSource class

4-755



Attributes:

GetAccess public
Abstract true
Constant true
NonCopyable true

SourceName — Name of data source
string scalar

Name of the data source, specified as a string scalar. Typically, SourceName is the name of the file
from which the signal is loaded.

Attributes:

GetAccess public
SetAccess protected

SourceParams — Parameters for loading signals from data source
structure

Parameters for loading signals from the data source into the app, specified as a structure. The fields
of this structure contain values that the loadSource method requires to load the signal.

Attributes:

GetAccess public
SetAccess protected

SignalName — Names of signals in data source
string vector

Names of the signals that can be loaded from the data source, specified as a string vector.

Attributes:

GetAccess public
SetAccess protected

SignalType — Types of signals in data source
vector of vision.labeler.loading.SignalType enumerations

Types of the signals that can be loaded from the data source, specified as a vector of
vision.labeler.loading.SignalType enumerations. Each signal listed in the SignalName
property is of the type in the corresponding position of SignalType.

Attributes:

GetAccess public
SetAccess protected

Timestamp — Timestamps of signals in data source
cell array of duration vectors

Timestamps of the signals that can be loaded from the data source, specified as a cell array of
duration vectors. Each signal listed in the SignalName property has the timestamps in the
corresponding position of Timestamp.
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Attributes:

GetAccess public
SetAccess protected

NumSignals — Number of signals in data source
nonnegative integer

Number of signals that can be read from the data source, specified as a nonnegative integer.
NumSignals is equal to the number of signals in the SignalName property.

Attributes:

GetAccess public
SetAccess public
Dependent true
NonCopyable true

Methods
Public Methods

customizeLoadPanel customizeLoadPanel(sourceObj,panel)

Customize the loading panel for the data source
object. In the loading dialog box of the app, this
method is invoked when you select the data
source type from the Source Type list.

Abstract true

getLoadPanelData [sourceName,sourceParams] = getLoadPanelData(sourceObj)

Obtain the data needed to load the data source
object currently selected in the loading panel. In
the loading dialog box of the app, this method is
invoked when you add a source. The method
returns these outputs.

• sourceName is a string capturing the name of
the data source object.

• sourceParams is a structure with fields
containing the parameters required to load
the data source object.

Both of these outputs are passed to the
loadSource method.

Abstract true
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loadSource loadSource(sourceObj,sourceName,sourceParams)

Load a data source object into the app. In the
loading dialog box of the app, this method is
invoked after you add a source and the
getLoadPanelData method executes
successfully. This method is also invoked when
you load the data source object into the MATLAB
workspace. When you load the data source
object, MATLAB expects that the source has the
name sourceName and parameters
sourceParams that are needed to load that
source and read data from it.

Abstract true

readFrame frame  = readFrame(sourceObj,signalName,tsIndex)

Read a frame of data from a signal contained in a
data source object at the specified timestamp
index. The index must be in the bounds of the
length of the timestamps for that signal.

Abstract true

loadPanelChecker loadPanelChecker

Check the load panel for the loading dialog box of
the app. This method opens a dialog box similar
to the loading dialog box that you open from the
Open menu on the app toolstrip. Use this method
to preview how the customizeLoadPanel
method populates the loading panel for the
selected data source object.

Static true

See Also
Apps
Ground Truth Labeler

Classes
driving.connector.Connector | vision.labeler.AutomationAlgorithm

Topics
“Sources vs. Signals in Ground Truth Labeling”
“Create Class for Loading Custom Ground Truth Data Sources”

Introduced in R2020a
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vision.labeler.loading.VideoSource class
Package: vision.labeler.loading vision.labeler.loading vision.labeler.loading
vision.labeler.loading vision.labeler.loading vision.labeler.loading
Superclasses: vision.labeler.loading.MultiSignalSource

Load signals from video sources into Ground Truth Labeler app

Description
The vision.labeler.loading.VideoSource class creates an interface for loading signals from
video data sources into the Ground Truth Labeler app. In the Add/Remove Signal dialog box of the
app, when Source Type is set to Video, this class controls the parameters in that dialog box.

To access this dialog box, in the app, select Open > Add Signals.

The default implementation of this class loads the video formats accepted by the VideoReader
object.

The vision.labeler.loading.VideoSource class is a handle class.

Creation
When you export labels from a Ground Truth Labeler app session that contains video sources, the
exported groundTruthMultisignal object stores instances of this class in its DataSource
property.

To create a VideoSource object programmatically, such as when programmatically creating a
groundTruthMultisignal object, use the vision.labeler.loading.VideoSource function
(described here).

Syntax
vidSource = vision.labeler.loading.VideoSource
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Description

vidSource = vision.labeler.loading.VideoSource creates a VideoSource object for
loading signals from video data sources. To specify the data source and the parameters required to
load the source, use the loadSource method.

Properties
Name — Name of source type
"Video" (default) | string scalar

Name of the type of source that this class loads, specified as a string scalar.

Attributes:

GetAccess public
Constant true
NonCopyable true

Description — Description of class functionality
"A video reader" (default) | string scalar

Description of the functionality that this class provides, specified as a string scalar.

Attributes:

GetAccess public
Constant true
NonCopyable true

SourceName — Name of data source
[] (default) | string scalar

Name of the data source, specified as a string scalar. Typically, SourceName is the name of the file
from which the signal is loaded.

Attributes:

GetAccess public
SetAccess protected

SourceParams — Parameters for loading video signal from data source
[] (default) | structure

Parameters for loading a video signal from a data source, specified as a structure.

This table describes the required and optional fields of the SourceParams structure.
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Field Description Required or Optional
Timestamps Timestamps for the video signal,

specified as a cell array
containing a single duration
vector of timestamps.

In the Add/Remove Signal dialog
box of the app, if you set the
Timestamps parameter to
From Workspace and read the
timestamps from a variable in
the MATLAB workspace, then
the SourceParams property
stores these timestamps in the
Timestamps field.

Optional

In the Add/Remove Signal dialog
box of the app, if you set the
Timestamps parameter to
From File and read the
timestamps from the video file,
then the structure does not
include this field, and the
SourceParams property is
empty, [].

Attributes:

GetAccess public
SetAccess protected

SignalName — Names of signals in data source
[] (default) | string vector

Names of the signals that can be loaded from the data source, specified as a string vector.

Attributes:

GetAccess public
SetAccess protected

SignalType — Types of signals in data source
[] (default) | vector of vision.labeler.loading.SignalType enumerations

Types of the signals that can be loaded from the data source, specified as a vector of
vision.labeler.loading.SignalType enumerations. Each signal listed in the SignalName
property is of the type in the corresponding position of SignalType.

Attributes:

GetAccess public
SetAccess protected

Timestamp — Timestamps of signals in data source
[] (default) | cell array of duration vectors

Timestamps of the signals that can be loaded from the data source, specified as a cell array of
duration vectors. Each signal listed in the SignalName property has the timestamps in the
corresponding position of Timestamp.

Attributes:

GetAccess public
SetAccess protected
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NumSignals — Number of signals in data source
0 (default) | integer

Number of signals that can be read from the data source, specified as a nonnegative integer.
NumSignals is equal to the number of signals in the SignalName property.

Attributes:

GetAccess public
SetAccess public
Dependent true
NonCopyable true

Methods
Public Methods

customizeLoadPanel customizeLoadPanel(sourceObj,panel)

Customize the loading panel for the data source
object. In the loading dialog box of the app, this
method is invoked when you select the data
source type from the Source Type list.

getLoadPanelData [sourceName,sourceParams] = getLoadPanelData(sourceObj)

Obtain the data needed to load the data source
object currently selected in the loading panel. In
the loading dialog box of the app, this method is
invoked when you add a source. The method
returns these outputs.

• sourceName is a string capturing the name of
the data source object.

• sourceParams is a structure with fields
containing the parameters required to load
the data source object.

Both of these outputs are passed to the
loadSource method.

loadSource loadSource(sourceObj,sourceName,sourceParams)

Load a data source object into the app. In the
loading dialog box of the app, this method is
invoked after you add a source and the
getLoadPanelData method executes
successfully. This method is also invoked when
you load the data source object into the MATLAB
workspace. When you load the data source
object, MATLAB expects that the source has the
name sourceName and parameters
sourceParams that are needed to load that
source and read data from it.
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readFrame frame  = readFrame(sourceObj,signalName,tsIndex)

Read a frame of data from a signal contained in a
data source object at the specified timestamp
index. The index must be in the bounds of the
length of the timestamps for that signal.

loadPanelChecker loadPanelChecker

Check the load panel for the loading dialog box of
the app. This method opens a dialog box similar
to the loading dialog box that you open from the
Open menu on the app toolstrip. Use this method
to preview how the customizeLoadPanel
method populates the loading panel for the
selected data source object.

Static true

Examples

Create Video Source

Create a video source from a video on the MATLAB® search path. Load the source name into the
VideoSource object. The video has no source parameters needed to load it, so sourceParams is
empty.

sourceName = 'caltech_cordova1.avi';
sourceParams = [];

vidSource = vision.labeler.loading.VideoSource;
loadSource(vidSource,sourceName,sourceParams);

Read the first frame from the video. Display the frame.

signalName = vidSource.SignalName;
I = readFrame(vidSource,signalName,1);

figure
imshow(I)
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Tips
• You can this class as a starting point for creating a custom data source loading class. To view the

source code for this class, use this command:

edit vision.labeler.loading.VideoSource

See Also
Apps
Ground Truth Labeler

Classes
vision.labeler.loading.CustomImageSource |
vision.labeler.loading.ImageSequenceSource |
vision.labeler.loading.MultiSignalSource |
vision.labeler.loading.PointCloudSequenceSource |
vision.labeler.loading.RosbagSource |
vision.labeler.loading.VelodyneLidarSource
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Topics
“Sources vs. Signals in Ground Truth Labeling”
“Create Class for Loading Custom Ground Truth Data Sources”

Introduced in R2020a
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vision.labeler.loading.ImageSequenceSource class
Package: vision.labeler.loading vision.labeler.loading vision.labeler.loading
vision.labeler.loading vision.labeler.loading vision.labeler.loading
Superclasses: vision.labeler.loading.MultiSignalSource

Load signals from image sequence sources into Ground Truth Labeler app

Description
The vision.labeler.loading.ImageSequenceSource class creates an interface for loading
signals from image sequence data sources into the Ground Truth Labeler app. In the Add/Remove
Signal dialog box of the app, when Source Type is set to Image Sequence, this class controls the
parameters in that dialog box.

To access this dialog box, in the app, select Open > Add Signals.

The default implementation of this class loads the image formats that can be read from an
ImageDatastore object.

The vision.labeler.loading.ImageSequenceSource class is a handle class.

Creation
When you export labels from a Ground Truth Labeler app session that contains image sequence
sources, the exported groundTruthMultisignal object stores instances of this class in its
DataSource property.

To create an ImageSequenceSource object programmatically, such as when programmatically
creating a groundTruthMultisignal object, use the
vision.labeler.loading.ImageSequenceSource function (described here).

Syntax
imseqSource = vision.labeler.loading.ImageSequenceSource
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Description

imseqSource = vision.labeler.loading.ImageSequenceSource creates an
ImageSequenceSource object for loading signals from image sequence data sources. To specify the
data source and the parameters required to load the source, use the loadSource method.

Properties
Name — Name of source type
"Image Sequence" (default) | string scalar

Name of the type of source that this class loads, specified as a string scalar.

Attributes:

GetAccess public
Constant true
NonCopyable true

Description — Description of class functionality
"An image sequence reader" (default) | string scalar

Description of the functionality that this class provides, specified as a string scalar.

Attributes:

GetAccess public
Constant true
NonCopyable true

SourceName — Name of data source
[] (default) | string scalar

Name of the data source, specified as a string scalar. Typically, SourceName is the name of the file
from which the signal is loaded.

Attributes:

GetAccess public
SetAccess protected

SourceParams — Parameters for loading image sequence signal from data source
[] (default) | structure

Parameters for loading an image sequence signal from a data source, specified as a structure.

This table describes the required and optional fields of the SourceParams structure.
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Field Description Required or Optional
Timestamps Timestamps for the image

sequence signal, specified as a
cell array containing a single
duration vector of timestamps.

In the Add/Remove Signal dialog
box of the app, if you set the
Timestamps parameter to
From Workspace and read the
timestamps from a variable in
the MATLAB workspace, then
the SourceParams property
stores these timestamps in the
Timestamps field.

Optional

If you set the Timestamps
parameter to Use Default and
use the default timestamps for
image sequence signals, then
the structure does not include
this field, and the
SourceParams property is
empty, []. For image sequence
signals, the default timestamp
duration vector has elements
from 0 seconds to the number of
valid image files minus 1. Units
are in seconds.

Attributes:

GetAccess public
SetAccess protected

SignalName — Names of signals in data source
[] (default) | string vector

Names of the signals that can be loaded from the data source, specified as a string vector.

Attributes:

GetAccess public
SetAccess protected

SignalType — Types of signals in data source
[] (default) | vector of vision.labeler.loading.SignalType enumerations

Types of the signals that can be loaded from the data source, specified as a vector of
vision.labeler.loading.SignalType enumerations. Each signal listed in the SignalName
property is of the type in the corresponding position of SignalType.

Attributes:

GetAccess public
SetAccess protected

Timestamp — Timestamps of signals in data source
[] (default) | cell array of duration vectors

Timestamps of the signals that can be loaded from the data source, specified as a cell array of
duration vectors. Each signal listed in the SignalName property has the timestamps in the
corresponding position of Timestamp.

Attributes:

GetAccess public
SetAccess protected
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NumSignals — Number of signals in data source
0 (default) | integer

Number of signals that can be read from the data source, specified as a nonnegative integer.
NumSignals is equal to the number of signals in the SignalName property.

Attributes:

GetAccess public
SetAccess public
Dependent true
NonCopyable true

Methods
Public Methods

customizeLoadPanel customizeLoadPanel(sourceObj,panel)

Customize the loading panel for the data source
object. In the loading dialog box of the app, this
method is invoked when you select the data
source type from the Source Type list.

getLoadPanelData [sourceName,sourceParams] = getLoadPanelData(sourceObj)

Obtain the data needed to load the data source
object currently selected in the loading panel. In
the loading dialog box of the app, this method is
invoked when you add a source. The method
returns these outputs.

• sourceName is a string capturing the name of
the data source object.

• sourceParams is a structure with fields
containing the parameters required to load
the data source object.

Both of these outputs are passed to the
loadSource method.

loadSource loadSource(sourceObj,sourceName,sourceParams)

Load a data source object into the app. In the
loading dialog box of the app, this method is
invoked after you add a source and the
getLoadPanelData method executes
successfully. This method is also invoked when
you load the data source object into the MATLAB
workspace. When you load the data source
object, MATLAB expects that the source has the
name sourceName and parameters
sourceParams that are needed to load that
source and read data from it.
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readFrame frame  = readFrame(sourceObj,signalName,tsIndex)

Read a frame of data from a signal contained in a
data source object at the specified timestamp
index. The index must be in the bounds of the
length of the timestamps for that signal.

loadPanelChecker loadPanelChecker

Check the load panel for the loading dialog box of
the app. This method opens a dialog box similar
to the loading dialog box that you open from the
Open menu on the app toolstrip. Use this method
to preview how the customizeLoadPanel
method populates the loading panel for the
selected data source object.

Static true

Examples

Create Image Sequence Source

Specify the path to a folder containing an image sequence.

imseqFolder = fullfile(toolboxdir('driving'),'drivingdata','roadSequence');

Load the timestamps corresponding to the sequence

load(fullfile(imseqFolder,'timeStamps.mat'))

Create an image sequence source. Load the folder path and timestamps into the
ImageSequenceSource object.

sourceName = imseqFolder;
sourceParams = struct;
sourceParams.Timestamps = timeStamps;

imseqSource = vision.labeler.loading.ImageSequenceSource;
loadSource(imseqSource,sourceName,sourceParams);

Read the first frame in the sequence. Display the frame.

signalName = imseqSource.SignalName;
I = readFrame(imseqSource,signalName,1);

figure
imshow(I)
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Tips
• You can this class as a starting point for creating a custom data source loading class. To view the

source code for this class, use this command:

edit vision.labeler.loading.ImageSequenceSource

See Also
Apps
Ground Truth Labeler

Classes
vision.labeler.loading.CustomImageSource |
vision.labeler.loading.PointCloudSequenceSource |
vision.labeler.loading.RosbagSource |
vision.labeler.loading.VelodyneLidarSource | vision.labeler.loading.VideoSource

Topics
“Sources vs. Signals in Ground Truth Labeling”
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“Create Class for Loading Custom Ground Truth Data Sources”

Introduced in R2020a
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vision.labeler.loading.VelodyneLidarSource class
Package: vision.labeler.loading vision.labeler.loading vision.labeler.loading
vision.labeler.loading vision.labeler.loading vision.labeler.loading
Superclasses: vision.labeler.loading.MultiSignalSource

Load signals from Velodyne lidar sources into Ground Truth Labeler app

Description
The vision.labeler.loading.VelodyneLidarSource class creates an interface for loading
signals from Velodyne packet capture (PCAP) lidar data sources into the Ground Truth Labeler app.
In the Add/Remove Signal dialog box of the app, when Source Type is set to Velodyne Lidar, this
class controls the parameters in that dialog box.

To access this dialog box, in the app, select Open > Add Signals.

The default implementation of this class loads Velodyne PCAP files from the device models accepted
by the velodyneFileReader function.

The vision.labeler.loading.VelodyneLidarSource class is a handle class.

Creation
When you export labels from a Ground Truth Labeler app session that contains Velodyne lidar
sources, the exported groundTruthMultisignal object stores instances of this class in its
DataSource property.

To create a VelodyneLidarSource object programmatically, such as when programmatically
creating a groundTruthMultisignal object, use the
vision.labeler.loading.VelodyneLidarSource function (described here).

Syntax
velodyneSource = vision.labeler.loading.VelodyneLidarSource
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Description

velodyneSource = vision.labeler.loading.VelodyneLidarSource creates a
VelodyneLidarSource object for loading signals from Velodyne lidar data sources. To specify the
data source and the parameters required to load the source, use the loadSource method.

Properties
Name — Name of source type
"Velodyne Lidar" (default) | string scalar

Name of the type of source that this class loads, specified as a string scalar.

Attributes:

GetAccess public
Constant true
NonCopyable true

Description — Description of class functionality
"A Velodyne file reader" (default) | string scalar

Description of the functionality that this class provides, specified as a string scalar.

Attributes:

GetAccess public
Constant true
NonCopyable true

SourceName — Name of data source
[] (default) | string scalar

Name of the data source, specified as a string scalar. Typically, SourceName is the name of the file
from which the signal is loaded.

Attributes:

GetAccess public
SetAccess protected

SourceParams — Parameters for loading Velodyne lidar signal from data source
[] (default) | structure

Parameters for loading a Velodyne lidar signal from a data source, specified as a structure.

This table describes the required and optional fields of the SourceParams structure.
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Field Description Required or Optional
Timestamps Timestamps for the Velodyne

lidar signal, specified as a cell
array containing a single
duration vector of timestamps.

In the Add/Remove Signal dialog
box of the app, if you set the
Timestamps parameter to
From Workspace and read the
timestamps from a variable in
the MATLAB workspace, then
the SourceParams property
stores these timestamps in the
Timestamps field.

Optional

In the Add/Remove Signal dialog
box of the app, if you set the
Timestamps parameter to
From File and read the
timestamps from the Velodyne
PCAP file, then the structure
does not include this field.

DeviceModel Velodyne device model name,
specified as one of these
options.

If you specify the incorrect
device model for your Velodyne
PCAP file, the app loads an
improperly calibrated point
cloud.

In the Add/Remove Signal dialog
box of the app, select the device
model from the Device Model
parameter. The Calibration
File parameter updates to the
calibration file of the selected
device model.

Required
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Field Description Required or Optional
CalibrationFile Name of the Velodyne

calibration XML file, specified
as a character vector or string
scalar.

To specify one of the calibration
files included with your
MATLAB installation, at the
MATLAB command prompt,
enter this code. Replace
<DeviceModel> with the name
of the device model that you
specify in the DeviceModel
field of this structure (without
quotes).
calibrationFile = fullfile( ...
    matlabroot,'toolbox', ...
    'shared','pointclouds','utilities', ...
    'velodyneFileReaderConfiguration', ...
    '<DeviceModel>.xml')

By default, the
CalibrationFile field is set
to the full path to the
VLP16.xml file, which is the
calibration file for the VLP-16
device model.

In the Add/Remove Signal dialog
box of the app, when you
change the Device Model
parameter selection, the
Calibration File parameter
updates to the corresponding
calibration file for the selected
device model. You can also
browse for or enter a path to a
different calibration file in the
Calibration File box.

Required

For more details on device models and calibration files, see the velodyneFileReader object
reference page.

Attributes:

GetAccess public
SetAccess protected

SignalName — Names of signals in data source
[] (default) | string vector

Names of the signals that can be loaded from the data source, specified as a string vector.
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Attributes:

GetAccess public
SetAccess protected

SignalType — Types of signals in data source
[] (default) | vector of vision.labeler.loading.SignalType enumerations

Types of the signals that can be loaded from the data source, specified as a vector of
vision.labeler.loading.SignalType enumerations. Each signal listed in the SignalName
property is of the type in the corresponding position of SignalType.

Attributes:

GetAccess public
SetAccess protected

Timestamp — Timestamps of signals in data source
[] (default) | cell array of duration vectors

Timestamps of the signals that can be loaded from the data source, specified as a cell array of
duration vectors. Each signal listed in the SignalName property has the timestamps in the
corresponding position of Timestamp.

Attributes:

GetAccess public
SetAccess protected

NumSignals — Number of signals in data source
0 (default) | integer

Number of signals that can be read from the data source, specified as a nonnegative integer.
NumSignals is equal to the number of signals in the SignalName property.

Attributes:

GetAccess public
SetAccess public
Dependent true
NonCopyable true

Methods
Public Methods

customizeLoadPanel customizeLoadPanel(sourceObj,panel)

Customize the loading panel for the data source
object. In the loading dialog box of the app, this
method is invoked when you select the data
source type from the Source Type list.
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getLoadPanelData [sourceName,sourceParams] = getLoadPanelData(sourceObj)

Obtain the data needed to load the data source
object currently selected in the loading panel. In
the loading dialog box of the app, this method is
invoked when you add a source. The method
returns these outputs.

• sourceName is a string capturing the name of
the data source object.

• sourceParams is a structure with fields
containing the parameters required to load
the data source object.

Both of these outputs are passed to the
loadSource method.

loadSource loadSource(sourceObj,sourceName,sourceParams)

Load a data source object into the app. In the
loading dialog box of the app, this method is
invoked after you add a source and the
getLoadPanelData method executes
successfully. This method is also invoked when
you load the data source object into the MATLAB
workspace. When you load the data source
object, MATLAB expects that the source has the
name sourceName and parameters
sourceParams that are needed to load that
source and read data from it.

readFrame frame  = readFrame(sourceObj,signalName,tsIndex)

Read a frame of data from a signal contained in a
data source object at the specified timestamp
index. The index must be in the bounds of the
length of the timestamps for that signal.

loadPanelChecker loadPanelChecker

Check the load panel for the loading dialog box of
the app. This method opens a dialog box similar
to the loading dialog box that you open from the
Open menu on the app toolstrip. Use this method
to preview how the customizeLoadPanel
method populates the loading panel for the
selected data source object.

Static true

Examples

Create Velodyne Lidar Source

Specify the name of the Velodyne® lidar data source, a packet capture (PCAP) file.
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sourceName = fullfile(toolboxdir('vision'),'visiondata', ...
    'lidarData_ConstructionRoad.pcap');

Specify information needed to load the source, including the device model of the lidar and the
calibration file.

sourceParams = struct;
sourceParams.DeviceModel = 'HDL32E';
sourceParams.CalibrationFile = fullfile(matlabroot,'toolbox','shared', ...
    'pointclouds','utilities','velodyneFileReaderConfiguration', ...
    'HDL32E.xml');

Create the Velodyne lidar data source. Load the data source path, device model, and calibration file
path into the VelodyneLidarSource object.

velodyneSource = vision.labeler.loading.VelodyneLidarSource;
loadSource(velodyneSource,sourceName,sourceParams);

Read the first frame from the source. Display the frame.

signalName = velodyneSource.SignalName;
pc = readFrame(velodyneSource,signalName,1);

figure
pcshow(pc)
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Tips
• You can use this class as a starting point for creating a custom data source loading class. To view

the source code for this class, use this command:

edit vision.labeler.loading.VelodyneLidarSource

See Also
Apps
Ground Truth Labeler

Classes
vision.labeler.loading.CustomImageSource |
vision.labeler.loading.ImageSequenceSource |
vision.labeler.loading.PointCloudSequenceSource |
vision.labeler.loading.RosbagSource | vision.labeler.loading.VideoSource

Topics
“Sources vs. Signals in Ground Truth Labeling”
“Create Class for Loading Custom Ground Truth Data Sources”

Introduced in R2020a
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vision.labeler.loading.RosbagSource class
Package: vision.labeler.loading vision.labeler.loading vision.labeler.loading
vision.labeler.loading vision.labeler.loading vision.labeler.loading
Superclasses: vision.labeler.loading.MultiSignalSource

Load signals from rosbag sources into Ground Truth Labeler app

Description
The vision.labeler.loading.RosbagSource class creates an interface for loading signals from
rosbag files into the Ground Truth Labeler app. In the Add/Remove Signal dialog box of the app,
when Source Type is set to Rosbag, this class controls the parameters in that dialog box.

To access this dialog box, in the app, select Open > Add Signals.

The default implementation of this class loads signals from these ROS message types:

• sensor_msgs/Image
• sensor_msgs/CompressedImage
• sensor_msgs/PointCloud2

Note This class requires ROS Toolbox.

The vision.labeler.loading.RosbagSource class is a handle class.

Creation
When you export labels from a Ground Truth Labeler app session that contains rosbag sources, the
exported groundTruthMultisignal object stores instances of this class in its DataSource
property.

To create a RosbagSource object programmatically, such as when programmatically creating a
groundTruthMultisignal object, use the vision.labeler.loading.RosbagSource function
(described here).
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Syntax
rosbagSource = vision.labeler.loading.RosbagSource

Description

rosbagSource = vision.labeler.loading.RosbagSource creates a RosbagSource object for
loading signals from rosbag data sources. To specify the data source and the parameters required to
load the source, use the loadSource method.

Properties
Name — Name of source type
"Rosbag" (default) | string scalar

Name of the type of source that this class loads, specified as a string scalar.

Attributes:

GetAccess public
Constant true
NonCopyable true

Description — Description of class functionality
"A rosbag reader" (default) | string scalar

Description of the functionality that this class provides, specified as a string scalar.

Attributes:

GetAccess public
Constant true
NonCopyable true

SourceName — Name of data source
[] (default) | string scalar

Name of the data source, specified as a string scalar. Typically, SourceName is the name of the file
from which the signal is loaded.

Attributes:

GetAccess public
SetAccess protected

SourceParams — Parameters for loading signals from rosbag data source
[] (default) | empty structure

Parameters for loading signals from a rosbag data source, specified as an empty structure. When you
load image or lidar signals from a rosbag, do not specify the signal timestamps or any other
parameters. The loadSource method reads these parameters from the rosbag.
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Attributes:

GetAccess public
SetAccess protected

SignalName — Names of signals in data source
[] (default) | string vector

Names of the signals that can be loaded from the data source, specified as a string vector.

Attributes:

GetAccess public
SetAccess protected

SignalType — Types of signals in data source
[] (default) | vector of vision.labeler.loading.SignalType enumerations

Types of the signals that can be loaded from the data source, specified as a vector of
vision.labeler.loading.SignalType enumerations. Each signal listed in the SignalName
property is of the type in the corresponding position of SignalType.

Attributes:

GetAccess public
SetAccess protected

Timestamp — Timestamps of signals in data source
[] (default) | cell array of duration vectors

Timestamps of the signals that can be loaded from the data source, specified as a cell array of
duration vectors. Each signal listed in the SignalName property has the timestamps in the
corresponding position of Timestamp.

Attributes:

GetAccess public
SetAccess protected

NumSignals — Number of signals in data source
0 (default) | integer

Number of signals that can be read from the data source, specified as a nonnegative integer.
NumSignals is equal to the number of signals in the SignalName property.

Attributes:

GetAccess public
SetAccess public
Dependent true
NonCopyable true
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Methods
Public Methods

customizeLoadPanel customizeLoadPanel(sourceObj,panel)

Customize the loading panel for the data source
object. In the loading dialog box of the app, this
method is invoked when you select the data
source type from the Source Type list.

getLoadPanelData [sourceName,sourceParams] = getLoadPanelData(sourceObj)

Obtain the data needed to load the data source
object currently selected in the loading panel. In
the loading dialog box of the app, this method is
invoked when you add a source. The method
returns these outputs.

• sourceName is a string capturing the name of
the data source object.

• sourceParams is a structure with fields
containing the parameters required to load
the data source object.

Both of these outputs are passed to the
loadSource method.

loadSource loadSource(sourceObj,sourceName,sourceParams)

Load a data source object into the app. In the
loading dialog box of the app, this method is
invoked after you add a source and the
getLoadPanelData method executes
successfully. This method is also invoked when
you load the data source object into the MATLAB
workspace. When you load the data source
object, MATLAB expects that the source has the
name sourceName and parameters
sourceParams that are needed to load that
source and read data from it.

readFrame frame  = readFrame(sourceObj,signalName,tsIndex)

Read a frame of data from a signal contained in a
data source object at the specified timestamp
index. The index must be in the bounds of the
length of the timestamps for that signal.
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loadPanelChecker loadPanelChecker

Check the load panel for the loading dialog box of
the app. This method opens a dialog box similar
to the loading dialog box that you open from the
Open menu on the app toolstrip. Use this method
to preview how the customizeLoadPanel
method populates the loading panel for the
selected data source object.

Static true

Tips
• You can this class as a starting point for creating a custom data source loading class. To view the

source code for this class, use this command:

edit vision.labeler.loading.RosbagSource

See Also
Apps
Ground Truth Labeler

Classes
vision.labeler.loading.CustomImageSource |
vision.labeler.loading.ImageSequenceSource |
vision.labeler.loading.PointCloudSequenceSource |
vision.labeler.loading.VelodyneLidarSource | vision.labeler.loading.VideoSource

Topics
“Sources vs. Signals in Ground Truth Labeling”
“Create Class for Loading Custom Ground Truth Data Sources”

Introduced in R2020a
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vision.labeler.loading.PointCloudSequenceSource
class
Package: vision.labeler.loading vision.labeler.loading vision.labeler.loading
vision.labeler.loading vision.labeler.loading vision.labeler.loading
Superclasses: vision.labeler.loading.MultiSignalSource

Load signals from point cloud sequence sources into Ground Truth Labeler app

Description
The vision.labeler.loading.PointCloudSequenceSource class creates an interface for
loading signals from point cloud sequence data sources into the Ground Truth Labeler app. In the
Add/Remove Signal dialog box of the app, when Source Type is set to Point Cloud Sequence, this
class controls the parameters in that dialog box.

To access this dialog box, in the app, select Open > Add Signals.

The default implementation of this class loads point cloud sequences composed of PCD or PLY files.

The vision.labeler.loading.PointCloudSequenceSource class is a handle class.

Creation
When you export labels from a Ground Truth Labeler app session that contains point cloud
sequence sources, the exported groundTruthMultisignal object stores instances of this class in
its DataSource property.

To create a PointCloudSequenceSource object programmatically, such as when programmatically
creating a groundTruthMultisignal object, use the
vision.labeler.loading.PointCloudSequenceSource function (described here).

Syntax
pcseqSource = vision.labeler.loading.PointCloudSequenceSource
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Description

pcseqSource = vision.labeler.loading.PointCloudSequenceSource creates a
PointCloudSequenceSource object for loading signals from point cloud sequence data sources. To
specify the data source and the parameters required to load the source, use the loadSource
method.

Properties
Name — Name of source type
"Point Cloud Sequence" (default) | string scalar

Name of the type of source that this class loads, specified as a string scalar.

Attributes:

GetAccess public
Constant true
NonCopyable true

Description — Description of class functionality
"A PointCloud sequence reader" (default) | string scalar

Description of the functionality that this class provides, specified as a string scalar.

Attributes:

GetAccess public
Constant true
NonCopyable true

SourceName — Name of data source
[] (default) | string scalar

Name of the data source, specified as a string scalar. Typically, SourceName is the name of the file
from which the signal is loaded.

Attributes:

GetAccess public
SetAccess protected

SourceParams — Parameters for loading point cloud sequence signal from data source
[] (default) | structure

Parameters for loading a point cloud sequence signal from a data source, specified as a structure.

This table describes the required and optional fields of the SourceParams structure.
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Field Description Required or Optional
Timestamps Timestamps for the point cloud

sequence signal, specified as a
cell array containing a single
duration vector of timestamps.

In the Add/Remove Signal dialog
box of the app, if you set the
Timestamps parameter to
From Workspace and read the
timestamps from a variable in
the MATLAB workspace, then
the SourceParams property
stores these timestamps in the
Timestamps field.

Optional

If you set the Timestamps
parameter to Use Default and
use the default timestamps for
point cloud sequence signals,
then the structure does not
include this field, and the
SourceParams property is
empty, []. For point cloud
sequence signals, the default
timestamp duration vector has
elements from 0 to the number
of valid point cloud files minus
1. Units are in seconds.

Attributes:

GetAccess public
SetAccess protected

SignalName — Names of signals in data source
[] (default) | string vector

Names of the signals that can be loaded from the data source, specified as a string vector.

Attributes:

GetAccess public
SetAccess protected

SignalType — Types of signals in data source
[] (default) | vector of vision.labeler.loading.SignalType enumerations

Types of the signals that can be loaded from the data source, specified as a vector of
vision.labeler.loading.SignalType enumerations. Each signal listed in the SignalName
property is of the type in the corresponding position of SignalType.

Attributes:

GetAccess public
SetAccess protected

Timestamp — Timestamps of signals in data source
[] (default) | cell array of duration vectors

Timestamps of the signals that can be loaded from the data source, specified as a cell array of
duration vectors. Each signal listed in the SignalName property has the timestamps in the
corresponding position of Timestamp.

Attributes:

GetAccess public
SetAccess protected

4 Objects

4-788



NumSignals — Number of signals in data source
0 (default) | integer

Number of signals that can be read from the data source, specified as a nonnegative integer.
NumSignals is equal to the number of signals in the SignalName property.

Attributes:

GetAccess public
SetAccess public
Dependent true
NonCopyable true

Methods
Public Methods

customizeLoadPanel customizeLoadPanel(sourceObj,panel)

Customize the loading panel for the data source
object. In the loading dialog box of the app, this
method is invoked when you select the data
source type from the Source Type list.

getLoadPanelData [sourceName,sourceParams] = getLoadPanelData(sourceObj)

Obtain the data needed to load the data source
object currently selected in the loading panel. In
the loading dialog box of the app, this method is
invoked when you add a source. The method
returns these outputs.

• sourceName is a string capturing the name of
the data source object.

• sourceParams is a structure with fields
containing the parameters required to load
the data source object.

Both of these outputs are passed to the
loadSource method.

loadSource loadSource(sourceObj,sourceName,sourceParams)

Load a data source object into the app. In the
loading dialog box of the app, this method is
invoked after you add a source and the
getLoadPanelData method executes
successfully. This method is also invoked when
you load the data source object into the MATLAB
workspace. When you load the data source
object, MATLAB expects that the source has the
name sourceName and parameters
sourceParams that are needed to load that
source and read data from it.
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readFrame frame  = readFrame(sourceObj,signalName,tsIndex)

Read a frame of data from a signal contained in a
data source object at the specified timestamp
index. The index must be in the bounds of the
length of the timestamps for that signal.

loadPanelChecker loadPanelChecker

Check the load panel for the loading dialog box of
the app. This method opens a dialog box similar
to the loading dialog box that you open from the
Open menu on the app toolstrip. Use this method
to preview how the customizeLoadPanel
method populates the loading panel for the
selected data source object.

Static true

Examples

Create Point Cloud Sequence Source

Specify the path to a folder containing a point cloud sequence.

pcSeqFolder = fullfile(toolboxdir('driving'),'drivingdata',...
    'lidarSequence');

Load the timestamps that correspond to the sequence.

load(fullfile(pcSeqFolder,'timestamps.mat'));

Create a point cloud sequence source. Load the folder path and timestamps into the
PointCloudSequenceSource object.

sourceName = pcSeqFolder;
sourceParams = struct;
sourceParams.Timestamps = timestamps;

pcseqSource = vision.labeler.loading.PointCloudSequenceSource;
loadSource(pcseqSource,sourceName,sourceParams);

Read the first frame in the sequence. Display the frame.

signalName = pcseqSource.SignalName;
pc = readFrame(pcseqSource,signalName,1);

figure
pcshow(pc)
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Tips
• You can this class as a starting point for creating a custom data source loading class. To view the

source code for this class, use this command:

edit vision.labeler.loading.PointCloudSequenceSource

See Also
Apps
Ground Truth Labeler

Classes
vision.labeler.loading.CustomImageSource |
vision.labeler.loading.ImageSequenceSource |
vision.labeler.loading.RosbagSource |
vision.labeler.loading.VelodyneLidarSource | vision.labeler.loading.VideoSource

Topics
“Sources vs. Signals in Ground Truth Labeling”
“Create Class for Loading Custom Ground Truth Data Sources”

Introduced in R2020a
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vision.labeler.loading.CustomImageSource class
Package: vision.labeler.loading vision.labeler.loading vision.labeler.loading
vision.labeler.loading vision.labeler.loading vision.labeler.loading
Superclasses: vision.labeler.loading.MultiSignalSource

Load signals from custom image sources into Ground Truth Labeler app

Description
The vision.labeler.loading.CustomImageSource class creates an interface for loading signals
from custom image data sources into the Ground Truth Labeler app. In the Add/Remove Signal
dialog box of the app, when Source Type is set to Custom Image, this class controls the parameters
in that dialog box.

To access this dialog box, in the app, select Open > Add Signals.

The vision.labeler.loading.CustomImageSource class is a handle class.

Creation
When you export labels from a Ground Truth Labeler app session that contains custom image
sources, the exported groundTruthMultisignal object stores instances of this class in its
DataSource property.

To create a CustomImageSource object programmatically, such as when programmatically creating
a groundTruthMultisignal object, use the vision.labeler.loading.CustomImageSource
function (described here).

Syntax
customImgSource = vision.labeler.loading.CustomImageSource

Description

customImgSource = vision.labeler.loading.CustomImageSource creates a
CustomImageSource object for loading signals from custom image data sources. To specify the data
source and the parameters required to load the source, use the loadSource method.
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Properties
Name — Name of source type
"Custom Image" (default) | string scalar

Name of the type of source that this class loads, specified as a string scalar.

Attributes:

GetAccess public
Constant true
NonCopyable true

Description — Description of class functionality
"A custom image source reader" (default) | string scalar

Description of the functionality that this class provides, specified as a string scalar.

Attributes:

GetAccess public
Constant true
NonCopyable true

SourceName — Name of data source
[] (default) | string scalar

Name of the data source, specified as a string scalar. Typically, SourceName is the name of the file
from which the signal is loaded.

Attributes:

GetAccess public
SetAccess protected

SourceParams — Parameters for loading custom image signal from data source
[] (default) | structure

Parameters for loading a custom image signal from a data source, specified as a structure.

This table describes the required and optional fields of the SourceParams structure.
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Field Description Required or Optional
FunctionHandle Custom reader function for

reading images from the data
source, specified as a function
handle. In the Add/Remove
Signal dialog box of the app,
specify this function handle in
the Custom Reader Function
parameter. For details on
creating a custom reader
function, see “Use Custom
Image Source Reader for
Labeling” (Computer Vision
Toolbox).

Required

Timestamps Timestamps for the custom
image signal, specified as a cell
array containing a single
duration vector of timestamps.
(For data sources that contain
multiple signals, the
Timestamps cell array contains
one duration vector per signal
with timestamps that are loaded
from the MATLAB workspace.)

In the Add/Remove Signal dialog
box of the app, when you click
the Import from Workspace
button to read the timestamps
from a variable in the MATLAB
workspace, then the
SourceParams property stores
these timestamps in the
Timestamps field.

Required

Attributes:

GetAccess public
SetAccess protected

SignalName — Names of signals in data source
[] (default) | string vector

Names of the signals that can be loaded from the data source, specified as a string vector.

Attributes:

GetAccess public
SetAccess protected

SignalType — Types of signals in data source
[] (default) | vector of vision.labeler.loading.SignalType enumerations
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Types of the signals that can be loaded from the data source, specified as a vector of
vision.labeler.loading.SignalType enumerations. Each signal listed in the SignalName
property is of the type in the corresponding position of SignalType.

Attributes:

GetAccess public
SetAccess protected

Timestamp — Timestamps of signals in data source
[] (default) | cell array of duration vectors

Timestamps of the signals that can be loaded from the data source, specified as a cell array of
duration vectors. Each signal listed in the SignalName property has the timestamps in the
corresponding position of Timestamp.

Attributes:

GetAccess public
SetAccess protected

NumSignals — Number of signals in data source
0 (default) | integer

Number of signals that can be read from the data source, specified as a nonnegative integer.
NumSignals is equal to the number of signals in the SignalName property.

Attributes:

GetAccess public
SetAccess public
Dependent true
NonCopyable true

Methods
Public Methods

customizeLoadPanel customizeLoadPanel(sourceObj,panel)

Customize the loading panel for the data source
object. In the loading dialog box of the app, this
method is invoked when you select the data
source type from the Source Type list.
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getLoadPanelData [sourceName,sourceParams] = getLoadPanelData(sourceObj)

Obtain the data needed to load the data source
object currently selected in the loading panel. In
the loading dialog box of the app, this method is
invoked when you add a source. The method
returns these outputs.

• sourceName is a string capturing the name of
the data source object.

• sourceParams is a structure with fields
containing the parameters required to load
the data source object.

Both of these outputs are passed to the
loadSource method.

loadSource loadSource(sourceObj,sourceName,sourceParams)

Load a data source object into the app. In the
loading dialog box of the app, this method is
invoked after you add a source and the
getLoadPanelData method executes
successfully. This method is also invoked when
you load the data source object into the MATLAB
workspace. When you load the data source
object, MATLAB expects that the source has the
name sourceName and parameters
sourceParams that are needed to load that
source and read data from it.

readFrame frame  = readFrame(sourceObj,signalName,tsIndex)

Read a frame of data from a signal contained in a
data source object at the specified timestamp
index. The index must be in the bounds of the
length of the timestamps for that signal.

loadPanelChecker loadPanelChecker

Check the load panel for the loading dialog box of
the app. This method opens a dialog box similar
to the loading dialog box that you open from the
Open menu on the app toolstrip. Use this method
to preview how the customizeLoadPanel
method populates the loading panel for the
selected data source object.

Static true

Examples

Create Custom Image Source

Specify the path to a folder containing a sequence of road images.
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imageFolder = fullfile(toolboxdir('driving'),'drivingdata','roadSequence');

Store the images in an image datastore. The Ground Truth Labeler app and
groundTruthMultisignal object do not natively support image datastores, so it is considered a
custom image data source.

imds = imageDatastore(imageFolder);

Write a reader function, readerFcn, to read images from the datastore. The first input argument to
the reader function, sourceName, is not used. The second input argument, currentTimestamp, is
converted from a duration scalar to a 1-based index. This format is compatible with reading images
from the datastore.

readerFcn = @(~,idx)readimage(imds,seconds(idx));

Create a custom image source. Load the source name, reader function, and first five timestamps of
the datastore into the CustomImageSource object.

sourceName = imageFolder;
sourceParams = struct();
sourceParams.FunctionHandle = readerFcn;
sourceParams.Timestamps = seconds(1:5);
customImgSource = vision.labeler.loading.CustomImageSource;
loadSource(customImgSource,sourceName,sourceParams)

Read the first frame in the sequence. Display the frame.

signalName = customImgSource.SignalName;
I = readFrame(customImgSource,signalName,1);
figure
imshow(I)
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Tips
• You can this class as a starting point for creating a custom data source loading class. To view the

source code for this class, use this command:

edit vision.labeler.loading.CustomImageSource

See Also
Apps
Ground Truth Labeler

Classes
vision.labeler.loading.ImageSequenceSource |
vision.labeler.loading.PointCloudSequenceSource |
vision.labeler.loading.RosbagSource |
vision.labeler.loading.VelodyneLidarSource | vision.labeler.loading.VideoSource

Topics
“Sources vs. Signals in Ground Truth Labeling”
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“Create Class for Loading Custom Ground Truth Data Sources”

Introduced in R2020a

 vision.labeler.loading.CustomImageSource class

4-799



vision.labeler.loading.SignalType
Signal type enumerations for labeling

Description
The vision.labeler.loading.SignalType enumerations enable you to specify the types of
signals used in the Ground Truth Labeler app. When selecting signals from a
groundTruthMultisignal object by using the selectLabelsBySignalType function, use these
enumerations to select labels of a specific signal type.

Creation

Syntax
vision.labeler.loading.SignalType.Image
vision.labeler.loading.SignalType.PointCloud
vision.labeler.loading.SignalType.Time

Description

vision.labeler.loading.SignalType.Image creates an enumeration of signal type Image. Use
this enumeration to specify image signals obtained from sources such as videos or image sequences.

vision.labeler.loading.SignalType.PointCloud creates an enumeration of signal type
PointCloud. Use this enumeration to specify lidar point cloud signals obtained from sources such as
Velodyne packet capture (PCAP) files.

vision.labeler.loading.SignalType.Time creates an enumeration of signal type Time. Scene
labels are Time signals and are of type duration. You cannot load Time signals into the Ground
Truth Labeler app.

Examples

Select Ground Truth Labels by Signal Type

Select ground truth labels from a groundTruthMultisignal object by specifying a signal type.

Load a groundTruthMultisignal object containing ROI and scene label data for a video and
corresponding lidar point cloud sequence. The helper function used to load this object is attached to
the example as a supporting file.

gTruth = helperLoadGTruthVideoLidar;

Inspect the label definitions. The object contains definitions for image, point cloud, and time signals.

gTruth.LabelDefinitions
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ans =

  5x7 table

      Name       SignalType    LabelType       Group        Description     LabelColor      Hierarchy  
    _________    __________    _________    ____________    ___________    ____________    ____________

    {'car'  }    Image         Rectangle    {'Vehicles'}    {0x0 char}     {1x3 double}    {1x1 struct}
    {'car'  }    PointCloud    Cuboid       {'Vehicles'}    {0x0 char}     {1x3 double}    {1x1 struct}
    {'truck'}    Image         Rectangle    {'Vehicles'}    {0x0 char}     {1x3 double}    {0x0 double}
    {'truck'}    PointCloud    Cuboid       {'Vehicles'}    {0x0 char}     {1x3 double}    {0x0 double}
    {'sunny'}    Time          Scene        {'None'    }    {0x0 char}     {1x3 double}    {0x0 double}

Inspect the ROI labels. The object contains labels for the lidar point cloud sequence and the video.

gTruth.ROILabelData

ans = 

  ROILabelData with properties:

    video_01_city_c2s_fcw_10s: [204x2 timetable]
                lidarSequence: [34x2 timetable]

Create a new groundTruthMultisignal object that contains labels for only point cloud signals.

signalTypes = vision.labeler.loading.SignalType.PointCloud;
gtLabel = selectLabelsBySignalType(gTruth,signalTypes);

For the original and new objects, inspect the first five rows of label data for the lidar point cloud
sequence. Because lidar signals are of type PointCloud, the new object contains the same label data
for the lidar sequence as the original object.

lidarLabels = gTruth.ROILabelData.lidarSequence;
lidarLabelsSelection = gtLabel.ROILabelData.lidarSequence;

numrows = 5;
head(lidarLabels,numrows)
head(lidarLabelsSelection,numrows)

ans =

  5x2 timetable

       Time            car            truck    
    ___________    ____________    ____________

    0 sec          {1x1 struct}    {1x0 struct}
    0.29926 sec    {1x1 struct}    {1x0 struct}
    0.59997 sec    {1x1 struct}    {1x0 struct}
    0.8485 sec     {1x1 struct}    {1x0 struct}
    1.1484 sec     {1x1 struct}    {1x0 struct}
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ans =

  5x2 timetable

       Time            car            truck    
    ___________    ____________    ____________

    0 sec          {1x1 struct}    {1x0 struct}
    0.29926 sec    {1x1 struct}    {1x0 struct}
    0.59997 sec    {1x1 struct}    {1x0 struct}
    0.8485 sec     {1x1 struct}    {1x0 struct}
    1.1484 sec     {1x1 struct}    {1x0 struct}

For the original and new objects, inspect the first five rows of label data for the video. Because video
signals are of type Image, the new object contains no label data for the video.

videoLabels = gTruth.ROILabelData.video_01_city_c2s_fcw_10s;
videoLabelsSelection = gtLabel.ROILabelData.video_01_city_c2s_fcw_10s;

head(videoLabels,numrows)
head(videoLabelsSelection,numrows)

ans =

  5x2 timetable

      Time          car            truck    
    ________    ____________    ____________

    0 sec       {1x3 struct}    {1x0 struct}
    0.05 sec    {1x3 struct}    {1x0 struct}
    0.1 sec     {1x3 struct}    {1x0 struct}
    0.15 sec    {1x3 struct}    {1x0 struct}
    0.2 sec     {1x3 struct}    {1x0 struct}

ans =

  5x0 empty timetable

See Also
Apps
Ground Truth Labeler

Objects
attributeType | groundTruthMultisignal | labelDefinitionCreatorMultisignal |
labelType

Functions
selectLabelsBySignalType

Topics
“Create Class for Loading Custom Ground Truth Data Sources”
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Introduced in R2020a
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sim3d.Editor
Interface to the Unreal Engine project

Description
Use the sim3d.Editor class to interface with the Unreal Editor.

To develop scenes with the Unreal Editor and co-simulate with Simulink, you need the Automated
Driving Toolbox Interface for Unreal Engine 4 Projects support package. The support package
contains an Unreal Engine project that allows you to customize the Automated Driving Toolbox
scenes. For information about the support package, see “Customize Unreal Engine Scenes for
Automated Driving”.

Creation

Syntax
sim3d.Editor(project)

Description

MATLAB creates an sim3d.Editor object for the Unreal Editor project specified in sim3d.Editor(
project).

Input Arguments

project — Project path and name
string array

Project path and name.
Example: "C:\Local\AutoVrtlEnv\AutoVrtlEnv.uproject"
Data Types: string

Properties
Uproject — Project path and name
string array

This property is read-only.

Project path and name with Unreal Engine project file extension.
Example: "C:\Local\AutoVrtlEnv\AutoVrtlEnv.uproject"
Data Types: string
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Object Functions
open Open the Unreal Editor

Examples

Open Project in Unreal Editor

Open an Unreal Engine project in the Unreal Editor.

Create an instance of the sim3d.Editor class for the Unreal Engine project located in C:\Local
\AutoVrtlEnv\AutoVrtlEnv.uproject.
editor=sim3d.Editor(fullfile("C:\Local\AutoVrtlEnv\AutoVrtlEnv.uproject"))

Open the project in the Unreal Editor.
editor.open();

See Also
Topics
“Customize Unreal Engine Scenes for Automated Driving”

Introduced in R2020a
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open
Open the Unreal Editor

Syntax
[status,result]=open(sim3dEditorObj)

Description
[status,result]=open(sim3dEditorObj) opens the Unreal Engine project in the Unreal Editor.

To develop scenes with the Unreal Editor and co-simulate with Simulink, you need the Automated
Driving Toolbox Interface for Unreal Engine 4 Projects support package. The support package
contains an Unreal Engine project that allows you to customize the Automated Driving Toolbox
scenes. For information about the support package, see “Customize Unreal Engine Scenes for
Automated Driving”.

Input Arguments
sim3dEditorObj — sim3d.Editor object
sim3d.Editor object

sim3d.Editor object for the Unreal Engine project.

Output Arguments
status — Command exit status
0 | nonzero integer

Command exit status, returned as either 0 or a nonzero integer. When the command is successful,
status is 0. Otherwise, status is a nonzero integer.

• If command includes the ampersand character (&), then status is the exit status when command
starts

• If command does not include the ampersand character (&), then status is the exit status upon
command completion.

result — Output of operating system command
character vector

Output of the operating system command, returned as a character vector. The system shell might not
properly represent non-Unicode® characters.

See Also
sim3d.Editor

Topics
“Customize Unreal Engine Scenes for Automated Driving”
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Introduced in R2020a
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multiObjectTracker
Track objects using GNN assignment

Description
The multiObjectTracker System object initializes, confirms, predicts, corrects, and deletes the
tracks of moving objects. Inputs to the multi-object tracker are detection reports generated by an
objectDetection object, radarDetectionGenerator object, or visionDetectionGenerator
object. The multi-object tracker accepts detections from multiple sensors and assigns them to tracks
using a global nearest neighbor (GNN) criterion. Each detection is assigned to a separate track. If the
detection cannot be assigned to any track, based on the AssignmentThreshold property, the
tracker creates a new track. The tracks are returned in a structure array.

A new track starts in a tentative state. If enough detections are assigned to a tentative track, its
status changes to confirmed. If the detection is a known classification (the ObjectClassID field of
the returned track is nonzero), that track can be confirmed immediately. For details on the multi-
object tracker properties used to confirm tracks, see “Algorithms” on page 4-819.

When a track is confirmed, the multi-object tracker considers that track to represent a physical
object. If detections are not added to the track within a specifiable number of updates, the track is
deleted.

The tracker also estimates the state vector and state vector covariance matrix for each track using a
Kalman filter. These state vectors are used to predict a track's location in each frame and determine
the likelihood of each detection being assigned to each track.

To track objects using a multi-object tracker:

1 Create the multiObjectTracker object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?.

Creation

Syntax
tracker = multiObjectTracker
tracker = multiObjectTracker(Name,Value)

Description

tracker = multiObjectTracker creates a multiObjectTracker System object with default
property values.

tracker = multiObjectTracker(Name,Value) sets properties on page 4-809 for the multi-
object tracker using one or more name-value pairs. For example,
multiObjectTracker('FilterInitializationFcn',@initcvukf,'MaxNumTracks',100)
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creates a multi-object tracker that uses a constant-velocity, unscented Kalman filter and maintains a
maximum of 100 tracks. Enclose each property name in quotes.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

TrackerIndex — Unique tracker identifier
0 (default) | nonnegative integer

Unique tracker identifier, specified as a nonnegative integer. This property is used as the
SourceIndex in the tracker outputs, and distinguishes tracks that come from different trackers in a
multiple-tracker system. You must specify this property as a positive integer to use the track outputs
as inputs to a track fuser.
Example: 1

FilterInitializationFcn — Kalman filter initialization function
@initcvkf (default) | function handle | character vector | string scalar

Kalman filter initialization function, specified as a function handle or as a character vector or string
scalar of the name of a valid Kalman filter initialization function.

Automated Driving Toolbox supplies several initialization functions that you can use to specify
FilterInitializationFcn.

Initialization Function Function Definition
initcvekf Initialize constant-velocity extended Kalman filter.
initcvkf Initialize constant-velocity linear Kalman filter.
initcvukf Initialize constant-velocity unscented Kalman

filter.
initcaekf Initialize constant-acceleration extended Kalman

filter.
initcakf Initialize constant-acceleration linear Kalman

filter.
initcaukf Initialize constant-acceleration unscented Kalman

filter.
initctekf Initialize constant-turnrate extended Kalman

filter.
initctukf Initialize constant-turnrate unscented Kalman

filter.

You can also write your own initialization function. The input to this function must be a detection
report created by objectDetection. The output of this function must be a Kalman filter object:
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trackingKF, trackingEKF, or trackingUKF. To guide you in writing this function, you can
examine the details of the supplied functions from within MATLAB. For example:

type initcvkf

Data Types: function_handle | char | string

AssignmentThreshold — Detection assignment threshold
30*[1 Inf] (default) | positive scalar | 1-by-2 vector of positive values

Detection assignment threshold (or gating threshold), specified as a positive scalar or an 1-by-2
vector of [C1,C2], where C1≤C2. If specified as a scalar, the specified value, val, will be expanded to
[val, Inf].

Initially, the tracker executes a coarse estimation for the normalized distance between all the tracks
and detections. The tracker only calculates the accurate normalized distance for the combinations
whose coarse normalized distance is less than C2. Also, the tracker can only assign a detection to a
track if their accurate normalized distance is less than C1. See the distance function used with
tracking filters (for example, trackingEKF) for an explanation of the distance calculation.

Tips:

• Increase the value of C2 if there are combinations of track and detection that should be calculated
for assignment but are not. Decrease it if cost calculation takes too much time.

• Increase the value of C1 if there are detections that should be assigned to tracks but are not.
Decrease it if there are detections that are assigned to tracks they should not be assigned to (too
far away).

MaxNumTracks — Maximum number of tracks
200 (default) | positive integer

Maximum number of tracks that the tracker can maintain, specified as a positive integer.
Data Types: double

MaxNumSensors — Maximum number of sensors
20 (default) | positive integer

Maximum number of sensors that can be connected to the tracker, specified as a positive integer.
When you specify detections as input to the multi-object tracker, MaxNumSensors must be greater
than or equal to the highest SensorIndex value in the detections cell array of objectDetection
objects used to update the multi-object tracker. This property determines how many sets of
ObjectAttributes fields each output track can have.
Data Types: double

ConfirmationThreshold — Threshold for track confirmation
[2 3] (default) | two-element vector of non-decreasing positive integers

Threshold for track confirmation, specified as a two-element vector of non-decreasing positive
integers, [M N], where M is less than or equal to N. A track is confirmed if it receives at least M
detections in the last N updates.

• When setting M, take into account the probability of object detection for the sensors. The
probability of detection depends on factors such as occlusion or clutter. You can reduce M when
tracks fail to be confirmed or increase M when too many false detections are assigned to tracks.
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• When setting N, consider the number of times you want the tracker to update before it makes a
confirmation decision. For example, if a tracker updates every 0.05 seconds, and you allow 0.5
seconds to make a confirmation decision, set N = 10.

Example: [3 5]
Data Types: double

DeletionThreshold — Threshold for track deletion
[5 5] (default) | two-element vector of positive non-decreasing integers

Threshold for track deletion, specified as a two-element vector of positive non-decreasing integers [P
Q], where P is less than or equal to Q. If a confirmed track is not assigned to any detection P times in
the last Q tracker updates, then the track is deleted.

• Decrease Q (or increase P) if tracks should be deleted earlier.
• Increase Q (or decrease P) if tracks should be kept for a longer time before deletion.

Example: [3 5]
Data Types: single | double

HasCostMatrixInput — Enable cost matrix input
false (default) | true

Enable a cost matrix as input to the multiObjectTracker System object or to the updateTracks
function, specified as false or true.
Data Types: logical

HasDetectableTrackIDsInput — Enable input of detectable track IDs
false (default) | true

Enable the input of detectable track IDs at each object update, specified as false or true. Set this
property to true if you want to provide a list of detectable track IDs. This list tells the tracker of all
tracks that the sensors are expected to detect and, optionally, the probability of detection for each
track.
Data Types: logical

StateParameters — Parameters of the track state reference frame
struct([]) (default) | struct | struct array

Parameters of the track state reference frame, specified as a struct or a struct array. Use this
property to define the track state reference frame and how to transform the track from the tracker
(called source) coordinate system to the fuser coordinate system.

This property is tunable.
Data Types: struct

NumTracks — Number of tracks maintained by multi-object tracker
nonnegative integer

This property is read-only.

Number of tracks maintained by the multi-object tracker, specified as a nonnegative integer.
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Data Types: double

NumConfirmedTracks — Number of confirmed tracks
nonnegative integer

This property is read-only.

Number of confirmed tracks, specified as a nonnegative integer. The IsConfirmed fields of the
output track structures indicate which tracks are confirmed.
Data Types: double

Usage
To update tracks, call the created multi-object tracker with arguments, as if it were a function
(described here). Alternatively, update tracks by using the updateTracks function, specifying the
multi-object tracker as an input argument.

Syntax
confirmedTracks = tracker(detections,time)
[confirmedTracks,tentativeTracks] = tracker(detections,time)
[confirmedTracks,tentativeTracks,allTracks] = tracker(detections,time)
[ ___ ] = tracker(detections,time,costMatrix)
[ ___ ] = tracker( ___ ,detectableTrackIDs)

Description

confirmedTracks = tracker(detections,time) creates, updates, and deletes tracks in the
multi-object tracker and returns details about the confirmed tracks. Updates are based on the
specified list of detections, and all tracks are updated to the specified time. Each element in the
returned confirmedTracks corresponds to a single track.

[confirmedTracks,tentativeTracks] = tracker(detections,time) also returns
tentativeTracks containing details about the tentative tracks.

[confirmedTracks,tentativeTracks,allTracks] = tracker(detections,time) also
returns allTracks containing details about all the confirmed and tentative tracks. The tracks are
returned in the order by which the tracker internally maintains them. You can use this output to help
you calculate the cost matrix, an optional input argument.

[ ___ ] = tracker(detections,time,costMatrix) specifies a cost matrix, returning any of the
outputs from preceding syntaxes.

To specify a cost matrix, set the HasCostMatrixInput property of the multiObjectTracker
System object to true.

[ ___ ] = tracker( ___ ,detectableTrackIDs) also specifies a list of expected detectable
tracks given by detectableTrackIDs. This argument can be used with any of the previous input
syntaxes.

To enable this syntax, set the HasDetectableTrackIDsInput property to true.
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Input Arguments

detections — Detection list
cell array of objectDetection objects

Detection list, specified as a cell array of objectDetection objects. The Time property value of
each objectDetection object must be less than or equal to the current time of update, time, and
greater than the previous time value used to update the multi-object tracker.

time — Time of update
real scalar

Time of update, specified as a real scalar. The multi-object tracker updates all tracks to this time.
Units are in seconds.

time must be greater than or equal to the largest Time property value of the objectDetection
objects in the input detections list. time must increase in value with each update to the multi-
object tracker.
Data Types: double

costMatrix — Cost matrix
NT-by-ND matrix

Cost matrix, specified as a real-valued NT-by-ND matrix, where NT is the number of existing tracks,
and ND is the number of current detections. The rows of the cost matrix correspond to the existing
tracks. The columns correspond to the detections. Tracks are ordered as they appear in the list of
tracks in the allTracks output argument of the previous update to the multi-object tracker.

In the first update to the multi-object tracker, or when the multi-object tracker has no previous tracks,
assign the cost matrix a size of [0, ND]. The cost must be calculated so that lower costs indicate a
higher likelihood that the multi-object tracker assigns a detection to a track. To prevent certain
detections from being assigned to certain tracks, use Inf.
Dependencies

To enable specification of the cost matrix when updating tracks, set the HasCostMatrixInput
property of the multi-object tracker to true
Data Types: double

detectableTrackIDs — Detectable track IDs
real-valued M-by-1 vector | real-valued M-by-2 matrix

Detectable track IDs, specified as a real-valued M-by-1 vector or M-by-2 matrix. Detectable tracks are
tracks that the sensors expect to detect. The first column of the matrix contains a list of track IDs that
the sensors report as detectable. The optional second column contains the detection probability for
the track. The detection probability is either reported by a sensor or, if not reported, obtained from
the DetectionProbability property.

Tracks whose identifiers are not included in detectableTrackIDs are considered as undetectable.
The track deletion logic does not count the lack of detection as a 'missed detection' for track deletion
purposes.
Dependencies

To enable this input argument, set the detectableTrackIDs property to true.
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Data Types: single | double

Output Arguments

confirmedTracks — Confirmed tracks
array of objectTrack objects | array of structures

Confirmed tracks, returned as an array of objectTrack objects in MATLAB, and returned as an
array of structures in code generation. In code generation, the field names of the returned structure
are same with the property names of objectTrack.

A track is confirmed if it satisfies the confirmation threshold specified in the
ConfirmationThreshold property. In that case, the IsConfirmed property of the object or field of
the structure is true.
Data Types: struct | object

tentativeTracks — Tentative tracks
array of objectTrack objects | array of structures

Tentative tracks, returned as an array of objectTrack objects in MATLAB, and returned as an array
of structures in code generation. In code generation, the field names of the returned structure are
same with the property names of objectTrack.

A track is tentative if it does not satisfy the confirmation threshold specified in the
ConfirmationThreshold property. In that case, the IsConfirmed property of the object or field of
the structure is false.
Data Types: struct | object

allTracks — All tracks
array of objectTrack objects | array of structures

All tracks, returned as an array of objectTrack objects in MATLAB, and returned as an array of
structures in code generation. In code generation, the field names of the returned structure are same
with the property names of objectTrack. All tracks consists of confirmed and tentative tracks.
Data Types: struct | object

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to multiObjectTracker
updateTracks Update multi-object tracker with new detections
initializeTrack Initialize new track
deleteTrack Delete existing track
getTrackFilterProperties Obtain filter properties of track from multi-object tracker
setTrackFilterProperties Set filter properties of track from multi-object tracker
predictTracksToTime Predict track state
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Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
clone Create duplicate System object
isLocked Determine if System object is in use
reset Reset internal states of System object

Examples

Track Single Object Using Multi-Object Tracker

Create a multiObjectTracker System object™ using the default filter initialization function for a 2-
D constant-velocity model. For this motion model, the state vector is [x;vx;y;vy].

tracker = multiObjectTracker('ConfirmationThreshold',[4 5], ...
    'DeletionThreshold',10);

Create a detection by specifying an objectDetection object. To use this detection with the multi-
object tracker, enclose the detection in a cell array.

dettime = 1.0;
det = { ...
    objectDetection(dettime,[10; -1], ...
    'SensorIndex',1, ...
    'ObjectAttributes',{'ExampleObject',1}) ...
    };

Update the multi-object tracker with this detection. The time at which you update the multi-object
tacker must be greater than or equal to the time at which the object was detected.

updatetime = 1.25;
[confirmedTracks,tentativeTracks,allTracks] = tracker(det,updatetime);

Create another detection of the same object and update the multi-object tracker. The tracker
maintains only one track.

dettime = 1.5;
det = { ...
    objectDetection(dettime,[10.1; -1.1], ...
    'SensorIndex',1, ...
    'ObjectAttributes',{'ExampleObject',1}) ...
    };
updatetime = 1.75;
[confirmedTracks,tentativeTracks,allTracks] = tracker(det,updatetime);

Determine whether the track has been verified by checking the number of confirmed tracks.

numConfirmed = tracker.NumConfirmedTracks

numConfirmed = 0

Examine the position and velocity of the tracked object. Because the track has not been confirmed,
get the position and velocity from the tentativeTracks structure.
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positionSelector = [1 0 0 0; 0 0 1 0];
velocitySelector = [0 1 0 0; 0 0 0 1];
position = getTrackPositions(tentativeTracks,positionSelector)

position = 1×2

   10.1426   -1.1426

velocity = getTrackVelocities(tentativeTracks,velocitySelector)

velocity = 1×2

    0.1852   -0.1852

Confirm and Delete Track in Multi-Object Tracker

Create a sequence of detections of a moving object. Track the detections using a
multiObjectTracker System object™. Observe how the tracks switch from tentative to confirmed
and then to deleted.

Create a multi-object tracker using the initcakf filter initialization function. The tracker models 2-D
constant-acceleration motion. For this motion model, the state vector is [x;vx;ax;y;vy;ay].

tracker = multiObjectTracker('FilterInitializationFcn',@initcakf, ...
    'ConfirmationThreshold',[3 4],'DeletionThreshold',[6 6]);

Create a sequence of detections of a moving target using objectDetection. To use these detections
with the multiObjectTracker, enclose the detections in a cell array.

dt = 0.1;
pos = [10; -1];
vel = [10; 5];
for detno = 1:2
    time = (detno-1)*dt;
    det = { ...
        objectDetection(time,pos, ...
        'SensorIndex',1, ...
        'ObjectAttributes',{'ExampleObject',1}) ...
        };
    [confirmedTracks,tentativeTracks,allTracks] = tracker(det,time);
    pos = pos + vel*dt;
    meas = pos;
end

Verify that the track has not been confirmed yet by checking the number of confirmed tracks.

numConfirmed = tracker.NumConfirmedTracks

numConfirmed = 0

Because the track is not confirmed, get the position and velocity from the tentativeTracks
structure.
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positionSelector = [1 0 0 0 0 0; 0 0 0 1 0 0];
velocitySelector = [0 1 0 0 0 0; 0 0 0 0 1 0];
position = getTrackPositions(tentativeTracks,positionSelector)

position = 1×2

   10.6669   -0.6665

velocity = getTrackVelocities(tentativeTracks,velocitySelector)

velocity = 1×2

    3.3473    1.6737

Add more detections to confirm the track.

for detno = 3:5
    time = (detno-1)*dt;
    det = { ...
        objectDetection(time,pos, ...
        'SensorIndex',1, ...
        'ObjectAttributes',{'ExampleObject',1}) ...
        };
    [confirmedTracks,tentativeTracks,allTracks] = tracker(det,time);
    pos = pos + vel*dt;
    meas = pos;
end

Verify that the track has been confirmed, and display the position and velocity vectors for that track.

numConfirmed = tracker.NumConfirmedTracks

numConfirmed = 1

position = getTrackPositions(confirmedTracks,positionSelector)

position = 1×2

   13.8417    0.9208

velocity = getTrackVelocities(confirmedTracks,velocitySelector)

velocity = 1×2

    9.4670    4.7335

Let the tracker run but do not add new detections. The existing track is deleted.

for detno = 6:20
    time = (detno-1)*dt;
    det = {};
    [confirmedTracks,tentativeTracks,allTracks] = tracker(det,time);
    pos = pos + vel*dt;
    meas = pos;
end
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Verify that the tracker has no tentative or confirmed tracks.

isempty(allTracks)

ans = logical
   1

Generate Radar Detections of Multiple Vehicles

Generate detections using a forward-facing automotive radar mounted on an ego vehicle. Assume
that there are three targets:

• Vehicle 1 is in the center lane, directly in front of the ego vehicle, and driving at the same speed.
• Vehicle 2 is in the left lane and driving faster than the ego vehicle by 12 kilometers per hour.
• Vehicle 3 is in the right lane and driving slower than the ego vehicle by 5 kilometers per hour.

All positions, velocities, and measurements are relative to the ego vehicle. Run the simulation for ten
steps.

dt = 0.1;
pos1 = [150 0 0];
pos2 = [160 10 0];
pos3 = [130 -10 0];
vel1 = [0 0 0];
vel2 = [12*1000/3600 0 0];
vel3 = [-5*1000/3600 0 0];
car1 = struct('ActorID',1,'Position',pos1,'Velocity',vel1);
car2 = struct('ActorID',2,'Position',pos2,'Velocity',vel2);
car3 = struct('ActorID',3,'Position',pos3,'Velocity',vel3);

Create an automotive radar sensor that is offset from the ego vehicle. By default, the sensor location
is at (3.4,0) meters from the vehicle center and 0.2 meters above the ground plane. Turn off the range
rate computation so that the radar sensor measures position only.

radar = radarDetectionGenerator('DetectionCoordinates','Sensor Cartesian', ...
    'MaxRange',200,'RangeResolution',10,'AzimuthResolution',10, ...
    'FieldOfView',[40 15],'UpdateInterval',dt,'HasRangeRate',false);
tracker = multiObjectTracker('FilterInitializationFcn',@initcvkf, ...
    'ConfirmationThreshold',[3 4],'DeletionThreshold',6);

Generate detections with the radar from the non-ego vehicles. The output detections form a cell array
and can be passed directly in to the multiObjectTracker.

simTime = 0;
nsteps = 10;
for k = 1:nsteps
    dets = radar([car1 car2 car3],simTime);
    [confirmedTracks,tentativeTracks,allTracks] = tracker(dets,simTime);

Move the cars one time step and update the multi-object tracker.

    simTime = simTime + dt;
    car1.Position = car1.Position + dt*car1.Velocity;
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    car2.Position = car2.Position + dt*car2.Velocity;
    car3.Position = car3.Position + dt*car3.Velocity;
end

Use birdsEyePlot to create an overhead view of the detections. Plot the sensor coverage area.
Extract the X and Y positions of the targets by converting the Measurement fields of the cell array
into a MATLAB array. Display the detections on the bird's-eye plot.

BEplot = birdsEyePlot('XLim',[0 220],'YLim',[-75 75]);
caPlotter = coverageAreaPlotter(BEplot,'DisplayName','Radar coverage area');
plotCoverageArea(caPlotter,radar.SensorLocation,radar.MaxRange, ...
    radar.Yaw,radar.FieldOfView(1))
detPlotter = detectionPlotter(BEplot,'DisplayName','Radar detections');
detPos = cellfun(@(d)d.Measurement(1:2),dets,'UniformOutput',false);
detPos = cell2mat(detPos')';
if ~isempty(detPos)
    plotDetection(detPlotter,detPos)
end

Algorithms
When you pass detections into a multi-object tracker, the System object:

• Attempts to assign the input detections to existing tracks, based on the AssignmentThreshold
property of the multi-object tracker.
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• Creates new tracks from unassigned detections.
• Updates already assigned tracks and possibly confirms them, based on the

ConfirmationThreshold property of the tracker.
• Deletes tracks that have no assigned detections, based on the DeletionThreshold property of

the tracker.

Compatibility Considerations
Track output format changed
Behavior changed in R2020a

Starting from R2020a, the track output format of multiObjectTracker changes from track
structure to objectTrack. As a result, when you load a multiObjectTracker created in an earlier
version of MATLAB, you need to release the tracker first so that it can allow objectTrack as the
track output format.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).
• All the detections used with a multi-object tracker must have properties with the same sizes and

types.
• If you use the ObjectAttributes field within an objectDetection object, you must specify

this field as a cell containing a structure. The structure for all detections must have the same
fields and the values in these fields must always have the same size and type. The form of the
structure cannot change during simulation.

• If ObjectAttributes are contained in the detection, the SensorIndex value of the detection
cannot be greater than 10.

• The first update to the multi-object tracker must contain at least one detection.

See Also
Functions
assignDetectionsToTracks | getTrackPositions | getTrackVelocities

Objects
drivingScenario | objectDetection | radarDetectionGenerator | trackingEKF |
trackingKF | trackingUKF | visionDetectionGenerator

Topics
“Multiple Object Tracking Tutorial”
“Track Multiple Vehicles Using a Camera”

Introduced in R2017a
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deleteTrack
Delete existing track

Syntax
deleted = deleteTrack(tracker,trackID)

Description
deleted = deleteTrack(tracker,trackID) deletes the track specified by trackID in the
tracker.

Examples

Delete track in multiObjectTracker

Create a track using detections in a multiObjectTracker tracker.

tracker = multiObjectTracker 

tracker = 
  multiObjectTracker with properties:

                  TrackerIndex: 0
       FilterInitializationFcn: 'initcvkf'
           AssignmentThreshold: [30 Inf]
                  MaxNumTracks: 200
                 MaxNumSensors: 20

         ConfirmationThreshold: [2 3]
             DeletionThreshold: [5 5]

            HasCostMatrixInput: false
    HasDetectableTrackIDsInput: false
               StateParameters: [1x1 struct]

                     NumTracks: 0
            NumConfirmedTracks: 0

detection1 = objectDetection(0,[1;1;1]);
detection2 = objectDetection(1,[1.1;1.2;1.1]);
tracker(detection1,0);
tracker(detection2,1)

ans = 
  objectTrack with properties:

             TrackID: 1
            BranchID: 0
         SourceIndex: 0
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          UpdateTime: 1
                 Age: 2
               State: [6x1 double]
     StateCovariance: [6x6 double]
     StateParameters: [1x1 struct]
       ObjectClassID: 0
          TrackLogic: 'History'
     TrackLogicState: [1 1 0 0 0]
         IsConfirmed: 1
           IsCoasted: 0
      IsSelfReported: 1
    ObjectAttributes: [1x1 struct]

Delete the first track.

deleted1 = deleteTrack(tracker,1)

deleted1 = logical
   1

Uncomment the following to delete a nonexistent track. A warning will be issued.

% deleted2 = deleteTrack(tracker,2)

Input Arguments
tracker — Multi-object tracker
multiObjectTracker System object

Multi-object tracker, specified as a multiObjectTracker System object.

trackID — Track identifier
positive integer

Track identifier, specified as a positive integer.
Example: 21

Output Arguments
deleted — Indicate if track was successfully deleted
1 | 0

Indicate if the track was successfully deleted or not, returned as 1 or 0. If the track specified by the
trackID input existed and was successfully deleted, it returns as 1. If the track did not exist, a
warning is issued and it returns as 0.

See Also
initializeTrack | multiObjectTracker

Introduced in R2020a
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initializeTrack
Initialize new track

Syntax
trackID = initializeTrack(tracker,track)
trackID = initializeTrack(tracker,track,filter)

Description
trackID = initializeTrack(tracker,track) initializes a new track in the tracker. The
tracker must be updated at least once before initializing a track. If the track is initialized successfully,
the tracker assigns the output trackID to the track, sets the UpdateTime of the track equal to the
last step time in the tracker, and synchronizes the data in the input track to the initialized track.

A warning is issued if the tracker already maintains the maximum number of tracks specified by
itsMaxNumTracks property. In this case, the trackID is returned as 0, which indicates a failure to
initialize the track.

trackID = initializeTrack(tracker,track,filter) initializes a new track in the tracker,
using a specified tracking filter, filter.

Examples

Initialize Track in multiObjectTracker

Create a GNN tracker and update the tracker with detections at t = 0 and t = 1second.

tracker = multiObjectTracker

tracker = 
  multiObjectTracker with properties:

                  TrackerIndex: 0
       FilterInitializationFcn: 'initcvkf'
           AssignmentThreshold: [30 Inf]
                  MaxNumTracks: 200
                 MaxNumSensors: 20

         ConfirmationThreshold: [2 3]
             DeletionThreshold: [5 5]

            HasCostMatrixInput: false
    HasDetectableTrackIDsInput: false
               StateParameters: [1x1 struct]

                     NumTracks: 0
            NumConfirmedTracks: 0

detection1 = objectDetection(0,[1;1;1]);
detection2 = objectDetection(1,[1.1;1.2;1.1]);
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tracker(detection1,0);
currentTrack = tracker(detection2,1);

As seen from the NumTracks property, the tracker now maintains one track.

tracker

tracker = 
  multiObjectTracker with properties:

                  TrackerIndex: 0
       FilterInitializationFcn: 'initcvkf'
           AssignmentThreshold: [30 Inf]
                  MaxNumTracks: 200
                 MaxNumSensors: 20

         ConfirmationThreshold: [2 3]
             DeletionThreshold: [5 5]

            HasCostMatrixInput: false
    HasDetectableTrackIDsInput: false
               StateParameters: [1x1 struct]

                     NumTracks: 1
            NumConfirmedTracks: 1

Create a new track using the objectTrack object.

newTrack = objectTrack()

newTrack = 
  objectTrack with properties:

             TrackID: 1
            BranchID: 0
         SourceIndex: 1
          UpdateTime: 0
                 Age: 1
               State: [6x1 double]
     StateCovariance: [6x6 double]
     StateParameters: [1x1 struct]
       ObjectClassID: 0
          TrackLogic: 'History'
     TrackLogicState: 1
         IsConfirmed: 1
           IsCoasted: 0
      IsSelfReported: 1
    ObjectAttributes: [1x1 struct]

Initialize a track in the GNN tracker object using the newly created track.

trackID = initializeTrack(tracker,newTrack)

trackID = uint32
    2

As seen from the NumTracks property, the tracker now maintains two tracks.
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tracker

tracker = 
  multiObjectTracker with properties:

                  TrackerIndex: 0
       FilterInitializationFcn: 'initcvkf'
           AssignmentThreshold: [30 Inf]
                  MaxNumTracks: 200
                 MaxNumSensors: 20

         ConfirmationThreshold: [2 3]
             DeletionThreshold: [5 5]

            HasCostMatrixInput: false
    HasDetectableTrackIDsInput: false
               StateParameters: [1x1 struct]

                     NumTracks: 2
            NumConfirmedTracks: 2

Input Arguments
tracker — Multi-object tracker
multiObjectTracker System object

Multi-object tracker, specified as a multiObjectTracker System object.

track — New track to be initialized
objectTrack object | structure

New track to be initialized, specified as an objectTrack object or a structure. If specified as a
structure, the name, variable type, and data size of the fields of the structure must be the same as the
name, variable type, and data size of the corresponding properties of the objectTrack object.
Data Types: struct | object

filter — Filter object
trackingKF | trackingEKF | trackingUKF

Filter object, specified as a trackingKF, trackingEKF, or trackingUKF object.

Output Arguments
trackID — Track identifier
nonnegative integer

Track identifier, returned as a nonnegative integer. trackID is returned as 0 if the track is not
initialized successfully.
Example: 2

See Also
multiObjectTracker
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getTrackFilterProperties
Obtain filter properties of track from multi-object tracker

Syntax
values = getTrackFilterProperties(tracker,trackID,property)
values = getTrackFilterProperties(tracker,trackID,property1,...,propertyN)

Description
values = getTrackFilterProperties(tracker,trackID,property) returns the tracking
filter property values for a specific track within a multi-object tracker. trackID is the ID of that
specific track.

values = getTrackFilterProperties(tracker,trackID,property1,...,propertyN)
returns multiple property values. You can specify the properties in any order.

Examples

Display and Set Tracking Filter Properties in Multi-Object Tracker

Create a multiObjectTracker System object™ using a constant-acceleration, linear Kalman filter
for all tracks.

tracker = multiObjectTracker('FilterInitializationFcn',@initcakf, ...
    'ConfirmationParameters',[4 5],'DeletionThreshold',[9 9]);

Create two detections and generate tracks for these detections.

detection1 = objectDetection(1.0,[10; 10]);
detection2 = objectDetection(1.0,[1000; 1000]);
[~,tracks] = tracker([detection1 detection2],1.1)

tracks=2×1 object
  2x1 objectTrack array with properties:

    TrackID
    BranchID
    SourceIndex
    UpdateTime
    Age
    State
    StateCovariance
    StateParameters
    ObjectClassID
    TrackLogic
    TrackLogicState
    IsConfirmed
    IsCoasted
    IsSelfReported
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    ObjectAttributes

Get filter property values for the first track. Display the process noise values.

values = getTrackFilterProperties(tracker,1,'MeasurementNoise','ProcessNoise','MotionModel');
values{2}

ans = 6×6

    0.0000    0.0005    0.0050         0         0         0
    0.0005    0.0100    0.1000         0         0         0
    0.0050    0.1000    1.0000         0         0         0
         0         0         0    0.0000    0.0005    0.0050
         0         0         0    0.0005    0.0100    0.1000
         0         0         0    0.0050    0.1000    1.0000

Set new values for this property by doubling the process noise for the first track. Display the updated
process noise values.

setTrackFilterProperties(tracker,1,'ProcessNoise',2*values{2});
values = getTrackFilterProperties(tracker,1,'ProcessNoise');
values{1}

ans = 6×6

    0.0001    0.0010    0.0100         0         0         0
    0.0010    0.0200    0.2000         0         0         0
    0.0100    0.2000    2.0000         0         0         0
         0         0         0    0.0001    0.0010    0.0100
         0         0         0    0.0010    0.0200    0.2000
         0         0         0    0.0100    0.2000    2.0000

Input Arguments
tracker — Multi-object tracker
multiObjectTracker System object

Multi-object tracker, specified as a multiObjectTracker System object.

trackID — Track ID
positive integer

Track ID, specified as a positive integer. trackID must be a valid track in tracker.

property — Tracking filter property
character vector | string scalar

Tracking filter property to return values for, specified as a character vector or string scalar.
property must be a valid property of the tracking filter used by tracker. Valid tracking filters are
trackingKF, trackingEKF, and trackingUKF.

You can specify additional properties in any order.
Example: 'MeasurementNoise','ProcessNoise'
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Data Types: char | string

Output Arguments
values — Tracking filter property values
cell array

Tracking filter property values, returned as a cell array. Each element in the cell array corresponds to
the values of a specified property. getTrackFilterProperties returns the values in the same
order in which you specified the corresponding properties.

See Also
Objects
multiObjectTracker | trackingEKF | trackingKF | trackingUKF

Functions
setTrackFilterProperties | updateTracks

Introduced in R2017a
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predictTracksToTime
Predict track state

Syntax
predictedtracks = predictTracksToTime(tracker,trackID,time)
predictedtracks = predictTracksToTime(tracker,category,time)
predictedtracks = predictTracksToTime(tracker,category,
time,'WithCovariance',tf)

Description
predictedtracks = predictTracksToTime(tracker,trackID,time) returns the predicted
tracks, predictedtracks, of the tracker, at the specified time, time. The tracker or fuser must be
updated at least once before calling this object function. Use isLocked(tracker) to test whether
the tracker or fuser has been updated.

Note This function only outputs the predicted tracks and does not update the internal track states of
the tracker.

predictedtracks = predictTracksToTime(tracker,category,time) returns all predicted
tracks for a specified category, category, of tracked objects.

predictedtracks = predictTracksToTime(tracker,category,
time,'WithCovariance',tf) also allows you to specify whether to predict the state covariance of
each track or not by setting the tf flag to true or false. Predicting the covariance slows down the
prediction process and increases the computation cost, but it provides the predicted track state
covariance in addition to the predicted state. The default is false.

Examples

Predict Track State in multiObjectTracker

Create a track from a detection at time t = 0 second and predict it to t = 1second.

tracker = multiObjectTracker;
detection = objectDetection(0,[0;0;0]);
tracker(detection,0);
predictedtracks = predictTracksToTime(tracker,'all',1)

predictedtracks = 
  objectTrack with properties:

             TrackID: 1
            BranchID: 0
         SourceIndex: 0
          UpdateTime: 1
                 Age: 1
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               State: [6x1 double]
     StateCovariance: [6x6 double]
     StateParameters: [1x1 struct]
       ObjectClassID: 0
          TrackLogic: 'History'
     TrackLogicState: [1 0 0 0 0]
         IsConfirmed: 0
           IsCoasted: 0
      IsSelfReported: 1
    ObjectAttributes: [1x1 struct]

Input Arguments
tracker — Multi-object tracker
multiObjectTracker System object

Multi-object tracker, specified as a multiObjectTracker System object.

trackID — Track identifier
positive integer

Track identifier, specified as a positive integer. Only the track specified by the trackID is predicted
in the tracker.
Example: 15
Data Types: single | double

time — Prediction time
scalar

Prediction time, specified as a scalar. The states of tracks are predicted to this time. The time must be
greater than the time input to the tracker in the previous track update. Units are in seconds.
Example: 1.0
Data Types: single | double

category — Track categories
'all' | 'confirmed' | 'tentative'

Track categories, specified as 'all', 'confirmed', or 'tentative'. You can choose to predict all
tracks, only confirmed tracks, or only tentative tracks.
Data Types: char

Output Arguments
predictedtracks — List of predicted track or branch states
array of objectTrack objects | array of structures

List of tracks or branches, returned as:

• An array of objectTrack objects in the MATLAB interpreted mode.
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• An array of structures in the code generation mode. The field names of the structures are the
same as the names of properties in objectTrack.

Data Types: struct | object

See Also
multiObjectTracker

Introduced in R2020a
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setTrackFilterProperties
Set filter properties of track from multi-object tracker

Syntax
setTrackFilterProperties(tracker,trackID,property,value)
setTrackFilterProperties(tracker,
trackID,property1,value1,...,propertyN,valueN)

Description
setTrackFilterProperties(tracker,trackID,property,value) sets the specified tracking
filter property to the indicated value for a specific track within the multi-object tracker. trackID is
the ID of that specific track.

setTrackFilterProperties(tracker,
trackID,property1,value1,...,propertyN,valueN) sets multiple property values. You can
specify the property-value pairs in any order.

Examples

Display and Set Tracking Filter Properties in Multi-Object Tracker

Create a multiObjectTracker System object™ using a constant-acceleration, linear Kalman filter
for all tracks.

tracker = multiObjectTracker('FilterInitializationFcn',@initcakf, ...
    'ConfirmationParameters',[4 5],'DeletionThreshold',[9 9]);

Create two detections and generate tracks for these detections.

detection1 = objectDetection(1.0,[10; 10]);
detection2 = objectDetection(1.0,[1000; 1000]);
[~,tracks] = tracker([detection1 detection2],1.1)

tracks=2×1 object
  2x1 objectTrack array with properties:

    TrackID
    BranchID
    SourceIndex
    UpdateTime
    Age
    State
    StateCovariance
    StateParameters
    ObjectClassID
    TrackLogic
    TrackLogicState
    IsConfirmed
    IsCoasted
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    IsSelfReported
    ObjectAttributes

Get filter property values for the first track. Display the process noise values.

values = getTrackFilterProperties(tracker,1,'MeasurementNoise','ProcessNoise','MotionModel');
values{2}

ans = 6×6

    0.0000    0.0005    0.0050         0         0         0
    0.0005    0.0100    0.1000         0         0         0
    0.0050    0.1000    1.0000         0         0         0
         0         0         0    0.0000    0.0005    0.0050
         0         0         0    0.0005    0.0100    0.1000
         0         0         0    0.0050    0.1000    1.0000

Set new values for this property by doubling the process noise for the first track. Display the updated
process noise values.

setTrackFilterProperties(tracker,1,'ProcessNoise',2*values{2});
values = getTrackFilterProperties(tracker,1,'ProcessNoise');
values{1}

ans = 6×6

    0.0001    0.0010    0.0100         0         0         0
    0.0010    0.0200    0.2000         0         0         0
    0.0100    0.2000    2.0000         0         0         0
         0         0         0    0.0001    0.0010    0.0100
         0         0         0    0.0010    0.0200    0.2000
         0         0         0    0.0100    0.2000    2.0000

Input Arguments
tracker — Multi-object tracker
multiObjectTracker System object

Multi-object tracker, specified as a multiObjectTracker System object.

trackID — Track ID
positive integer

Track ID, specified as a positive integer. trackID must be a valid track in tracker.

property — Tracking filter property
character vector | string scalar

Tracking filter property to set values for, specified as a character vector or string scalar. property
must be a valid property of the tracking filter used by tracker. Valid tracking filters are
trackingKF, trackingEKF, and trackingUKF.

You can specify additional property-value pairs in any order.
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Example: 'MeasurementNoise',eye(2,2),'MotionModel','2D Constant Acceleration'
Data Types: char | string

value — Value to set tracking filter property to
valid MATLAB expression

Value to set the corresponding tracking filter property to, specified as a MATLAB expression. value
must be a valid value of the corresponding property.

You can specify additional property-value pairs in any order.
Example: 'MeasurementNoise',eye(2,2),'MotionModel','2D Constant Acceleration'

See Also
Objects
multiObjectTracker | trackingEKF | trackingKF | trackingUKF

Functions
getTrackFilterProperties | updateTracks

Introduced in R2017a
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updateTracks
Update multi-object tracker with new detections

Syntax
confirmedTracks = updateTracks(tracker,detections,time)
[confirmedTracks,tentativeTracks] = updateTracks(tracker,detections,time)
[confirmedTracks,tentativeTracks,allTracks] = updateTracks(tracker,
detections,time)
[ ___ ] = updateTracks(tracker,detections,time,costMatrix)
[ ___ ] = updateTracks( ___ ,detectableTrackIDs)

Description
confirmedTracks = updateTracks(tracker,detections,time) creates, updates, and deletes
tracks in the multiObjectTracker System object, tracker. Updates are based on the specified list
of detections, and all tracks are updated to the specified time. Each element in the returned
confirmedTracks corresponds to a single track.

[confirmedTracks,tentativeTracks] = updateTracks(tracker,detections,time) also
returns tentativeTracks containing details about the tentative tracks.

[confirmedTracks,tentativeTracks,allTracks] = updateTracks(tracker,
detections,time) also returns allTracks containing details about all confirmed and tentative
tracks. The tracks are returned in the order by which the tracker internally maintains them. You can
use this output to help you calculate the cost matrix, an optional input argument.

[ ___ ] = updateTracks(tracker,detections,time,costMatrix) specifies a cost matrix,
returning any of the outputs from preceding syntaxes.

To specify a cost matrix, set the HasCostMatrixInput property of tracker to true.

[ ___ ] = updateTracks( ___ ,detectableTrackIDs) also specifies a list of expected detectable
tracks given by detectableTrackIDs. This argument can be used with any of the previous input
syntaxes.

To enable this syntax, set the HasDetectableTrackIDsInput property to true.

Examples

Generate Radar Detections of Multiple Vehicles

Generate detections using a forward-facing automotive radar mounted on an ego vehicle. Assume
that there are three targets:

• Vehicle 1 is in the center lane, directly in front of the ego vehicle, and driving at the same speed.
• Vehicle 2 is in the left lane and driving faster than the ego vehicle by 12 kilometers per hour.
• Vehicle 3 is in the right lane and driving slower than the ego vehicle by 5 kilometers per hour.
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All positions, velocities, and measurements are relative to the ego vehicle. Run the simulation for ten
steps.

dt = 0.1;
pos1 = [150 0 0];
pos2 = [160 10 0];
pos3 = [130 -10 0];
vel1 = [0 0 0];
vel2 = [12*1000/3600 0 0];
vel3 = [-5*1000/3600 0 0];
car1 = struct('ActorID',1,'Position',pos1,'Velocity',vel1);
car2 = struct('ActorID',2,'Position',pos2,'Velocity',vel2);
car3 = struct('ActorID',3,'Position',pos3,'Velocity',vel3);

Create an automotive radar sensor that is offset from the ego vehicle. By default, the sensor location
is at (3.4,0) meters from the vehicle center and 0.2 meters above the ground plane. Turn off the range
rate computation so that the radar sensor measures position only.

radar = radarDetectionGenerator('DetectionCoordinates','Sensor Cartesian', ...
    'MaxRange',200,'RangeResolution',10,'AzimuthResolution',10, ...
    'FieldOfView',[40 15],'UpdateInterval',dt,'HasRangeRate',false);
tracker = multiObjectTracker('FilterInitializationFcn',@initcvkf, ...
    'ConfirmationThreshold',[3 4],'DeletionThreshold',[6 6]);

Generate detections with the radar from the non-ego vehicles. The output detections form a cell array
and can be passed directly in to the multiObjectTracker.

simTime = 0;
nsteps = 10;
for k = 1:nsteps
    dets = radar([car1 car2 car3],simTime);
    [confirmedTracks,tentativeTracks,allTracks] = updateTracks(tracker,dets,simTime);

Move the cars one time step and update the multi-object tracker.

    simTime = simTime + dt;
    car1.Position = car1.Position + dt*car1.Velocity;
    car2.Position = car2.Position + dt*car2.Velocity;
    car3.Position = car3.Position + dt*car3.Velocity;
end

Use birdsEyePlot to create an overhead view of the detections. Plot the sensor coverage area.
Extract the X and Y positions of the targets by converting the Measurement fields of the cell array
into a MATLAB array. Display the detections on the bird's-eye plot.

BEplot = birdsEyePlot('XLim',[0 220],'YLim',[-75 75]);
caPlotter = coverageAreaPlotter(BEplot,'DisplayName','Radar coverage area');
plotCoverageArea(caPlotter,radar.SensorLocation,radar.MaxRange, ...
    radar.Yaw,radar.FieldOfView(1))
detPlotter = detectionPlotter(BEplot,'DisplayName','Radar detections');
detPos = cellfun(@(d)d.Measurement(1:2),dets,'UniformOutput',false);
detPos = cell2mat(detPos')';
if ~isempty(detPos)
    plotDetection(detPlotter,detPos)
end
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Input Arguments
tracker — Multi-object tracker
multiObjectTracker System object

Multi-object tracker, specified as a multiObjectTracker System object.

detections — Detection list
cell array of objectDetection objects

Detection list, specified as a cell array of objectDetection objects. The Time property value of
each objectDetection object must be less than or equal to the current time of update, time, and
greater than the previous time value used to update the multi-object tracker.

time — Time of update
real scalar

Time of update, specified as a real scalar. The multi-object tracker updates all tracks to this time.
Units are in seconds.

time must be greater than or equal to the largest Time property value of the objectDetection
objects in the input detections list. time must increase in value with each update to the multi-
object tracker.
Data Types: double
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costMatrix — Cost matrix
NT-by-ND matrix

Cost matrix, specified as a real-valued NT-by-ND matrix, where NT is the number of existing tracks,
and ND is the number of current detections. The rows of the cost matrix correspond to the existing
tracks. The columns correspond to the detections. Tracks are ordered as they appear in the list of
tracks in the allTracks output argument of the previous update to the multi-object tracker.

In the first update to the multi-object tracker, or when the multi-object tracker has no previous tracks,
assign the cost matrix a size of [0, ND]. The cost must be calculated so that lower costs indicate a
higher likelihood that the multi-object tracker assigns a detection to a track. To prevent certain
detections from being assigned to certain tracks, use Inf.

Dependencies

To enable specification of the cost matrix when updating tracks, set the HasCostMatrixInput
property of the multi-object tracker to true
Data Types: double

detectableTrackIDs — Detectable track IDs
real-valued M-by-1 vector | real-valued M-by-2 matrix

Detectable track IDs, specified as a real-valued M-by-1 vector or M-by-2 matrix. Detectable tracks are
tracks that the sensors expect to detect. The first column of the matrix contains a list of track IDs that
the sensors report as detectable. The optional second column contains the detection probability for
the track. The detection probability is either reported by a sensor or, if not reported, obtained from
the DetectionProbability property.

Tracks whose identifiers are not included in detectableTrackIDs are considered as undetectable.
The track deletion logic does not count the lack of detection as a 'missed detection' for track deletion
purposes.

Dependencies

To enable this input argument, set the detectableTrackIDs property to true.
Data Types: single | double

Output Arguments
confirmedTracks — Confirmed tracks
array of objectTrack objects | array of structures

Confirmed tracks, returned as an array of objectTrack objects in MATLAB, and returned as an
array of structures in code generation. In code generation, the field names of the returned structure
are same with the property names of objectTrack.

A track is confirmed if it satisfies the confirmation threshold specified in the
ConfirmationThreshold property. In that case, the IsConfirmed property of the object or field of
the structure is true.
Data Types: struct | object

tentativeTracks — Tentative tracks
array of objectTrack objects | array of structures
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Tentative tracks, returned as an array of objectTrack objects in MATLAB, and returned as an array
of structures in code generation. In code generation, the field names of the returned structure are
same with the property names of objectTrack.

A track is tentative if it does not satisfy the confirmation threshold specified in the
ConfirmationThreshold property. In that case, the IsConfirmed property of the object or field of
the structure is false.
Data Types: struct | object

allTracks — All tracks
array of objectTrack objects | array of structures

All tracks, returned as an array of objectTrack objects in MATLAB, and returned as an array of
structures in code generation. In code generation, the field names of the returned structure are same
with the property names of objectTrack. All tracks consists of confirmed and tentative tracks.
Data Types: struct | object

Algorithms
When you pass detections into updateTracks, the function:

• Attempts to assign the input detections to existing tracks, based on the AssignmentThreshold
property of the multi-object tracker.

• Creates new tracks from unassigned detections.
• Updates already assigned tracks and possibly confirms them, based on the

ConfirmationThreshold property of the tracker.
• Deletes tracks that have no assigned detections, based on the DeletionThreshold property of

the tracker.

See Also
Objects
multiObjectTracker | objectDetection

Functions
getTrackFilterProperties | setTrackFilterProperties

Introduced in R2017a
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acfObjectDetectorMonoCamera
Detect objects in monocular camera using aggregate channel features

Description
The acfObjectDetectorMonoCamera contains information about an aggregate channel features
(ACF) object detector that is configured for use with a monocular camera sensor. To detect objects in
an image that was captured by the camera, pass the detector to the detect function.

Creation
1 Create an acfObjectDetector object by calling the trainACFObjectDetector function with

training data.

detector = trainACFObjectDetector(trainingData,...);

Alternatively, create a pretrained detector using functions such as vehicleDetectorACF or
peopleDetectorACF.

2 Create a monoCamera object to model the monocular camera sensor.

sensor = monoCamera(...);
3 Create an acfObjectDetectorMonoCamera object by passing the detector and sensor as

inputs to the configureDetectorMonoCamera function. The configured detector inherits
property values from the original detector.

configuredDetector = configureDetectorMonoCamera(detector,sensor,...);

Properties
ModelName — Name of classification model
character vector | string scalar

Name of the classification model, specified as a character vector or string scalar. By default, the name
is set to the heading of the second column of the trainingData table specified in the
trainACFObjectDetector function. You can modify this name after creating your
acfObjectDetectorMonoCamera object.
Example: 'stopSign'

ObjectTrainingSize — Size of training images
[height width] vector

This property is read-only.

Size of training images, specified as a [height width] vector.
Example: [100 100]

NumWeakLearners — Number of weak learners
integer
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This property is read-only.

Number of weak learners used in the detector, specified as an integer. NumWeakLearners is less
than or equal to the maximum number of weak learners for the last training stage. To restrict this
maximum, you can use the 'MaxWeakLearners' name-value pair in the
trainACFObjectDetector function.

Camera — Camera configuration
monoCamera object

This property is read-only.

Camera configuration, specified as a monoCamera object. The object contains the camera intrinsics,
the location, the pitch, yaw, and roll placement, and the world units for the parameters. Use the
intrinsics to transform the object points in the image to world coordinates, which you can then
compare to the values in the WorldObjectSize property.

WorldObjectSize — Range of object widths and lengths
[minWidth maxWidth] vector | [minWidth maxWidth; minLength maxLength] vector

Range of object widths and lengths in world units, specified as a [minWidth maxWidth] vector or
[minWidth maxWidth; minLength maxLength] vector. Specifying the range of object lengths is
optional.

Object Functions
detect Detect objects using ACF object detector configured for monocular camera

Examples

Detect Vehicles Using Monocular Camera and ACF

Configure an ACF object detector for use with a monocular camera mounted on an ego vehicle. Use
this detector to detect vehicles within video frames captured by the camera.

Load an acfObjectDetector object pretrained to detect vehicles.

detector = vehicleDetectorACF;

Model a monocular camera sensor by creating a monoCamera object. This object contains the camera
intrinsics and the location of the camera on the ego vehicle.

focalLength = [309.4362 344.2161];    % [fx fy]
principalPoint = [318.9034 257.5352]; % [cx cy]
imageSize = [480 640];                % [mrows ncols]
height = 2.1798;                      % height of camera above ground, in meters
pitch = 14;                           % pitch of camera, in degrees
intrinsics = cameraIntrinsics(focalLength,principalPoint,imageSize);

monCam = monoCamera(intrinsics,height,'Pitch',pitch);

Configure the detector for use with the camera. Limit the width of detected objects to a typical range
for vehicle widths: 1.5–2.5 meters. The configured detector is an acfObjectDetectorMonoCamera
object.
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vehicleWidth = [1.5 2.5];
detectorMonoCam = configureDetectorMonoCamera(detector,monCam,vehicleWidth);

Load a video captured from the camera, and create a video reader and player.

videoFile = fullfile(toolboxdir('driving'),'drivingdata','caltech_washington1.avi');
reader = VideoReader(videoFile);
videoPlayer = vision.VideoPlayer('Position',[29 597 643 386]);

Run the detector in a loop over the video. Annotate the video with the bounding boxes for the
detections and the detection confidence scores.

cont = hasFrame(reader);
while cont
   I = readFrame(reader);

   % Run the detector.
   [bboxes,scores] = detect(detectorMonoCam,I);
   if ~isempty(bboxes)
       I = insertObjectAnnotation(I, ...
                           'rectangle',bboxes, ...
                           scores, ...
                           'Color','g');
   end
   videoPlayer(I)
   % Exit the loop if the video player figure is closed.
   cont = hasFrame(reader) && isOpen(videoPlayer);
end

release(videoPlayer);
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

This function supports C/C++ code generation with the limitations:

• Supports code generation (requires MATLAB Coder™) only in generic MATLAB Host Computer
target platform.

See Also
Apps
Ground Truth Labeler

Functions
configureDetectorMonoCamera | peopleDetectorACF | trainACFObjectDetector |
vehicleDetectorACF

Objects
monoCamera
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Introduced in R2017a

 acfObjectDetectorMonoCamera

4-845



detect
Detect objects using ACF object detector configured for monocular camera

Syntax
bboxes = detect(detector,I)
[bboxes,scores] = detect(detector,I)
[ ___ ]= detect(detector,I,roi)
[ ___ ] = detect( ___ ,Name,Value)

Description
bboxes = detect(detector,I) detects objects within image I using an aggregate channel
features (ACF) object detector configured for a monocular camera. The locations of objects detected
are returned as a set of bounding boxes.

[bboxes,scores] = detect(detector,I) also returns the detection confidence scores for each
bounding box.

[ ___ ]= detect(detector,I,roi) detects objects within the rectangular search region specified
by roi, using any of the preceding syntaxes.

[ ___ ] = detect( ___ ,Name,Value) specifies options using one or more Name,Value pair
arguments. For example, detect(detector,I,'WindowStride',2) sets the stride of the sliding
window used to detect objects to 2.

Examples

Detect Vehicles Using Monocular Camera and ACF

Configure an ACF object detector for use with a monocular camera mounted on an ego vehicle. Use
this detector to detect vehicles within video frames captured by the camera.

Load an acfObjectDetector object pretrained to detect vehicles.

detector = vehicleDetectorACF;

Model a monocular camera sensor by creating a monoCamera object. This object contains the camera
intrinsics and the location of the camera on the ego vehicle.

focalLength = [309.4362 344.2161];    % [fx fy]
principalPoint = [318.9034 257.5352]; % [cx cy]
imageSize = [480 640];                % [mrows ncols]
height = 2.1798;                      % height of camera above ground, in meters
pitch = 14;                           % pitch of camera, in degrees
intrinsics = cameraIntrinsics(focalLength,principalPoint,imageSize);

monCam = monoCamera(intrinsics,height,'Pitch',pitch);
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Configure the detector for use with the camera. Limit the width of detected objects to a typical range
for vehicle widths: 1.5–2.5 meters. The configured detector is an acfObjectDetectorMonoCamera
object.

vehicleWidth = [1.5 2.5];
detectorMonoCam = configureDetectorMonoCamera(detector,monCam,vehicleWidth);

Load a video captured from the camera, and create a video reader and player.

videoFile = fullfile(toolboxdir('driving'),'drivingdata','caltech_washington1.avi');
reader = VideoReader(videoFile);
videoPlayer = vision.VideoPlayer('Position',[29 597 643 386]);

Run the detector in a loop over the video. Annotate the video with the bounding boxes for the
detections and the detection confidence scores.

cont = hasFrame(reader);
while cont
   I = readFrame(reader);

   % Run the detector.
   [bboxes,scores] = detect(detectorMonoCam,I);
   if ~isempty(bboxes)
       I = insertObjectAnnotation(I, ...
                           'rectangle',bboxes, ...
                           scores, ...
                           'Color','g');
   end
   videoPlayer(I)
   % Exit the loop if the video player figure is closed.
   cont = hasFrame(reader) && isOpen(videoPlayer);
end

release(videoPlayer);
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Input Arguments
detector — ACF object detector configured for monocular camera
acfObjectDetectorMonoCamera object

ACF object detector configured for a monocular camera, specified as an
acfObjectDetectorMonoCamera object. To create this object, use the
configureDetectorMonoCamera function with a monoCamera object and trained
acfObjectDetector object as inputs.

I — Input image
grayscale image | RGB image

Input image, specified as a real, nonsparse, grayscale or RGB image.
Data Types: uint8 | uint16 | int16 | double | single | logical

roi — Search region of interest
[x y width height] vector

Search region of interest, specified as an [x y width height] vector. The vector specifies the upper left
corner and size of a region in pixels.

4 Objects

4-848



Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'NumScaleLevels',4

NumScaleLevels — Number of scale levels per octave
8 (default) | positive integer

Number of scale levels per octave, specified as the comma-separated pair consisting of
'NumScaleLevels' and a positive integer. Each octave is a power-of-two downscaling of the image.
To detect people at finer scale increments, increase this number. Recommended values are in the
range [4, 8].

WindowStride — Stride for sliding window
4 (default) | positive integer

Stride for the sliding window, specified as the comma-separated pair consisting of 'WindowStride'
and a positive integer. This value indicates the distance for the function to move the window in both
the x and y directions. The sliding window scans the images for object detection.

SelectStrongest — Select strongest bounding box for each object
true (default) | false

Select the strongest bounding box for each detected object, specified as the comma-separated pair
consisting of 'SelectStrongest' and either true or false.

• true — Return the strongest bounding box per object. To select these boxes, detect calls the
selectStrongestBbox function, which uses nonmaximal suppression to eliminate overlapping
bounding boxes based on their confidence scores.

• false — Return all detected bounding boxes. You can then create your own custom operation to
eliminate overlapping bounding boxes.

MinSize — Minimum region size
[height width] vector

Minimum region size that contains a detected object, specified as the comma-separated pair
consisting of 'MinSize' and a [height width] vector. Units are in pixels.

By default, MinSize is the smallest object that the trained detector can detect.

MaxSize — Maximum region size
size(I) (default) | [height width] vector

Maximum region size that contains a detected object, specified as the comma-separated pair
consisting of 'MaxSize' and a [height width] vector. Units are in pixels.

To reduce computation time, set this value to the known maximum region size for the objects being
detected in the image. By default, 'MaxSize' is set to the height and width of the input image, I.

Threshold — Classification accuracy threshold
–1 (default) | numeric scalar
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Classification accuracy threshold, specified as the comma-separated pair consisting of 'Threshold'
and a numeric scalar. Recommended values are in the range [–1, 1]. During multiscale object
detection, the threshold value controls the accuracy and speed for classifying image subregions as
either objects or nonobjects. To speed up the performance at the risk of missing true detections,
increase this threshold.

Output Arguments
bboxes — Location of objects detected within image
M-by-4 matrix

Location of objects detected within the input image, returned as an M-by-4 matrix, where M is the
number of bounding boxes. Each row of bboxes contains a four-element vector of the form [x y width
height]. This vector specifies the upper left corner and size of that corresponding bounding box in
pixels.

scores — Detection confidence scores
M-by-1 vector

Detection confidence scores, returned as an M-by-1 vector, where M is the number of bounding
boxes. A higher score indicates higher confidence in the detection.

See Also
Apps
Ground Truth Labeler

Functions
configureDetectorMonoCamera | selectStrongestBbox | trainACFObjectDetector

Objects
acfObjectDetector | monoCamera

Introduced in R2017a
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fastRCNNObjectDetectorMonoCamera
Detect objects in monocular camera using Fast R-CNN deep learning detector

Description
The fastRCNNObjectDetectorMonoCamera object contains information about a Fast R-CNN
(regions with convolutional neural networks) object detector that is configured for use with a
monocular camera sensor. To detect objects in an image that was captured by the camera, pass the
detector to the detect function. To classify image regions, pass the detector to the
classifyRegions function.

When using detect or classifyRegions with fastRCNNObjectDetectorMonoCamera, use of a
CUDA®-enabled NVIDIA® GPU with a compute capability of 3.0 or higher is highly recommended. The
GPU reduces computation time significantly. Usage of the GPU requires Parallel Computing
Toolbox™.

Creation
1 Create a fastRCNNObjectDetector object by calling the trainFastRCNNObjectDetector

function with training data (requires Deep Learning Toolbox).

detector = trainFastRCNNObjectDetector(trainingData,...);
2 Create a monoCamera object to model the monocular camera sensor.

sensor = monoCamera(...);
3 Create a fastRCNNObjectDetectorMonoCamera object by passing the detector and sensor as

inputs to the configureDetectorMonoCamera function. The configured detector inherits
property values from the original detector.

configuredDetector = configureDetectorMonoCamera(detector,sensor,...);

Properties
ModelName — Name of classification model
character vector | string scalar

Name of the classification model, specified as a character vector or string scalar. By default, the name
is set to the heading of the second column of the trainingData table specified in the
trainFastRCNNObjectDetector function. You can modify this name after creating your
fastRCNNObjectDetectorMonoCamera object.
Example: 'stopSign'

Network — Trained Fast R-CNN object detection network
object

This property is read-only.
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Trained Fast R-CNN detection network, specified as an object. This object stores the layers that
define the convolutional neural network used within the Fast R-CNN detector. This network classifies
region proposals produced by the RegionProposalFcn property.

RegionProposalFcn — Region proposal method
function handle

Region proposal method, specified as a function handle.

ClassNames — Object class names
cell array

This property is read-only.

Names of the object classes that the Fast R-CNN detector was trained to find, specified as a cell
array. This property is set by the trainingData input argument for the
trainFastRCNNObjectDetector function. Specify the class names as part of the trainingData
table.

MinObjectSize — Minimum object size supported
[height width] vector

This property is read-only.

Minimum object size supported by the Fast R-CNN network, specified as a [height width] vector. The
minimum size depends on the network architecture.

Camera — Camera configuration
monoCamera object

This property is read-only.

Camera configuration, specified as a monoCamera object. The object contains the camera intrinsics,
the location, the pitch, yaw, and roll placement, and the world units for the parameters. Use the
intrinsics to transform the object points in the image to world coordinates, which you can then
compare to the values in the WorldObjectSize property.

WorldObjectSize — Range of object widths and lengths
[minWidth maxWidth] vector | [minWidth maxWidth; minLength maxLength] vector

Range of object widths and lengths in world units, specified as a [minWidth maxWidth] vector or
[minWidth maxWidth; minLength maxLength] vector. Specifying the range of object lengths is
optional.

Object Functions
detect Detect objects using Fast R-CNN object detector configured for monocular camera
classifyRegions Classify objects in image regions using Fast R-CNN object detector configured for

monocular camera

See Also
Apps
Ground Truth Labeler
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Functions
configureDetectorMonoCamera | trainFastRCNNObjectDetector

Objects
fastRCNNObjectDetector | monoCamera

Topics
“Getting Started with R-CNN, Fast R-CNN, and Faster R-CNN” (Computer Vision Toolbox)

Introduced in R2017a
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detect
Detect objects using Fast R-CNN object detector configured for monocular camera

Syntax
bboxes = detect(detector,I)
[bboxes,scores] = detect(detector,I)
[ ___ ,labels] = detect(detector,I)
[ ___ ] = detect( ___ ,roi)
detectionResults = detect(detector,ds)
[ ___ ] = detect( ___ ,Name,Value)

Description
bboxes = detect(detector,I) detects objects within image I using a Fast R-CNN (regions with
convolutional neural networks) object detector configured for a monocular camera. The locations of
objects detected are returned as a set of bounding boxes.

When using this function, use of a CUDA-enabled NVIDIA GPU with a compute capability of 3.0 or
higher is highly recommended. The GPU reduces computation time significantly. Usage of the GPU
requires Parallel Computing Toolbox.

[bboxes,scores] = detect(detector,I) also returns the detection confidence scores for each
bounding box.

[ ___ ,labels] = detect(detector,I) also returns a categorical array of labels assigned to the
bounding boxes, using any of the preceding syntaxes. The labels used for object classes are defined
during training using the trainFastRCNNObjectDetector function.

[ ___ ] = detect( ___ ,roi) detects objects within the rectangular search region specified by
roi.

detectionResults = detect(detector,ds) detects objects within the series of images
returned by the read function of the input datastore.

[ ___ ] = detect( ___ ,Name,Value) specifies options using one or more Name,Value pair
arguments. For example, detect(detector,I,'NumStongestRegions',1000) limits the number
of strongest region proposals to 1000.

Input Arguments
detector — Fast R-CNN object detector configured for monocular camera
fastRCNNObjectDetectorMonoCamera object

Fast R-CNN object detector configured for a monocular camera, specified as a
fastRCNNObjectDetectorMonoCamera object. To create this object, use the
configureDetectorMonoCamera function with a monoCamera object and trained
fastRCNNObjectDetector object as inputs.
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I — Input image
H-by-W-by-C-by-B numeric array of images

Input image, specified as an H-by-W-by-C-by-B numeric array of images Images must be real,
nonsparse, grayscale or RGB image.

• H: Height
• W: Width
• C: The channel size in each image must be equal to the network's input channel size. For example,

for grayscale images, C must be equal to 1. For RGB color images, it must be equal to 3.
• B: The number of images in the array.

The detector is sensitive to the range of the input image. Therefore, ensure that the input image
range is similar to the range of the images used to train the detector. For example, if the detector was
trained on uint8 images, rescale this input image to the range [0, 255] by using the im2uint8 or
rescale function. The size of this input image should be comparable to the sizes of the images used
in training. If these sizes are very different, the detector has difficulty detecting objects because the
scale of the objects in the input image differs from the scale of the objects the detector was trained to
identify. Consider whether you used the SmallestImageDimension property during training to
modify the size of training images.
Data Types: uint8 | uint16 | int16 | double | single | logical

ds — Datastore
datastore object

Datastore, specified as a datastore object containing a collection of images. Each image must be a
grayscale, RGB, or multichannel image. The function processes only the first column of the datastore,
which must contain images and must be cell arrays or tables with multiple columns.

roi — Search region of interest
[x y width height] vector

Search region of interest, specified as an [x y width height] vector. The vector specifies the upper left
corner and size of a region in pixels.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'NumStrongestRegions',1000

NumStrongestRegions — Maximum number of strongest region proposals
2000 (default) | positive integer | Inf

Maximum number of strongest region proposals, specified as the comma-separated pair consisting of
'NumStrongestRegions' and a positive integer. Reduce this value to speed up processing time at
the cost of detection accuracy. To use all region proposals, specify this value as Inf.

SelectStrongest — Select strongest bounding box
true (default) | false
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Select the strongest bounding box for each detected object, specified as the comma-separated pair
consisting of 'SelectStrongest' and either true or false.

• true — Return the strongest bounding box per object. To select these boxes, detect calls the
selectStrongestBboxMulticlass function, which uses nonmaximal suppression to eliminate
overlapping bounding boxes based on their confidence scores.

For example:

 selectStrongestBboxMulticlass(bbox,scores, ...
            'RatioType','Min', ...
            'OverlapThreshold',0.5);

• false — Return all detected bounding boxes. You can then create your own custom operation to
eliminate overlapping bounding boxes.

MinSize — Minimum region size
[height width] vector

Minimum region size that contains a detected object, specified as the comma-separated pair
consisting of 'MinSize' and a [height width] vector. Units are in pixels.

By default, MinSize is the smallest object that the trained detector can detect.

MaxSize — Maximum region size
size(I) (default) | [height width] vector

Maximum region size that contains a detected object, specified as the comma-separated pair
consisting of 'MaxSize' and a [height width] vector. Units are in pixels.

To reduce computation time, set this value to the known maximum region size for the objects being
detected in the image. By default, 'MaxSize' is set to the height and width of the input image, I.

MiniBatchSize — Minimum batch size
128 (default) | scalar

Minimum batch size, specified as the comma-separated pair consisting of 'MiniBatchSize' and a
scalar value. Use the MiniBatchSize to process a large collection of images. Images are grouped
into minibatches and processed as a batch to improve computation efficiency. Increase the minibatch
size to decrease processing time. Decrease the size to use less memory.

ExecutionEnvironment — Hardware resource
'auto' (default) | 'gpu' | 'cpu'

Hardware resource on which to run the detector, specified as the comma-separated pair consisting of
'ExecutionEnvironment' and 'auto', 'gpu', or 'cpu'.

• 'auto' — Use a GPU if it is available. Otherwise, use the CPU.
• 'gpu' — Use the GPU. To use a GPU, you must have Parallel Computing Toolbox and a CUDA

enabled NVIDIA GPU with a compute capability of 3.0 or higher. If a suitable GPU is not available,
the function returns an error.

• 'cpu' — Use the CPU.
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Output Arguments
bboxes — Location of objects detected
M-by-4 matrix | B-by-1 cell array

Location of objects detected within the input image or images, returned as an M-by-4 matrix or a B-
by-1 cell array. M is the number of bounding boxes in an image, and B is the number of M-by-4
matrices when the input contains an array of images.

Each row of bboxes contains a four-element vector of the form [x y width height]. This vector
specifies the upper left corner and size of that corresponding bounding box in pixels.

scores — Detection scores
M-by-1 vector | B-by-1 cell array

Detection confidence scores, returned as an M-by-1 vector or a B-by-1 cell array. M is the number of
bounding boxes in an image, and B is the number of M-by-1 vectors when the input contains an array
of images. A higher score indicates higher confidence in the detection.

labels — Labels for bounding boxes
M-by-1 categorical array | B-by-1 cell array

Labels for bounding boxes, returned as an M-by-1 categorical array or a B-by-1 cell array. M is the
number of labels in an image, and B is the number of M-by-1 categorical arrays when the input
contains an array of images. You define the class names used to label the objects when you train the
input detector.

detectionResults — Detection results
3-column table

Detection results, returned as a 3-column table with variable names, Boxes, Scores, and Labels. The
Boxes column contains M-by-4 matrices, of M bounding boxes for the objects found in the image.
Each row contains a bounding box as a 4-element vector in the format [x,y,width,height]. The format
specifies the upper-left corner location and size in pixels of the bounding box in the corresponding
image.

See Also
Apps
Ground Truth Labeler

Functions
configureDetectorMonoCamera | selectStrongestBboxMulticlass |
trainFastRCNNObjectDetector

Objects
fastRCNNObjectDetectorMonoCamera | monoCamera

Introduced in R2017a
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classifyRegions
Classify objects in image regions using Fast R-CNN object detector configured for monocular camera

Syntax
[labels,scores] = classifyRegions(detector,I,rois)
[labels,scores,allScores] = classifyRegions(detector,I,rois)
[ ___ ] = classifyRegions( ___ ,'ExecutionEnvironment',resource)

Description
[labels,scores] = classifyRegions(detector,I,rois) classifies objects within the regions
of interest of image I, using a Fast R-CNN (regions with convolutional neural networks) object
detector configured for a monocular camera. For each region, classifyRegions returns the class
label with the corresponding highest classification score.

When using this function, use of a CUDA enabled NVIDIA GPU with a compute capability of 3.0 or
higher is highly recommended. The GPU reduces computation time significantly. Usage of the GPU
requires Parallel Computing Toolbox.

[labels,scores,allScores] = classifyRegions(detector,I,rois) also returns all the
classification scores of each region. The scores are returned in an M-by-N matrix of M regions and N
class labels.

[ ___ ] = classifyRegions( ___ ,'ExecutionEnvironment',resource) specifies the
hardware resource used to classify objects within image regions. You can use this name-value pair
with any of the preceding syntaxes.

Input Arguments
detector — Fast R-CNN object detector configured for monocular camera
fastRCNNObjectDetectorMonoCamera object

Fast R-CNN object detector configured for a monocular camera, specified as a
fastRCNNObjectDetectorMonoCamera object. To create this object, use the
configureDetectorMonoCamera function with a monoCamera object and trained
fastRCNNObjectDetector object as inputs.

I — Input image
grayscale image | RGB image

Input image, specified as a real, nonsparse, grayscale or RGB image.
Data Types: uint8 | uint16 | int16 | double | single | logical

rois — Regions of interest
M-by-4 matrix

Regions of interest within the image, specified as an M-by-4 matrix defining M rectangular regions.
Each row contains a four-element vector of the form [x y width height]. This vector specifies the
upper left corner and size of a region in pixels.
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resource — Hardware resource
'auto' (default) | 'gpu' | 'cpu'

Hardware resource used to classify image regions, specified as 'ExecutionEnvironment' and
'auto', 'gpu', or 'cpu'.

• 'auto' — Use a GPU if it is available. Otherwise, use the CPU.
• 'gpu' — Use the GPU. To use a GPU, you must have Parallel Computing Toolbox and a CUDA

enabled NVIDIA GPU with a compute capability of 3.0 or higher. If a suitable GPU is not available,
the function returns an error.

• 'cpu' — Use the CPU.

Example: 'ExecutionEnvironment','cpu'

Output Arguments
labels — Classification labels of regions
M-by-1 categorical array

Classification labels of regions, returned as an M-by-1 categorical array. M is the number of regions
of interest in rois. Each class name in labels corresponds to a classification score in scores and a
region of interest in rois. classifyRegions obtains the class names from the input detector.

scores — Highest classification score per region
M-by-1 vector of values in the range [0, 1]

Highest classification score per region, returned as an M-by-1 vector of values in the range [0, 1]. M
is the number of regions of interest in rois. Each classification score in scores corresponds to a
class name in labels and a region of interest in rois. A higher score indicates higher confidence in
the classification.

allScores — All classification scores per region
M-by-N matrix of values in the range [0, 1]

All classification scores per region, returned as an M-by-N matrix of values in the range [0, 1]. M is
the number of regions in rois. N is the number of class names stored in the input detector. Each
row of classification scores in allscores corresponds to a region of interest in rois. A higher score
indicates higher confidence in the classification.

See Also
Apps
Ground Truth Labeler

Functions
configureDetectorMonoCamera | trainFastRCNNObjectDetector

Objects
fastRCNNObjectDetectorMonoCamera | monoCamera

Introduced in R2017a
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fasterRCNNObjectDetectorMonoCamera
Detect objects in monocular camera using Faster R-CNN deep learning detector

Description
The fasterRCNNObjectDetectorMonoCamera object contains information about a Faster R-CNN
(regions with convolutional neural networks) object detector that is configured for use with a
monocular camera sensor. To detect objects in an image that was captured by the camera, pass the
detector to the detect function.

When using the detect function with fasterRCNNObjectDetectorMonoCamera, use of a CUDA
enabled NVIDIA GPU with a compute capability of 3.0 or higher is highly recommended. The GPU
reduces computation time significantly. Usage of the GPU requires Parallel Computing Toolbox.

Creation
1 Create a fasterRCNNObjectDetector object by calling the

trainFasterRCNNObjectDetector function with training data (requires Deep Learning
Toolbox).

detector = trainFasterRCNNObjectDetector(trainingData,...);

Alternatively, create a pretrained detector by using the vehicleDetectorFasterRCNN
function.

2 Create a monoCamera object to model the monocular camera sensor.

sensor = monoCamera(...);
3 Create a fasterRCNNObjectDetectorMonoCamera object by passing the detector and sensor

as inputs to the configureDetectorMonoCamera function. The configured detector inherits
property values from the original detector.

configuredDetector = configureDetectorMonoCamera(detector,sensor,...);

Properties
ModelName — Name of classification model
character vector | string scalar

This property is read-only.

Name of the classification model, specified as a character vector or string scalar. By default, the name
is set to the heading of the second column of the trainingData table specified in the
trainFasterRCNNObjectDetector function. You can modify this name after creating your
fasterRCNNObjectDetectorMonoCamera object.

Network — Trained Fast R-CNN object detection network
DAGNetwork object
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This property is read-only.

Trained Fast R-CNN object detection network, specified as a DAGNetwork object. This object stores
the layers that define the convolutional neural network used within the Faster R-CNN detector.

AnchorBoxes — Size of anchor boxes
M-by-2 matrix

This property is read-only.

Size of anchor boxes, specified as an M-by-2 matrix, where each row is in the format [height width].
This value is set during training.

ClassNames — Object class names
cell array

This property is read-only.

Names of the object classes that the Faster R-CNN detector was trained to find, specified as a cell
array. This property is set by the trainingData input argument for the
trainFasterRCNNObjectDetector function. Specify the class names as part of the
trainingData table.

MinObjectSize — Minimum object size supported
[height width] vector

This property is read-only.

Minimum object size supported by the Faster R-CNN network, specified as a [height width] vector.
The minimum size depends on the network architecture.

Camera — Camera configuration
monoCamera object

This property is read-only.

Camera configuration, specified as a monoCamera object. The object contains the camera intrinsics,
the location, the pitch, yaw, and roll placement, and the world units for the parameters. Use the
intrinsics to transform the object points in the image to world coordinates, which you can then
compare to the values in the WorldObjectSize property.

WorldObjectSize — Range of object widths and lengths
[minWidth maxWidth] vector | [minWidth maxWidth; minLength maxLength] vector

Range of object widths and lengths in world units, specified as a [minWidth maxWidth] vector or
[minWidth maxWidth; minLength maxLength] vector. Specifying the range of object lengths is
optional.

Object Functions
detect Detect objects using Faster R-CNN object detector configured for monocular camera

Examples
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Detect Vehicles Using Monocular Camera and Faster R-CNN

Configure a Faster R-CNN object detector for use with a monocular camera mounted on an ego
vehicle. Use this detector to detect vehicles within an image captured by the camera.

Load a fasterRCNNObjectDetector object pretrained to detect vehicles.

detector = vehicleDetectorFasterRCNN;

Model a monocular camera sensor by creating a monoCamera object. This object contains the camera
intrinsics and the location of the camera on the ego vehicle.

focalLength = [309.4362 344.2161];    % [fx fy]
principalPoint = [318.9034 257.5352]; % [cx cy]
imageSize = [480 640];                % [mrows ncols]
height = 2.1798;                      % height of camera above ground, in meters
pitch = 14;                           % pitch of camera, in degrees
intrinsics = cameraIntrinsics(focalLength,principalPoint,imageSize);

monCam = monoCamera(intrinsics,height,'Pitch',pitch);

Configure the detector for use with the camera. Limit the width of detected objects to a typical range
for vehicle widths: 1.5–2.5 meters. The configured detector is a
fasterRCNNObjectDetectorMonoCamera object.

vehicleWidth = [1.5 2.5];
detectorMonoCam = configureDetectorMonoCamera(detector,monCam,vehicleWidth);

Read in an image captured by the camera.

I = imread('carsinfront.png');
imshow(I)
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Detect the vehicles in the image by using the detector. Annotate the image with the bounding boxes
for the detections and the detection confidence scores.

[bboxes,scores] = detect(detectorMonoCam,I);
I = insertObjectAnnotation(I,'rectangle',bboxes,scores,'Color','g');
imshow(I)
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See Also
Apps
Ground Truth Labeler

Functions
configureDetectorMonoCamera | trainFasterRCNNObjectDetector |
vehicleDetectorFasterRCNN

Objects
fasterRCNNObjectDetector | monoCamera

Topics
“Getting Started with R-CNN, Fast R-CNN, and Faster R-CNN” (Computer Vision Toolbox)

Introduced in R2017a
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detect
Detect objects using Faster R-CNN object detector configured for monocular camera

Syntax
bboxes = detect(detector,I)
[bboxes,scores] = detect(detector,I)
[ ___ ,labels] = detect(detector,I)
[ ___ ] = detect( ___ ,roi)
detectionResults = detect(detector,ds)
[ ___ ] = detect( ___ ,Name,Value)

Description
bboxes = detect(detector,I) detects objects within image I using a Faster R-CNN (regions
with convolutional neural networks) object detector configured for a monocular camera. The
locations of objects detected are returned as a set of bounding boxes.

When using this function, use of a CUDA-enabled NVIDIA GPU with a compute capability of 3.0 or
higher is highly recommended. The GPU reduces computation time significantly. Usage of the GPU
requires Parallel Computing Toolbox.

[bboxes,scores] = detect(detector,I) also returns the detection confidence scores for each
bounding box.

[ ___ ,labels] = detect(detector,I) also returns a categorical array of labels assigned to the
bounding boxes, using any of the preceding syntaxes. The labels used for object classes are defined
during training using the trainFasterRCNNObjectDetector function.

[ ___ ] = detect( ___ ,roi) detects objects within the rectangular search region specified by
roi.

detectionResults = detect(detector,ds) detects objects within the series of images
returned by the read function of the input datastore.

[ ___ ] = detect( ___ ,Name,Value) specifies options using one or more Name,Value pair
arguments. For example, detect(detector,I,'NumStongestRegions',1000) limits the number
of strongest region proposals to 1000.

Examples

Detect Vehicles Using Monocular Camera and Faster R-CNN

Configure a Faster R-CNN object detector for use with a monocular camera mounted on an ego
vehicle. Use this detector to detect vehicles within an image captured by the camera.

Load a fasterRCNNObjectDetector object pretrained to detect vehicles.

detector = vehicleDetectorFasterRCNN;
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Model a monocular camera sensor by creating a monoCamera object. This object contains the camera
intrinsics and the location of the camera on the ego vehicle.

focalLength = [309.4362 344.2161];    % [fx fy]
principalPoint = [318.9034 257.5352]; % [cx cy]
imageSize = [480 640];                % [mrows ncols]
height = 2.1798;                      % height of camera above ground, in meters
pitch = 14;                           % pitch of camera, in degrees
intrinsics = cameraIntrinsics(focalLength,principalPoint,imageSize);

monCam = monoCamera(intrinsics,height,'Pitch',pitch);

Configure the detector for use with the camera. Limit the width of detected objects to a typical range
for vehicle widths: 1.5–2.5 meters. The configured detector is a
fasterRCNNObjectDetectorMonoCamera object.

vehicleWidth = [1.5 2.5];
detectorMonoCam = configureDetectorMonoCamera(detector,monCam,vehicleWidth);

Read in an image captured by the camera.

I = imread('carsinfront.png');
imshow(I)
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Detect the vehicles in the image by using the detector. Annotate the image with the bounding boxes
for the detections and the detection confidence scores.

[bboxes,scores] = detect(detectorMonoCam,I);
I = insertObjectAnnotation(I,'rectangle',bboxes,scores,'Color','g');
imshow(I)

Input Arguments
detector — Faster R-CNN object detector configured for monocular camera
fasterRCNNObjectDetectorMonoCamera object

Faster R-CNN object detector configured for a monocular camera, specified as a
fasterRCNNObjectDetectorMonoCamera object. To create this object, use the
configureDetectorMonoCamera function with a monoCamera object and trained
fasterRCNNObjectDetector object as inputs.

I — Input image
H-by-W-by-C-by-B numeric array of images
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Input image, specified as an H-by-W-by-C-by-B numeric array of images Images must be real,
nonsparse, grayscale or RGB image.

• H: Height
• W: Width
• C: The channel size in each image must be equal to the network's input channel size. For example,

for grayscale images, C must be equal to 1. For RGB color images, it must be equal to 3.
• B: The number of images in the array.

The detector is sensitive to the range of the input image. Therefore, ensure that the input image
range is similar to the range of the images used to train the detector. For example, if the detector was
trained on uint8 images, rescale this input image to the range [0, 255] by using the im2uint8 or
rescale function. The size of this input image should be comparable to the sizes of the images used
in training. If these sizes are very different, the detector has difficulty detecting objects because the
scale of the objects in the input image differs from the scale of the objects the detector was trained to
identify. Consider whether you used the SmallestImageDimension property during training to
modify the size of training images.
Data Types: uint8 | uint16 | int16 | double | single | logical

ds — Datastore
datastore object

Datastore, specified as a datastore object containing a collection of images. Each image must be a
grayscale, RGB, or multichannel image. The function processes only the first column of the datastore,
which must contain images and must be cell arrays or tables with multiple columns.

roi — Search region of interest
[x y width height] vector

Search region of interest, specified as an [x y width height] vector. The vector specifies the upper left
corner and size of a region in pixels.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'NumStrongestRegions',1000

NumStrongestRegions — Maximum number of strongest region proposals
2000 (default) | positive integer | Inf

Maximum number of strongest region proposals, specified as the comma-separated pair consisting of
'NumStrongestRegions' and a positive integer. Reduce this value to speed up processing time at
the cost of detection accuracy. To use all region proposals, specify this value as Inf.

SelectStrongest — Select strongest bounding box
true (default) | false

Select the strongest bounding box for each detected object, specified as the comma-separated pair
consisting of 'SelectStrongest' and either true or false.
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• true — Return the strongest bounding box per object. To select these boxes, detect calls the
selectStrongestBboxMulticlass function, which uses nonmaximal suppression to eliminate
overlapping bounding boxes based on their confidence scores.

For example:

 selectStrongestBboxMulticlass(bbox,scores, ...
            'RatioType','Min', ...
            'OverlapThreshold',0.5);

• false — Return all detected bounding boxes. You can then create your own custom operation to
eliminate overlapping bounding boxes.

MinSize — Minimum region size
[height width] vector

Minimum region size that contains a detected object, specified as the comma-separated pair
consisting of 'MinSize' and a [height width] vector. Units are in pixels.

By default, MinSize is the smallest object that the trained detector can detect.

MaxSize — Maximum region size
size(I) (default) | [height width] vector

Maximum region size that contains a detected object, specified as the comma-separated pair
consisting of 'MaxSize' and a [height width] vector. Units are in pixels.

To reduce computation time, set this value to the known maximum region size for the objects being
detected in the image. By default, 'MaxSize' is set to the height and width of the input image, I.

MiniBatchSize — Minimum batch size
128 (default) | scalar

Minimum batch size, specified as the comma-separated pair consisting of 'MiniBatchSize' and a
scalar value. Use the MiniBatchSize to process a large collection of images. Images are grouped
into minibatches and processed as a batch to improve computation efficiency. Increase the minibatch
size to decrease processing time. Decrease the size to use less memory.

ExecutionEnvironment — Hardware resource
'auto' (default) | 'gpu' | 'cpu'

Hardware resource on which to run the detector, specified as the comma-separated pair consisting of
'ExecutionEnvironment' and 'auto', 'gpu', or 'cpu'.

• 'auto' — Use a GPU if it is available. Otherwise, use the CPU.
• 'gpu' — Use the GPU. To use a GPU, you must have Parallel Computing Toolbox and a CUDA

enabled NVIDIA GPU with a compute capability of 3.0 or higher. If a suitable GPU is not available,
the function returns an error.

• 'cpu' — Use the CPU.

Output Arguments
bboxes — Location of objects detected
M-by-4 matrix | B-by-1 cell array
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Location of objects detected within the input image or images, returned as an M-by-4 matrix or a B-
by-1 cell array. M is the number of bounding boxes in an image, and B is the number of M-by-4
matrices when the input contains an array of images.

Each row of bboxes contains a four-element vector of the form [x y width height]. This vector
specifies the upper left corner and size of that corresponding bounding box in pixels.

scores — Detection scores
M-by-1 vector | B-by-1 cell array

Detection confidence scores, returned as an M-by-1 vector or a B-by-1 cell array. M is the number of
bounding boxes in an image, and B is the number of M-by-1 vectors when the input contains an array
of images. A higher score indicates higher confidence in the detection.

labels — Labels for bounding boxes
M-by-1 categorical array | B-by-1 cell array

Labels for bounding boxes, returned as an M-by-1 categorical array or a B-by-1 cell array. M is the
number of labels in an image, and B is the number of M-by-1 categorical arrays when the input
contains an array of images. You define the class names used to label the objects when you train the
input detector.

detectionResults — Detection results
3-column table

Detection results, returned as a 3-column table with variable names, Boxes, Scores, and Labels. The
Boxes column contains M-by-4 matrices, of M bounding boxes for the objects found in the image.
Each row contains a bounding box as a 4-element vector in the format [x,y,width,height]. The format
specifies the upper-left corner location and size in pixels of the bounding box in the corresponding
image.

See Also
Apps
Ground Truth Labeler

Functions
configureDetectorMonoCamera | selectStrongestBboxMulticlass |
trainFasterRCNNObjectDetector

Objects
fasterRCNNObjectDetectorMonoCamera | monoCamera

Introduced in R2017a
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yolov2ObjectDetectorMonoCamera
Detect objects in monocular camera using YOLO v2 deep learning detector

Description
The yolov2ObjectDetectorMonoCamera object contains information about you only look once
version 2 (YOLO v2) object detector that is configured for use with a monocular camera sensor. To
detect objects in an image captured by the camera, pass the detector to the detect object function.

When using the detect object function with a yolov2ObjectDetectorMonoCamera object, use of
a CUDA-enabled NVIDIA GPU with a compute capability of 3.0 or higher is highly recommended. The
GPU reduces computation time significantly. Usage of the GPU requires Parallel Computing Toolbox.

Creation
1 Create a yolov2ObjectDetector object by calling the trainYOLOv2ObjectDetector

function with training data (requires Deep Learning Toolbox).

detector = trainYOLOv2ObjectDetector(trainingData,____);
2 Create a monoCamera object to model the monocular camera sensor.

sensor = monoCamera(____);
3 Create a yolov2ObjectDetectorMonoCamera object by passing the detector and sensor as

inputs to the configureDetectorMonoCamera function. The configured detector inherits
property values from the original detector.

configuredDetector = configureDetectorMonoCamera(detector,sensor,____);

Properties
Camera — Camera configuration
monoCamera object

This property is read-only.

Camera configuration, specified as a monoCamera object. The object contains the camera intrinsics,
the location, the pitch, yaw, and roll placement, and the world units for the parameters. Use the
intrinsics to transform the object points in the image to world coordinates, which you can then
compare to the values in the WorldObjectSize property.

WorldObjectSize — Range of object widths and lengths
[minWidth maxWidth] vector | [minWidth maxWidth; minLength maxLength] vector

Range of object widths and lengths in world units, specified as a [minWidth maxWidth] vector or
[minWidth maxWidth; minLength maxLength] vector. Specifying the range of object lengths is
optional.

ModelName — Name of classification model
character vector | string scalar
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Name of the classification model, specified as a character vector or string scalar. By default, the name
is set to the heading of the second column of the trainingData table specified in the
trainYOLOv2ObjectDetector function. You can modify this name after creating the
yolov2ObjectDetectorMonoCamera object.

Network — Trained YOLO v2 object detection network
DAGNetwork object

This property is read-only.

Trained YOLO v2 object detection network, specified as a DAGNetwork object. This object stores the
layers that are used within the YOLO v2 object detector.

ClassNames — Names of object classes
cell array of character vectors

This property is read-only.

Names of the object classes that the YOLO v2 object detector was trained to find, specified as a cell
array of character vectors. This property is set by the trainingData input argument for the
trainYOLOv2ObjectDetector function. Specify the class names as part of the trainingData
table.

AnchorBoxes — Size of anchor boxes
M-by-2 matrix

This property is read-only.

Size of anchor boxes, specified as an M-by-2 matrix, where each row is of form [height width]. This
value specifies the height and width of M anchor boxes. This property is set by the AnchorBoxes
property of the output layer in the YOLO v2 network.

The anchor boxes are defined when creating the YOLO v2 network by using the yolov2Layers
function. Alternatively, if you create the YOLO v2 network layer-by-layer, the anchor boxes are
defined by using the yolov2OutputLayer function.

Object Functions
detect Detect objects using YOLO v2 object detector configured for monocular camera

Examples

Detect Vehicles Using Monocular Camera and YOLO v2

Configure a YOLO v2 object detector for use with a monocular camera mounted on an ego vehicle.
Use this detector to detect vehicles within an image captured by the camera.

Load a yolov2ObjectDetector object pretrained to detect vehicles.

detector = vehicleDetectorYOLOv2;

Model a monocular camera sensor by creating a monoCamera object. This object contains the camera
intrinsics and the location of the camera on the ego vehicle.
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focalLength = [309.4362 344.2161];    % [fx fy]
principalPoint = [318.9034 257.5352]; % [cx cy]
imageSize = [480 640];                % [mrows ncols]
height = 2.1798;                      % height of camera above ground, in meters
pitch = 14;                           % pitch of camera, in degrees
intrinsics = cameraIntrinsics(focalLength,principalPoint,imageSize);

sensor = monoCamera(intrinsics,height,'Pitch',pitch);

Configure the detector for use with the camera. Limit the width of detected objects to 2–3 meters.
The configured detector is a yolov2ObjectDetectorMonoCamera object.

vehicleWidth = [2 3];
detectorMonoCam = configureDetectorMonoCamera(detector,sensor,vehicleWidth);

Read in an image captured by the camera.

I = imread('carsinfront.png');

Detect the vehicles in the image by using the detector. Annotate the image with the bounding boxes
for the detections and the detection confidence scores.

[bboxes,scores,labels] = detect(detectorMonoCam,I);
I = insertObjectAnnotation(I,'rectangle',bboxes,scores,'Color','g');
imshow(I)
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Display the labels for detected bounding boxes. The labels specify the class names of the detected
objects.

disp(labels)

     vehicle 
     vehicle 
     vehicle 
     vehicle 

See Also
Apps
Ground Truth Labeler

Functions
configureDetectorMonoCamera | trainYOLOv2ObjectDetector

Objects
monoCamera | yolov2ObjectDetector
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Topics
“Getting Started with YOLO v2” (Computer Vision Toolbox)
“Object Detection Using YOLO v2 Deep Learning” (Computer Vision Toolbox)

Introduced in R2019a
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detect
Detect objects using YOLO v2 object detector configured for monocular camera

Syntax
bboxes = detect(detector,I)
[bboxes,scores] = detect(detector,I)
[ ___ ,labels] = detect(detector,I)
[ ___ ] = detect( ___ ,roi)
detectionResults = detect(detector,ds)
[ ___ ] = detect( ___ ,Name,Value)

Description
bboxes = detect(detector,I) detects objects within image I using you look only once version 2
(YOLO v2) object detector configured for a monocular camera. The locations of objects detected are
returned as a set of bounding boxes.

When using this function, use of a CUDA-enabled NVIDIA GPU with a compute capability of 3.0 or
higher is highly recommended. The GPU reduces computation time significantly. Usage of the GPU
requires Parallel Computing Toolbox.

[bboxes,scores] = detect(detector,I) also returns the detection confidence scores for each
bounding box.

[ ___ ,labels] = detect(detector,I) returns a categorical array of labels assigned to the
bounding boxes in addition to the output arguments from the previous syntax. The labels used for
object classes are defined during training using the trainYOLOv2ObjectDetector function.

[ ___ ] = detect( ___ ,roi) detects objects within the rectangular search region specified by
roi. Use output arguments from any of the previous syntaxes. Specify input arguments from any of
the previous syntaxes.

detectionResults = detect(detector,ds) detects objects within the series of images
returned by the read function of the input datastore.

[ ___ ] = detect( ___ ,Name,Value) also specifies options using one or more Name,Value pair
arguments in addition to the input arguments in any of the preceding syntaxes.

Examples

Detect Vehicles in Traffic Scenes from Monocular Video Using YOLO v2

Configure a YOLO v2 object detector for detecting vehicles within a video captured by a monocular
camera.

Load a yolov2ObjectDetector object pretrained to detect vehicles.
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vehicleDetector = load('yolov2VehicleDetector.mat','detector');
detector = vehicleDetector.detector;

Model a monocular camera sensor by creating a monoCamera object. This object contains the camera
intrinsics and the location of the camera on the ego vehicle.

focalLength = [309.4362 344.2161];    % [fx fy]
principalPoint = [318.9034 257.5352]; % [cx cy]
imageSize = [480 640];                % [mrows ncols]
height = 2.1798;                      % Height of camera above ground, in meters
pitch = 14;                           % Pitch of camera, in degrees
intrinsics = cameraIntrinsics(focalLength,principalPoint,imageSize);

sensor = monoCamera(intrinsics,height,'Pitch',pitch);

Configure the detector for use with the camera. Limit the width of detected objects to 1.5-2.5 meters.
The configured detector is a yolov2ObjectDetectorMonoCamera object.

vehicleWidth = [1.5 2.5];
detectorMonoCam = configureDetectorMonoCamera(detector,sensor,vehicleWidth);

Set up the video reader and read the input monocular video.

videoFile = '05_highway_lanechange_25s.mp4';
reader = VideoReader(videoFile);

Create a video player to display the video and the output detections.

videoPlayer = vision.DeployableVideoPlayer();

Detect vehicles in the video by using the detector. Specify the detection threshold as 0.6. Annotate
the video with the bounding boxes for the detections, labels, and detection confidence scores.

cont = hasFrame(reader);
while cont
    I = readFrame(reader);
    [bboxes,scores,labels] = detect(detectorMonoCam,I,'Threshold',0.6); % Run the YOLO v2 object detector
    
    if ~isempty(bboxes)
        displayLabel = strcat(cellstr(labels),':',num2str(scores));
        I = insertObjectAnnotation(I,'rectangle',bboxes,displayLabel);
    end
    step(videoPlayer, I);    
    cont = hasFrame(reader) && isOpen(videoPlayer); % Exit the loop if the video player figure window is closed
end

Input Arguments
detector — YOLO v2 object detector configured for monocular camera
yolov2ObjectDetectorMonoCamera object

YOLO v2 object detector configured for monocular camera, specified as a
yolov2ObjectDetectorMonoCamera object. To create this object, use the
configureDetectorMonoCamera function with a monoCamera object and trained
yolov2ObjectDetector object as inputs.
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I — Input image
H-by-W-by-C-by-B numeric array of images

Input image, specified as an H-by-W-by-C-by-B numeric array of images Images must be real,
nonsparse, grayscale or RGB image.

• H: Height
• W: Width
• C: The channel size in each image must be equal to the network's input channel size. For example,

for grayscale images, C must be equal to 1. For RGB color images, it must be equal to 3.
• B: The number of images in the array.

The detector is sensitive to the range of the input image. Therefore, ensure that the input image
range is similar to the range of the images used to train the detector. For example, if the detector was
trained on uint8 images, rescale this input image to the range [0, 255] by using the im2uint8 or
rescale function. The size of this input image should be comparable to the sizes of the images used
in training. If these sizes are very different, the detector has difficulty detecting objects because the
scale of the objects in the input image differs from the scale of the objects the detector was trained to
identify. Consider whether you used the SmallestImageDimension property during training to
modify the size of training images.
Data Types: uint8 | uint16 | int16 | double | single | logical

ds — Datastore
datastore object

Datastore, specified as a datastore object containing a collection of images. Each image must be a
grayscale, RGB, or multichannel image. The function processes only the first column of the datastore,
which must contain images and must be cell arrays or tables with multiple columns.

roi — Search region of interest
[x y width height] vector

Search region of interest, specified as an [x y width height] vector. The vector specifies the upper left
corner and size of a region in pixels.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: detect(detector,I,'Threshold',0.25)

Threshold — Detection threshold
0.5 (default) | scalar in the range [0, 1]

Detection threshold, specified as a comma-separated pair consisting of 'Threshold' and a scalar in
the range [0, 1]. Detections that have scores less than this threshold value are removed. To reduce
false positives, increase this value.

SelectStrongest — Select strongest bounding box
true (default) | false
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Select the strongest bounding box for each detected object, specified as the comma-separated pair
consisting of 'SelectStrongest' and true or false.

• true — Returns the strongest bounding box per object. The method calls the
selectStrongestBboxMulticlass function, which uses nonmaximal suppression to eliminate
overlapping bounding boxes based on their confidence scores.

By default, the selectStrongestBboxMulticlass function is called as follows

 selectStrongestBboxMulticlass(bbox,scores,...
                               'RatioType','Min',...
                               'OverlapThreshold',0.5);

• false — Return all the detected bounding boxes. You can then write your own custom method to
eliminate overlapping bounding boxes.

MinSize — Minimum region size
[1 1] (default) | vector of the form [height width]

Minimum region size, specified as the comma-separated pair consisting of 'MinSize' and a vector of
the form [height width]. Units are in pixels. The minimum region size defines the size of the smallest
region containing the object.

By default, 'MinSize' is 1-by-1.

MaxSize — Maximum region size
size(I) (default) | vector of the form [height width]

Maximum region size, specified as the comma-separated pair consisting of 'MaxSize' and a vector
of the form [height width]. Units are in pixels. The maximum region size defines the size of the
largest region containing the object.

By default, 'MaxSize' is set to the height and width of the input image, I. To reduce computation
time, set this value to the known maximum region size for the objects that can be detected in the
input test image.

ExecutionEnvironment — Hardware resource
'auto' (default) | 'gpu' | 'cpu'

Hardware resource on which to run the detector, specified as the comma-separated pair consisting of
'ExecutionEnvironment' and 'auto', 'gpu', or 'cpu'.

• 'auto' — Use a GPU if it is available. Otherwise, use the CPU.
• 'gpu' — Use the GPU. To use a GPU, you must have Parallel Computing Toolbox and a CUDA-

enabled NVIDIA GPU with a compute capability of 3.0 or higher. If a suitable GPU is not available,
the function returns an error.

• 'cpu' — Use the CPU.

Acceleration — Performance optimization
'auto' (default) | 'mex' | 'none'

Performance optimization, specified as the comma-separated pair consisting of 'Acceleration' and
one of the following:

• 'auto' — Automatically apply a number of optimizations suitable for the input network and
hardware resource.
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• 'mex' — Compile and execute a MEX function. This option is available when using a GPU only.
Using a GPU requires Parallel Computing Toolbox and a CUDA enabled NVIDIA GPU with
compute capability 3.0 or higher. If Parallel Computing Toolbox or a suitable GPU is not available,
then the function returns an error.

• 'none' — Disable all acceleration.

The default option is 'auto'. If 'auto' is specified, MATLAB will apply a number of compatible
optimizations. If you use the 'auto' option, MATLAB does not ever generate a MEX function.

Using the 'Acceleration' options 'auto' and 'mex' can offer performance benefits, but at the
expense of an increased initial run time. Subsequent calls with compatible parameters are faster. Use
performance optimization when you plan to call the function multiple times using new input data.

The 'mex' option generates and executes a MEX function based on the network and parameters used
in the function call. You can have several MEX functions associated with a single network at one time.
Clearing the network variable also clears any MEX functions associated with that network.

The 'mex' option is only available for input data specified as a numeric array, cell array of numeric
arrays, table, or image datastore. No other types of datastore support the 'mex' option.

The 'mex' option is only available when you are using a GPU. You must also have a C/C++ compiler
installed. For setup instructions, see “MEX Setup” (GPU Coder).

'mex' acceleration does not support all layers. For a list of supported layers, see “Supported Layers”
(GPU Coder).

Output Arguments
bboxes — Location of objects detected
M-by-4 matrix | B-by-1 cell array

Location of objects detected within the input image or images, returned as an M-by-4 matrix or a B-
by-1 cell array. M is the number of bounding boxes in an image, and B is the number of M-by-4
matrices when the input contains an array of images.

Each row of bboxes contains a four-element vector of the form [x y width height]. This vector
specifies the upper left corner and size of that corresponding bounding box in pixels.

scores — Detection scores
M-by-1 vector | B-by-1 cell array

Detection confidence scores, returned as an M-by-1 vector or a B-by-1 cell array. M is the number of
bounding boxes in an image, and B is the number of M-by-1 vectors when the input contains an array
of images. A higher score indicates higher confidence in the detection.

labels — Labels for bounding boxes
M-by-1 categorical array | B-by-1 cell array

Labels for bounding boxes, returned as an M-by-1 categorical array or a B-by-1 cell array. M is the
number of labels in an image, and B is the number of M-by-1 categorical arrays when the input
contains an array of images. You define the class names used to label the objects when you train the
input detector.
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detectionResults — Detection results
3-column table

Detection results, returned as a 3-column table with variable names, Boxes, Scores, and Labels. The
Boxes column contains M-by-4 matrices, of M bounding boxes for the objects found in the image.
Each row contains a bounding box as a 4-element vector in the format [x,y,width,height]. The format
specifies the upper-left corner location and size in pixels of the bounding box in the corresponding
image.

See Also
Apps
Ground Truth Labeler

Functions
configureDetectorMonoCamera | evaluateDetectionMissRate |
evaluateDetectionPrecision | selectStrongestBboxMulticlass |
trainYOLOv2ObjectDetector

Objects
monoCamera | yolov2ObjectDetectorMonoCamera

Introduced in R2019a
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ssdObjectDetectorMonoCamera
Detect objects in monocular camera using SSD deep learning detector

Description
The ssdObjectDetectorMonoCamera detects objects from an image, using a single shot detector
(SSD) object detector. To detect objects in an image, pass the trained detector to the detect
function.

Creation
1 Create a ssdObjectDetector object by calling the trainSSDObjectDetector function with

training data (requires Deep Learning Toolbox).

detector = trainSSDObjectDetector(trainingData,____);
2 Create a monoCamera object to model the monocular camera sensor.

sensor = monoCamera(____);
3 Create a ssdObjectDetectorMonoCamera object by passing the detector and sensor as inputs

to the configureDetectorMonoCamera function. The configured detector inherits property
values from the original detector.

configuredDetector = configureDetectorMonoCamera(detector,sensor,____);

Properties
Camera — Camera configuration
monoCamera object

This property is read-only.

Camera configuration, specified as a monoCamera object. The object contains the camera intrinsics,
the location, the pitch, yaw, and roll placement, and the world units for the parameters. Use the
intrinsics to transform the object points in the image to world coordinates, which you can then
compare to the values in the WorldObjectSize property.

WorldObjectSize — Range of object widths and lengths
[minWidth maxWidth] vector | [minWidth maxWidth; minLength maxLength] vector

Range of object widths and lengths in world units, specified as a [minWidth maxWidth] vector or
[minWidth maxWidth; minLength maxLength] vector. Specifying the range of object lengths is
optional.

ModelName — Name of classification model
character vector | string scalar

Name of the classification model, specified as a character vector or string scalar. You can modify this
name after creating the ssdObjectDetectorMonoCamera object.
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Network — Trained SSD object detection network
DAGNetwork object

This property is read-only.

Trained SSD object detection network, specified as a DAGNetwork object. This object stores the
layers that are used within the SSD object detector.

AnchorBoxes — Size of anchor boxes
P-by-1 cell array

This property is read-only.

Size of anchor boxes, specified as a P-by-1 cell array for P number of feature extraction layers used
for object detection in the SSD network. Each element of the array contains an M-by-2 matrix of
anchor box sizes, in the format [height width]. Each cell can contain a different number of anchor
boxes. This value is set during training.

ClassNames — Names of object classes
cell array of character vectors

This property is read-only.

Names of the object classes that the SSD object detector was trained to find, specified as a cell array
of character vectors. This property is set by the trainingData input argument for the
trainSSDObjectDetector function. Specify the class names as part of the trainingData table.

Object Functions
detect Detect objects using SSD multibox object detector

Examples

Detect Vehicles Using Monocular Camera and SSD

Configure a SSD object detector for use with a monocular camera mounted on an ego vehicle. Use
this detector to detect vehicles within an image captured by the camera.

Load a ssdObjectDetector object pretrained to detect vehicles.

vehicleDetector = load('ssdVehicleDetector.mat','detector');
detector = vehicleDetector.detector;

Model a monocular camera sensor by creating a monoCamera object. This object contains the camera
intrinsics and the location of the camera on the ego vehicle.

focalLength = [309.4362 344.2161];    % [fx fy]
principalPoint = [318.9034 257.5352]; % [cx cy]
imageSize = [480 640];                % [mrows ncols]
height = 2.1798;                      % height of camera above ground, in meters
pitch = 14;                           % pitch of camera, in degrees
intrinsics = cameraIntrinsics(focalLength,principalPoint,imageSize);

sensor = monoCamera(intrinsics,height,'Pitch',pitch);
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Configure the detector for use with the camera. Limit the width of detected objects to 1.5 – 2.5
meters. The configured detector is a ssdObjectDetectorMonoCamera object.

vehicleWidth = [1.5 2.5];
detectorMonoCam = configureDetectorMonoCamera(detector,sensor,vehicleWidth);

Read an image captured by the camera.

I = imread('highwayCars.png');

Detect the vehicles in the image by using the detector. Annotate the image with the bounding boxes
for the detections and the detection confidence scores.

[bboxes,scores,labels] = detect(detectorMonoCam,I,'Threshold',0.6);
I = insertObjectAnnotation(I,'rectangle',bboxes,scores,'Color','g');
imshow(I)

Display the labels for detected bounding boxes. The labels specify the class names of the detected
objects.

disp(labels)

     vehicle      vehicle 
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See Also
Apps
Ground Truth Labeler

Functions
configureDetectorMonoCamera | trainSSDObjectDetector

Objects
monoCamera | ssdObjectDetector

Topics
“Getting Started with SSD Multibox Detection” (Computer Vision Toolbox)
“Create SSD Object Detection Network” (Computer Vision Toolbox)
“Object Detection Using SSD Deep Learning” (Computer Vision Toolbox)

Introduced in R2020a
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detect
Detect objects using SSD object detector configured for monocular camera

Syntax
bboxes = detect(detector,I)
[bboxes,scores] = detect(detector,I)
[ ___ ,labels] = detect(detector,I)
[ ___ ] = detect( ___ ,roi)

detectionResults = detect(detector,ds)

[ ___ ] = detect( ___ ,Name,Value)

Description
bboxes = detect(detector,I) detects objects within image I using an SSD (singe shot detection
convolutional neural networks) multibox object detector configured for a monocular camera. The
locations of objects detected are returned as a set of bounding boxes.

When using this function, use of a CUDA-enabled NVIDIA GPU with a compute capability of 3.0 or
higher is highly recommended. The GPU reduces computation time significantly. Usage of the GPU
requires Parallel Computing Toolbox.

[bboxes,scores] = detect(detector,I) also returns the detection confidence scores for each
bounding box.

[ ___ ,labels] = detect(detector,I) also returns a categorical array of labels assigned to the
bounding boxes, using either of the preceding syntaxes. The labels used for object classes are defined
during training using the trainSSDObjectDetector function.

[ ___ ] = detect( ___ ,roi) detects objects within the rectangular search region specified by
roi. Use output arguments from any of the previous syntaxes. Specify input arguments from any of
the previous syntaxes.

detectionResults = detect(detector,ds) detects objects within the series of images
returned by the read function of the input datastore.

[ ___ ] = detect( ___ ,Name,Value) specifies options using one or more Name,Value pair
arguments. For example, detect(detector,I,'Threshold',0.75) sets the detection score
threshold to 0.75. Any detections with a lower score are removed.

Examples

Detect Vehicles Using Monocular Camera and SSD

Configure a SSD object detector for use with a monocular camera mounted on an ego vehicle. Use
this detector to detect vehicles within an image captured by the camera.
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Load a ssdObjectDetector object pretrained to detect vehicles.

vehicleDetector = load('ssdVehicleDetector.mat','detector');
detector = vehicleDetector.detector;

Model a monocular camera sensor by creating a monoCamera object. This object contains the camera
intrinsics and the location of the camera on the ego vehicle.

focalLength = [309.4362 344.2161];    % [fx fy]
principalPoint = [318.9034 257.5352]; % [cx cy]
imageSize = [480 640];                % [mrows ncols]
height = 2.1798;                      % height of camera above ground, in meters
pitch = 14;                           % pitch of camera, in degrees
intrinsics = cameraIntrinsics(focalLength,principalPoint,imageSize);

sensor = monoCamera(intrinsics,height,'Pitch',pitch);

Configure the detector for use with the camera. Limit the width of detected objects to 1.5 – 2.5
meters. The configured detector is a ssdObjectDetectorMonoCamera object.

vehicleWidth = [1.5 2.5];
detectorMonoCam = configureDetectorMonoCamera(detector,sensor,vehicleWidth);

Read an image captured by the camera.

I = imread('highwayCars.png');

Detect the vehicles in the image by using the detector. Annotate the image with the bounding boxes
for the detections and the detection confidence scores.

[bboxes,scores,labels] = detect(detectorMonoCam,I,'Threshold',0.6);
I = insertObjectAnnotation(I,'rectangle',bboxes,scores,'Color','g');
imshow(I)
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Display the labels for detected bounding boxes. The labels specify the class names of the detected
objects.

disp(labels)

     vehicle      vehicle 

Input Arguments
detector — SSD multibox object detector
SSDObjectDetector object

SSD multibox object detector, specified as an ssdObjectDetector object. To create this object, call
the trainSSDObjectDetector function with training data as input.

I — Input image
H-by-W-by-C-by-B numeric array of images

Input image, specified as an H-by-W-by-C-by-B numeric array of images Images must be real,
nonsparse, grayscale or RGB image.
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• H: Height
• W: Width
• C: The channel size in each image must be equal to the network's input channel size. For example,

for grayscale images, C must be equal to 1. For RGB color images, it must be equal to 3.
• B: The number of images in the array.

The detector is sensitive to the range of the input image. Therefore, ensure that the input image
range is similar to the range of the images used to train the detector. For example, if the detector was
trained on uint8 images, rescale this input image to the range [0, 255] by using the im2uint8 or
rescale function. The size of this input image should be comparable to the sizes of the images used
in training. If these sizes are very different, the detector has difficulty detecting objects because the
scale of the objects in the input image differs from the scale of the objects the detector was trained to
identify. Consider whether you used the SmallestImageDimension property during training to
modify the size of training images.
Data Types: uint8 | uint16 | int16 | double | single | logical

ds — Datastore
datastore object

Datastore, specified as a datastore object containing a collection of images. Each image must be a
grayscale, RGB, or multichannel image. The function processes only the first column of the datastore,
which must contain images and must be cell arrays or tables with multiple columns.

roi — Search region of interest
[x y width height] vector

Search region of interest, specified as an [x y width height] vector. The vector specifies the upper left
corner and size of a region in pixels.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'SelectStrongest',true

Threshold — Detection threshold
0.5 (default) | scalar

Detection threshold, specified as a scalar in the range [0, 1]. Detections that have scores less than
this threshold value are removed. To reduce false positives, increase this value.

SelectStrongest — Select strongest bounding box
true (default) | false

Select the strongest bounding box for each detected object, specified as the comma-separated pair
consisting of 'SelectStrongest' and either true or false.

• true — Return the strongest bounding box per object. To select these boxes, detect calls the
selectStrongestBboxMulticlass function, which uses nonmaximal suppression to eliminate
overlapping bounding boxes based on their confidence scores.

For example:
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 selectStrongestBboxMulticlass(bbox,scores, ...
            'RatioType','Min', ...
            'OverlapThreshold',0.5);

• false — Return all detected bounding boxes. You can then create your own custom operation to
eliminate overlapping bounding boxes.

MaxSize — Maximum region size
size(I) (default) | [height width] vector

Maximum region size that contains a detected object, specified as the comma-separated pair
consisting of 'MaxSize' and a [height width] vector. Units are in pixels.

To reduce computation time, set this value to the known maximum region size for the objects being
detected in the image. By default, 'MaxSize' is set to the height and width of the input image, I.

MiniBatchSize — Minimum batch size
128 (default) | scalar

Minimum batch size, specified as the comma-separated pair consisting of 'MiniBatchSize' and a
scalar value. Use the MiniBatchSize to process a large collection of images. Images are grouped
into minibatches and processed as a batch to improve computation efficiency. Increase the minibatch
size to decrease processing time. Decrease the size to use less memory.

ExecutionEnvironment — Hardware resource
'auto' (default) | 'gpu' | 'cpu'

Hardware resource on which to run the detector, specified as the comma-separated pair consisting of
'ExecutionEnvironment' and 'auto', 'gpu', or 'cpu'.

• 'auto' — Use a GPU if it is available. Otherwise, use the CPU.
• 'gpu' — Use the GPU. To use a GPU, you must have Parallel Computing Toolbox and a CUDA

enabled NVIDIA GPU with a compute capability of 3.0 or higher. If a suitable GPU is not available,
the function returns an error.

• 'cpu' — Use the CPU.

Output Arguments
bboxes — Location of objects detected
M-by-4 matrix | B-by-1 cell array

Location of objects detected within the input image or images, returned as an M-by-4 matrix or a B-
by-1 cell array. M is the number of bounding boxes in an image, and B is the number of M-by-4
matrices when the input contains an array of images.

Each row of bboxes contains a four-element vector of the form [x y width height]. This vector
specifies the upper left corner and size of that corresponding bounding box in pixels.

scores — Detection scores
M-by-1 vector | B-by-1 cell array

Detection confidence scores, returned as an M-by-1 vector or a B-by-1 cell array. M is the number of
bounding boxes in an image, and B is the number of M-by-1 vectors when the input contains an array
of images. A higher score indicates higher confidence in the detection.
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labels — Labels for bounding boxes
M-by-1 categorical array | B-by-1 cell array

Labels for bounding boxes, returned as an M-by-1 categorical array or a B-by-1 cell array. M is the
number of labels in an image, and B is the number of M-by-1 categorical arrays when the input
contains an array of images. You define the class names used to label the objects when you train the
input detector.

detectionResults — Detection results
3-column table

Detection results, returned as a 3-column table with variable names, Boxes, Scores, and Labels. The
Boxes column contains M-by-4 matrices, of M bounding boxes for the objects found in the image.
Each row contains a bounding box as a 4-element vector in the format [x,y,width,height]. The format
specifies the upper-left corner location and size in pixels of the bounding box in the corresponding
image.

See Also
Apps
Ground Truth Labeler

Functions
configureDetectorMonoCamera | evaluateDetectionMissRate |
evaluateDetectionPrecision | selectStrongestBboxMulticlass

Objects
monoCamera

Topics
“Object Detection Using SSD Deep Learning” (Computer Vision Toolbox)
“Create SSD Object Detection Network” (Computer Vision Toolbox)
“Datastores for Deep Learning” (Deep Learning Toolbox)

Introduced in R2020a
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pathPlannerRRT
Configure RRT* path planner

Description
The pathPlannerRRT object configures a vehicle path planner based on the optimal rapidly
exploring random tree (RRT*) algorithm. An RRT* path planner explores the environment around the
vehicle by constructing a tree of random collision-free poses.

Once the pathPlannerRRT object is configured, use the plan function to plan a path from the start
pose to the goal.

Creation

Syntax
planner = pathPlannerRRT(costmap)
planner = pathPlannerRRT(costmap,Name,Value)

Description

planner = pathPlannerRRT(costmap) returns a pathPlannerRRT object for planning a vehicle
path. costmap is a vehicleCostmap object specifying the environment around the vehicle.
costmap sets the Costmap property value.

planner = pathPlannerRRT(costmap,Name,Value) sets properties on page 4-892 of the path
planner by using one or more name-value pair arguments. For example,
pathPlanner(costmap,'GoalBias',0.5) sets the GoalBias property to a probability of 0.5.
Enclose each property name in quotes.

Properties
Costmap — Costmap of vehicle environment
vehicleCostmap object

Costmap of the vehicle environment, specified as a vehicleCostmap object. The costmap is used for
collision checking of the randomly generated poses. Specify this costmap when creating your
pathPlannerRRT object using the costmap input.

GoalTolerance — Tolerance around goal pose
[0.5 0.5 5] (default) | [xTol, yTol, ΘTol] vector

Tolerance around the goal pose, specified as an [xTol, yTol, ΘTol] vector. The path planner finishes
planning when the vehicle reaches the goal pose within these tolerances for the (x, y) position and
the orientation angle, Θ. The xTol and yTol values are in the same world units as the
vehicleCostmap. ΘTol is in degrees.
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GoalBias — Probability of selecting goal pose
0.1 (default) | real scalar in the range [0, 1]

Probability of selecting the goal pose instead of a random pose, specified as a real scalar in the range
[0, 1]. Large values accelerate reaching the goal at the risk of failing to circumnavigate obstacles.

ConnectionMethod — Method used to connect poses
'Dubins' (default) | 'Reeds-Shepp'

Method used to calculate the connection between consecutive poses, specified as 'Dubins' or
'Reeds-Shepp'. Use 'Dubins' if only forward motions are allowed.

The 'Dubins' method contains a sequence of three primitive motions, each of which is one of these
types:

• Straight (forward)
• Left turn at the maximum steering angle of the vehicle (forward)
• Right turn at the maximum steering angle of the vehicle (forward)

If you use this connection method, then the segments of the planned vehicle path are stored as an
array of driving.DubinsPathSegment objects.

The 'Reeds-Shepp' method contains a sequence of three to five primitive motions, each of which is
one of these types:

• Straight (forward or reverse)
• Left turn at the maximum steering angle of the vehicle (forward or reverse)
• Right turn at the maximum steering angle of the vehicle (forward or reverse)

If you use this connection method, then the segments of the planned vehicle path are stored as an
array of driving.ReedsSheppPathSegment objects.

The MinTurningRadius property determines the maximum steering angle.

ConnectionDistance — Maximum distance between poses
5 (default) | positive real scalar

Maximum distance between two connected poses, specified as a positive real scalar.
pathPlannerRRT computes the connection distance along the path between the two poses, with
turns included. Larger values result in longer path segments between poses.

MinTurningRadius — Minimum turning radius of vehicle
4 (default) | positive real scalar

Minimum turning radius of the vehicle, specified as a positive real scalar. This value corresponds to
the radius of the turning circle at the maximum steering angle. Larger values limit the maximum
steering angle for the path planner, and smaller values result in sharper turns. The default value is
calculated using a wheelbase of 2.8 meters with a maximum steering angle of 35 degrees.

MinIterations — Minimum number of planner iterations
100 (default) | positive integer

Minimum number of planner iterations for exploring the costmap, specified as a positive integer.
Increasing this value increases the sampling of alternative paths in the costmap.
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MaxIterations — Maximum number of planner iterations
10000 (default) | positive integer

Maximum number of planner iterations for exploring the costmap, specified as a positive integer.
Increasing this value increases the number of samples for finding a valid path. If a valid path is not
found, the path planner exits after exceeding this maximum.

ApproximateSearch — Enable approximate nearest neighbor search
true (default) | false

Enable approximate nearest neighbor search, specified as true or false. Set this value to true to
use a faster, but approximate, search algorithm. Set this value to false to use an exact search
algorithm at the cost of increased computation time.

Object Functions
plan Plan vehicle path using RRT* path planner
plot Plot path planned by RRT* path planner

Examples

Plan Path to Parking Spot

Plan a vehicle path to a parking spot by using the RRT* algorithm.

Load a costmap of a parking lot. Plot the costmap to see the parking lot and inflated areas for the
vehicle to avoid.

data = load('parkingLotCostmapReducedInflation.mat');
costmap = data.parkingLotCostmapReducedInflation;
plot(costmap)
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Define start and goal poses for the path planner as [x, y, Θ] vectors. World units for the (x,y) locations
are in meters. World units for the Θ orientation values are in degrees.

startPose = [11, 10, 0]; % [meters, meters, degrees]
goalPose  = [31.5, 17, 90];

Create an RRT* path planner to plan a path from the start pose to the goal pose.

planner = pathPlannerRRT(costmap);
refPath = plan(planner,startPose,goalPose);

Plot the planned path.

plot(planner)
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Plan Path and Check Its Validity

Plan a vehicle path through a parking lot by using the optimal rapidly exploring random tree (RRT*)
algorithm. Check that the path is valid, and then plot the transition poses along the path.

Load a costmap of a parking lot. Plot the costmap to see the parking lot and inflated areas for the
vehicle to avoid.

data = load('parkingLotCostmap.mat');
costmap = data.parkingLotCostmap;
plot(costmap)
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Define start and goal poses for the vehicle as [x, y, Θ] vectors. World units for the (x,y) locations are
in meters. World units for the Θ orientation angles are in degrees.

startPose = [4, 4, 90]; % [meters, meters, degrees]
goalPose = [30, 13, 0];

Use a pathPlannerRRT object to plan a path from the start pose to the goal pose.

planner = pathPlannerRRT(costmap);
refPath = plan(planner,startPose,goalPose);

Check that the path is valid.

isPathValid = checkPathValidity(refPath,costmap)

isPathValid = logical
   1

Interpolate the transition poses along the path.

transitionPoses = interpolate(refPath);

Plot the planned path and the transition poses on the costmap.

hold on
plot(refPath,'DisplayName','Planned Path')
scatter(transitionPoses(:,1),transitionPoses(:,2),[],'filled', ...
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    'DisplayName','Transition Poses')
hold off

Tips
• Updating any of the properties of the planner clears the planned path from pathPlannerRRT.

Calling plot displays only the costmap until a path is planned using plan.
• To improve performance, the pathPlannerRRT object uses an approximate nearest neighbor

search. This search technique checks only sqrt(N) nodes, where N is the number of nodes to
search. To use exact nearest neighbor search, set the ApproximateSearch property to false.

• The Dubins and Reeds-Shepp connection methods are assumed to be kinematically feasible and
ignore inertial effects. These methods make the path planner suitable for low velocity
environments, where inertial effects of wheel forces are small.

References
[1] Karaman, Sertac, and Emilio Frazzoli. "Optimal Kinodynamic Motion Planning Using Incremental

Sampling-Based Methods." 49th IEEE Conference on Decision and Control (CDC). 2010.

[2] Shkel, Andrei M., and Vladimir Lumelsky. "Classification of the Dubins Set." Robotics and
Autonomous Systems. Vol. 34, Number 4, 2001, pp. 179–202.

[3] Reeds, J. A., and L. A. Shepp. "Optimal paths for a car that goes both forwards and backwards."
Pacific Journal of Mathematics. Vol. 145, Number 2, 1990, pp. 367–393.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The ConnectionMethod, MinIterations, MaxIterations, and ApproximateSearch
properties must be compile-time constants.

See Also
Functions
checkPathValidity | lateralControllerStanley | plan | plot | smoothPathSpline

Blocks
Lateral Controller Stanley

Objects
driving.Path | vehicleCostmap

Topics
“Automated Parking Valet”

Introduced in R2018a
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plan
Plan vehicle path using RRT* path planner

Syntax
refPath = plan(planner,startPose,goalPose)
[refPath,tree] = plan(planner,startPose,goalPose)

Description
refPath = plan(planner,startPose,goalPose) plans a vehicle path from startPose to
goalPose using the input pathPlannerRRT object. This object configures an optimal rapidly
exploring random tree (RRT*) path planner.

[refPath,tree] = plan(planner,startPose,goalPose) also returns the exploration tree,
tree.

Examples

Plan Path to Parking Spot

Plan a vehicle path to a parking spot by using the RRT* algorithm.

Load a costmap of a parking lot. Plot the costmap to see the parking lot and inflated areas for the
vehicle to avoid.

data = load('parkingLotCostmapReducedInflation.mat');
costmap = data.parkingLotCostmapReducedInflation;
plot(costmap)
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Define start and goal poses for the path planner as [x, y, Θ] vectors. World units for the (x,y) locations
are in meters. World units for the Θ orientation values are in degrees.

startPose = [11, 10, 0]; % [meters, meters, degrees]
goalPose  = [31.5, 17, 90];

Create an RRT* path planner to plan a path from the start pose to the goal pose.

planner = pathPlannerRRT(costmap);
refPath = plan(planner,startPose,goalPose);

Plot the planned path.

plot(planner)
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Input Arguments
planner — RRT* path planner
pathPlannerRRT object

RRT* path planner, specified as a pathPlannerRRT object.

startPose — Initial pose of vehicle
[x, y, Θ] vector

Initial pose of the vehicle, specified as an [x, y, Θ] vector. x and y are in world units, such as meters. Θ
is in degrees.

goalPose — Goal pose of vehicle
[x, y, Θ] vector

Goal pose of the vehicle, specified as an [x, y, Θ] vector. x and y are in world units, such as meters. Θ
is in degrees.

The vehicle achieves its goal pose when the last pose in the path is within the GoalTolerance
property of planner.
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Output Arguments
refPath — Planned vehicle path
driving.Path object

Planned vehicle path, returned as a driving.Path object containing reference poses along the
planned path. If planning was unsuccessful, the path has no poses. To check if the path is still valid
due to costmap updates, use the checkPathValidity function.

tree — Exploration tree
digraph object

Exploration tree, returned as a digraph object. Nodes within tree represent explored vehicle poses.
Edges within tree represent the distance between connected nodes.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The optional tree output argument, a digraph object, is not supported.

See Also
Functions
checkPathValidity | plot

Objects
digraph | driving.Path | pathPlannerRRT | vehicleCostmap

Topics
“Automated Parking Valet”

Introduced in R2018a
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plot
Plot path planned by RRT* path planner

Syntax
plot(planner)
plot(planner,Name,Value)

Description
plot(planner) plots the path planned by the input pathPlannerRRT object. When specified as an
input to the plan function, this object plans a path using the rapidly exploring random tree (RRT*)
algorithm. If a path has not been planned using plan, or if properties of the pathPlannerRRT
planner have changed since using plan, then plot displays only the costmap of planner.

plot(planner,Name,Value) specifies options using one or more name-value pair arguments. For
example, plot(planner,'Tree','on') plots the poses explored by the RRT* path planner.

Examples

Plan Path to Parking Spot

Plan a vehicle path to a parking spot by using the RRT* algorithm.

Load a costmap of a parking lot. Plot the costmap to see the parking lot and inflated areas for the
vehicle to avoid.

data = load('parkingLotCostmapReducedInflation.mat');
costmap = data.parkingLotCostmapReducedInflation;
plot(costmap)
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Define start and goal poses for the path planner as [x, y, Θ] vectors. World units for the (x,y) locations
are in meters. World units for the Θ orientation values are in degrees.

startPose = [11, 10, 0]; % [meters, meters, degrees]
goalPose  = [31.5, 17, 90];

Create an RRT* path planner to plan a path from the start pose to the goal pose.

planner = pathPlannerRRT(costmap);
refPath = plan(planner,startPose,goalPose);

Plot the planned path.

plot(planner)
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Input Arguments
planner — RRT* path planner
pathPlannerRRT object

RRT* path planner, specified as a pathPlannerRRT object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Vehicle','off'

Parent — Axes object
axes object

Axes object in which to draw the plot, specified as the comma-separated pair consisting of 'Parent'
and an axes object. If you do not specify Parent, a new figure is created.

Tree — Display exploration tree
'off' (default) | 'on'

Display exploration tree, specified as the comma-separated pair consisting of 'Tree' and 'off' or
'on'. Setting this value to 'on' displays the poses explored by the RRT* path planner, planner.
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Vehicle — Display vehicle
'on' (default) | 'off'

Display vehicle, specified as the comma-separated pair consisting of 'Vehicle' and 'on' or 'off'.
Setting this value to 'off' disables the vehicle displayed along the path planned by the RRT* path
planner, planner.

See Also
Functions
checkPathValidity | plan

Objects
driving.Path | pathPlannerRRT | vehicleCostmap

Topics
“Automated Parking Valet”

Introduced in R2018a
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vehicleCostmap
Costmap representing planning space around vehicle

Description
The vehicleCostmap object creates a costmap that represents the planning search space around a
vehicle. The costmap holds information about the environment, such as obstacles or areas that the
vehicle cannot traverse. To check for collisions, the costmap inflates obstacles using the inflation
radius specified in the CollisionChecker property. The costmap is used by path planning
algorithms, such as pathPlannerRRT, to find collision-free paths for the vehicle to follow.

The costmap is stored as a 2-D grid of cells, often called an occupancy grid or occupancy map. Each
grid cell in the costmap has a value in the range [0, 1] representing the cost of navigating through
that grid cell. The state of each grid cell is free, occupied, or unknown, as determined by the
FreeThreshold and OccupiedThreshold properties.

The following figure shows a costmap with sample costs and grid cell states.

Creation

Syntax
costmap = vehicleCostmap(C)
costmap = vehicleCostmap(mapWidth,mapLength)
costmap = vehicleCostmap(mapWidth,mapLength,costVal)
costmap = vehicleCostmap(occMap)
costmap = vehicleCostmap( ___ ,'MapLocation',mapLocation)
costmap = vehicleCostmap( ___ ,Name,Value)

Description

costmap = vehicleCostmap(C) creates a vehicle costmap using the cost values in matrix C.
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costmap = vehicleCostmap(mapWidth,mapLength) creates a vehicle costmap representing an
area of width mapWidth and length mapLength in world units. By default, each grid cell is in the
unknown state.

costmap = vehicleCostmap(mapWidth,mapLength,costVal) also assigns a default cost,
costVal, to each cell in the grid.

costmap = vehicleCostmap(occMap) creates a vehicle costmap from the occupancy map
occMap. Use of this syntax requires Navigation Toolbox™.

costmap = vehicleCostmap( ___ ,'MapLocation',mapLocation) specifies in mapLocation
the bottom-left corner coordinates of the costmap. Specify 'MapLocation',mapLocation after any
of the preceding inputs and in any order among the Name,Value pair arguments.

costmap = vehicleCostmap( ___ ,Name,Value) uses Name,Value pair arguments to specify
the FreeThreshold, OccupiedThreshold, CollisionChecker, and CellSize properties. For
example, vehicleCostmap(C,'CollisionChecker',ccConfig) uses an
inflationCollisionChecker object, ccConfig, to represent the vehicle shape and check for
collisions. After you create the object, you can update all of these properties except CellSize.

Input Arguments

C — Cost values
matrix of real values in the range [0, 1]

Cost values, specified as a matrix of real values that are in the range [0, 1].

When creating a vehicleCostmap object, if you do not specify C or a uniform cost value, costVal,
then the default cost value of each grid cell is (FreeThreshold + OccupiedThreshold)/2.
Data Types: single | double

mapWidth — Width of costmap
positive real scalar

Width of costmap, in world units, specified as a positive real scalar.

mapLength — Length of costmap
positive real scalar

Length of costmap, in world units, specified as a positive real scalar.

costVal — Uniform cost value
real scalar in the range [0, 1]

Uniform cost value applied to all cells in the costmap, specified as a real scalar in the range [0, 1].

When creating a vehicleCostmap object, if you do not specify costVal or a cost value matrix, C,
then the default cost value of each grid cell is (FreeThreshold + OccupiedThreshold)/2.

occMap — Occupancy map
occupancyMap object | binaryOccupancyMap object

Occupancy map, specified as an occupancyMap or binaryOccupancyMap object. Use of this
argument requires Navigation Toolbox.
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mapLocation — Costmap location
[0 0] (default) | two-element real-valued vector of form [mapX mapY]

Costmap location, specified as a two-element real-valued vector of the form [mapX mapY]. This vector
specifies the coordinate location of the bottom-left corner of the costmap.
Example: 'MapLocation',[8 8]

Properties
FreeThreshold — Threshold below which grid cell is free
0.2 (default) | real scalar in the range [0, 1]

Threshold below which a grid cell is free, specified as a real scalar in the range [0, 1].

A grid cell with cost c can have one of these states:

• If c < FreeThreshold, the grid cell state is free.
• If c ≥ FreeThreshold and c ≤ OccupiedThreshold, the grid cell state is unknown.
• If c > OccupiedThreshold, the grid cell state is occupied.

OccupiedThreshold — Threshold above which grid cell is occupied
0.65 (default) | real scalar in the range [0, 1]

Threshold above which a grid cell is occupied, specified as a real scalar in the range [0, 1].

A grid cell with cost c can have one of these states:

• If c < FreeThreshold, the grid cell state is free.
• If c ≥ FreeThreshold and c ≤ OccupiedThreshold, the grid cell state is unknown.
• If c > OccupiedThreshold, the grid cell state is occupied.

CollisionChecker — Collision-checking configuration
inflationCollisionChecker() (default) | InflationCollisionChecker object

Collision-checking configuration, specified as an InflationCollisionChecker object. To create
this object, use the inflationCollisionChecker function. Using the properties of the
InflationCollisionChecker object, you can configure:

• The inflation radius used to inflate obstacles in the costmap
• The number of circles used to enclose the vehicle when calculating the inflation radius
• The placement of each circle along the longitudinal axis of the vehicle
• The dimensions of the vehicle

By default, CollisionChecker uses the default InflationCollisionChecker object, which is
created using the syntax inflationCollisionChecker(). This collision-checking configuration
encloses the vehicle in one circle.

MapExtent — Extent of costmap
four-element, nonnegative integer vector of form [xmin xmax ymin ymax]

This property is read-only.
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Extent of costmap around the vehicle, specified as a four-element, nonnegative integer vector of the
form [xmin xmax ymin ymax].

• xmin and xmax describe the length of the map in world coordinates.
• ymin and ymax describe the width of the map in world coordinates.

CellSize — Side length of each square cell
1 (default) | positive real scalar

Side length of each square cell, in world units, specified as a positive real scalar. For example, a side
length of 1 implies a grid where each cell is a square of size 1-by-1 meters. Smaller values improve
the resolution of the search space at the cost of increased memory consumption.

You can specify CellSize when you create the vehicleCostmap object. However, after you create
the object, CellSize becomes read-only.

MapSize — Size of costmap grid
two-element, positive integer vector of form [nrows ncols]

This property is read-only.

Size of costmap grid, specified as a two-element, positive integer vector of the form [nrows ncols].

• nrows is the number of grid cell rows in the costmap.
• ncols is the number of grid cell columns in the costmap.

Object Functions
checkFree Check vehicle costmap for collision-free poses or points
checkOccupied Check vehicle costmap for occupied poses or points
getCosts Get cost value of cells in vehicle costmap
setCosts Set cost value of cells in vehicle costmap
plot Plot vehicle costmap

Examples

Create and Populate a Vehicle Costmap

Create a 10-by-20 meter costmap that is divided into square cells of size 0.5-by-0.5 meters. Specify a
default cost value of 0.5 for all cells.

mapWidth = 10;
mapLength = 20;
costVal = 0.5;
cellSize = 0.5;

costmap = vehicleCostmap(mapWidth,mapLength,costVal,'CellSize',cellSize)

costmap = 
  vehicleCostmap with properties:

        FreeThreshold: 0.2000
    OccupiedThreshold: 0.6500
     CollisionChecker: [1x1 driving.costmap.InflationCollisionChecker]
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             CellSize: 0.5000
              MapSize: [40 20]
            MapExtent: [0 10 0 20]

Mark an obstacle on the costmap. Display the costmap.

occupiedVal = 0.9;
xyPoint = [2,4]; 
setCosts(costmap,xyPoint,occupiedVal)

plot(costmap)

Mark an obstacle-free area on the costmap. Display the costmap again.

freeVal = 0.15; 
[X,Y] = meshgrid(3.5:cellSize:5,0.5:cellSize:1.5); 
setCosts(costmap,[X(:),Y(:)],freeVal)
plot(costmap) 
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Algorithms
To simplify checking for whether a vehicle pose is in collision, vehicleCostmap inflates the size of
obstacles. The collision-checking algorithm follows these steps:

1 Calculate the inflation radius, in world units, from the vehicle dimensions. The default inflation
radius is equal to the radius of the smallest set of overlapping circles required to completely
enclose the vehicle. The center points of the circles lie along the longitudinal axis of the vehicle.
Increasing the number of circles decreases the inflation radius, which enables more precise
collision checking.
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Inflation Radius, One Center Inflation Radius, Three Centers

2 Convert the inflation radius to a number of grid cells, R. Round up noninteger values of R to the
next largest integer.

3 Inflate the size of obstacles using R. Label all cells in the inflated area as occupied.

The diagrams show occupied cells in dark red. Cells in the inflated area are colored in light red.
The solid black line shows the original inflation radius. In the diagram on the left, R is 3. In the
diagram on the right, R is 2.

Inflated Grid Cells, One Center Inflated Grid Cells, Three Centers

4 Check whether the center points of the vehicle lie on inflated grid cells.
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• If any center point lies on an inflated grid cell, then the vehicle pose is occupied. The
checkOccupied function returns true. An occupied pose does not necessarily mean a
collision. For example, the vehicle might lie on an inflated grid cell but not on the grid cell
that is actually occupied.

• If no center points lie on inflated grid cells, and the cost value of each cell containing a center
point is less than FreeThreshold, then the vehicle pose is free. The checkFree function
returns true.

• If no center points lie on inflated grid cells, and the cost value of any cell containing a center
point is greater than FreeThreshold, then the vehicle pose is unknown. Both checkFree
and checkOccupied return false.

The following poses are considered in collision because at least one center point is on an inflated
area.

Pose in Collision, One Center Pose in Collision, Three Centers

Compatibility Considerations
InflationRadius and VehicleDimensions properties have been removed
Errors starting in R2020b

The InflationRadius and VehicleDimensions properties of the vehicleCostmap object have
been removed. Follow this process instead:

1 Use the inflationCollisionChecker function to create an InflationCollisionChecker
object, which has the InflationRadius and VehicleDimensions properties.

2 Specify this object as the value of the CollisionChecker property of vehicleCostmap.

If you do specify these properties for vehicleCostmap, the object returns an error.

When the vehicleCostmap object was introduced in R2018a, this object inflated obstacles based on
the specified inflation radius and vehicle dimensions only. The InflationCollisionChecker
object, which is specified in the CollisionChecker property of vehicleCostmap, provides
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additional configuration options for inflating obstacles. For example, you can specify the number of
circles used to compute the inflation radius, enabling more precise collision checking.

Update Code

The table shows a typical usage of the InflationRadius and VehicleDimensions properties of
vehicleCostmap. It also shows how to update your code using the corresponding properties of an
InflationCollisionChecker object.

Invalid Usage Recommended Replacement
vehicleDims = vehicleDimensions(5,2);
inflationRadius = 1.2;
costmap = vehicleCostmap(C, ...
    'VehicleDimensions',vehicleDims, ...
    'InflationRadius',inflationRadius);

vehicleDims = vehicleDimensions(5,2);
inflationRadius = 1.2;
ccConfig = inflationCollisionChecker(vehicleDims, ...
    'InflationRadius',inflationRadius);
costmap = vehicleCostmap(C, ...
    'CollisionChecker',ccConfig);

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• occupancyMap and binaryOccupancyMap inputs are not supported.
• The collision-checking configuration stored in the CollisionChecker property must be a

compile-time constant.
• The mapLocation input argument must be a compile-time constant.

See Also
inflationCollisionChecker | pathPlannerRRT

Topics
“Automated Parking Valet”
“Create Occupancy Grid Using Monocular Camera and Semantic Segmentation”

Introduced in R2018a
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checkFree
Check vehicle costmap for collision-free poses or points

Syntax
free = checkFree(costmap,vehiclePoses)
free = checkFree(costmap,xyPoints)
freeMat = checkFree(costmap)

Description
The checkFree function checks whether vehicle poses or points are free from obstacles on the
vehicle costmap. Path planning algorithms use checkFree to check whether candidate vehicle poses
along a path are navigable.

To simplify the collision check for a vehicle pose, vehicleCostmap inflates obstacles according to
the vehicle's InflationRadius, as specified by the CollisionChecker property of the costmap.
The collision checker calculates the inflation radius by enclosing the vehicle in a set of overlapping
circles of radius R, where the centers of these circles lie along the longitudinal axis of the vehicle.
The inflation radius is the minimum R needed to fully enclose the vehicle in these circles.

A vehicle pose is collision-free when the following conditions apply:

• None of the vehicle's circle centers lie on an inflated grid cell.
• The cost value of each containing a circle center is less than the FreeThreshold of the costmap.

For more details, see the algorithm on page 4-913 on the vehicleCostmap reference page.

free = checkFree(costmap,vehiclePoses) checks whether the vehicle poses are free from
collision with obstacles on the costmap.

free = checkFree(costmap,xyPoints) checks whether (x, y) points in xyPoints are free from
collision with obstacles on the costmap.

freeMat = checkFree(costmap) returns a logical matrix that indicates whether each cell of the
costmap is free.

Examples

Check If Sequence of Poses Is Collision-Free

Load a costmap from a parking lot.

data = load('parkingLotCostmap.mat');
parkMap = data.parkingLotCostmap;
plot(parkMap)

Create vehicle poses following a straight-line path. x and y are the (x,y) coordinates of the rear axle
of the vehicle. theta is the angle of the rear axle with respect to the x-axis. Note that the dimensions
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of the vehicle are stored in the CollisionChecker.VehicleDimensions property of the costmap,
and that there is an offset between the rear axle of the vehicle and its center.

x = 4:0.25:6;
y = 3:0.25:5;
theta = repmat(45,size(x));
vehiclePoses = [x',y',theta'];
hold on
plot(x,y,'b.')
hold off

The first few (x,y) coordinates of the rear axle are within the inflated area. However, this does not
imply a collision because the center of the vehicle may be outside the inflated area. Check if the
poses are collision-free.

free = checkFree(parkMap,vehiclePoses)

free = 9x1 logical array

   1
   1
   1
   1
   1
   1
   1
   1
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   1

All values of free are 1 (true), so all poses are collision-free. The center of the vehicle does not
enter the inflated area at any pose.

Input Arguments
costmap — Costmap
vehicleCostmap object

Costmap, specified as a vehicleCostmap object.

vehiclePoses — Vehicle poses
m-by-3 matrix of [x, y, Θ] vectors

Vehicle poses, specified as an m-by-3 matrix of [x, y, Θ] vectors. m is the number of poses.

x and y specify the location of the vehicle in world units, such as meters. This location is the center of
the rear axle of the vehicle.

Θ specifies the orientation angle of the vehicle in degrees with respect to the x-axis. Θ is positive in
the clockwise direction.
Example: [3.4 2.6 0] specifies a vehicle with the center of the rear axle at (3.4, 2.6) and an
orientation angle of 0 degrees.

xyPoints — Points
M-by-2 real-valued matrix

Points, specified as an M-by-2 real-valued matrix that represents the (x, y) coordinates of M points.
Example: [3.4 2.6] specifies a single point at (3.4, 2.6)
Example: [3 2;3 3;4 7] specifies three points: (3, 2), (3, 3), and (4, 7)

Output Arguments
free — Vehicle pose or point is free
M-by-1 logical vector

Vehicle pose or point is free, returned as an M-by-1 logical vector. An element of free is 1 (true)
when the corresponding vehicle pose in vehiclePoses or point in xyPoints is collision-free.

freeMat — Costmap cell is free
logical matrix

Costmap cell is free, returned as a logical matrix of the same size as the costmap grid. This size is
specified by the MapSize property of the costmap. An element of freeMat is 1 (true) when the
corresponding cell in costmap is unoccupied and the cost value of the cell is below the
FreeThreshold of the costmap.
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Tips
• If you specify a small value of InflationRadius that does not completely enclose the vehicle,

then checkFree might report occupied poses as collision-free. To avoid this situation, the default
value of InflationRadius completely encloses the vehicle.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
inflationCollisionChecker | pathPlannerRRT | vehicleCostmap

Functions
checkOccupied | checkPathValidity

Introduced in R2018a
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checkOccupied
Check vehicle costmap for occupied poses or points

Syntax
occ = checkOccupied(costmap,vehiclePoses)
occ = checkOccupied(costmap,xyPoints)
occMat = checkOccupied(costmap)

Description
The checkOccupied function checks whether vehicle poses or points are occupied by obstacles on
the vehicle costmap. Path planning algorithms use checkOccupied to check whether candidate
vehicle poses along a path are navigable.

To simplify the collision check for a vehicle pose, vehicleCostmap inflates obstacles according to
the vehicle's InflationRadius, as specified by the CollisionChecker property of the costmap.
The collision checker calculates the inflation radius by enclosing the vehicle in a set of overlapping
circles of radius R, where the centers of these circles lie along the longitudinal axis of the vehicle.
The inflation radius is the minimum R needed to fully enclose the vehicle in these circles. A vehicle
pose is collision-free when none of the centers of these circles lie on an inflated grid cell. For more
details, see the algorithm on page 4-913 on the vehicleCostmap reference page.

occ = checkOccupied(costmap,vehiclePoses) checks whether the vehicle poses are occupied.

occ = checkOccupied(costmap,xyPoints) checks whether (x, y) points in xyPoints are
occupied.

occMat = checkOccupied(costmap) returns a logical matrix that indicates whether each cell of
the costmap is occupied.

Examples

Check If Sequence of Poses Enters Occupied Cell

Load a costmap from a parking lot.

data = load('parkingLotCostmap.mat');
parkMap = data.parkingLotCostmap;
plot(parkMap)

Create vehicle poses following a straight-line path. x and y are the (x,y) coordinates of the rear axle
of the vehicle. theta is the angle of the rear axle with respect to the x-axis. Note that the dimensions
of the vehicle are stored in the vehicleDimensions property of the costmap, and that there is an
offset between the rear axle of the vehicle and its center.

x = 6:0.25:10;
y = repmat(5,size(x));
theta = zeros(size(x));
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vehiclePoses = [x',y',theta'];
hold on
plot(x,y,'b.')

Check if the poses are occupied.

occ = checkOccupied(parkMap,vehiclePoses)

occ = 17x1 logical array

   0
   0
   0
   0
   0
   1
   1
   1
   1
   1
      ⋮

The vehicle poses are occupied beginning with the sixth pose. In other words, the center of the
vehicle in the sixth pose lies within the inflation radius of an occupied grid cell.
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Input Arguments
costmap — Costmap
vehicleCostmap object

Costmap, specified as a vehicleCostmap object.

vehiclePoses — Vehicle poses
m-by-3 matrix of [x, y, Θ] vectors

Vehicle poses, specified as an m-by-3 matrix of [x, y, Θ] vectors. m is the number of poses.

x and y specify the location of the vehicle in world units, such as meters. This location is the center of
the rear axle of the vehicle.

Θ specifies the orientation angle of the vehicle in degrees with respect to the x-axis. Θ is positive in
the clockwise direction.
Example: [3.4 2.6 0] specifies a vehicle with the center of the rear axle at (3.4, 2.6) and an
orientation angle of 0 degrees.

xyPoints — Points
M-by-2 real-valued matrix

Points, specified as an M-by-2 real-valued matrix that represents the (x, y) coordinates of M points.
Example: [3.4 2.6] specifies a single point at (3.4, 2.6)
Example: [3 2;3 3;4 7] specifies three points: (3, 2), (3, 3), and (4, 7)

Output Arguments
occ — Vehicle pose or point is occupied
M-by-1 logical vector

Vehicle pose or point is occupied, returned as an M-by-1 logical vector. An element of occ is 1 (true)
when the corresponding vehicle pose in vehiclePoses or planar point in xyPoints is occupied.

occMat — Costmap cell is occupied
logical matrix

Costmap cell is occupied, returned as a logical matrix of the same size as the costmap grid. This size
is specified by the MapSize property of the costmap. An element of occMat is 1 (true) when the
corresponding cell in costmap is occupied.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
inflationCollisionChecker | pathPlannerRRT | vehicleCostmap
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Functions
checkFree | checkPathValidity

Introduced in R2018a
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getCosts
Get cost value of cells in vehicle costmap

Syntax
costVals = getCosts(costmap,xyPoints)
costMat = getCosts(costmap)

Description
costVals = getCosts(costmap,xyPoints) returns a vector, costVals, that contains the costs
for the (x, y) points in xyPoints in the vehicle costmap.

costMat = getCosts(costmap) returns a matrix, costMat, that contains the cost of each cell in
the costmap.

Examples

Get Cost Matrix and Set Cost Values

Create a 5-by-10 meter vehicle costmap. Cells have side length 1, in the world units of meters. Set the
inflation radius to 1. Plot the costmap, and get the default cost matrix.

costmap = vehicleCostmap(5,10);
costmap.CollisionChecker.InflationRadius = 1;
plot(costmap)
title('Default Costmap')
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getCosts(costmap)

ans = 10×5

    0.4250    0.4250    0.4250    0.4250    0.4250
    0.4250    0.4250    0.4250    0.4250    0.4250
    0.4250    0.4250    0.4250    0.4250    0.4250
    0.4250    0.4250    0.4250    0.4250    0.4250
    0.4250    0.4250    0.4250    0.4250    0.4250
    0.4250    0.4250    0.4250    0.4250    0.4250
    0.4250    0.4250    0.4250    0.4250    0.4250
    0.4250    0.4250    0.4250    0.4250    0.4250
    0.4250    0.4250    0.4250    0.4250    0.4250
    0.4250    0.4250    0.4250    0.4250    0.4250

Mark an obstacle at the (x,y) coordinate (3,4) by increasing the cost of that cell.

setCosts(costmap,[3,4],0.8);
plot(costmap)
title('Costmap with Obstacle at (3,4)')
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Get the cost of three cells: the cell with the obstacle, a cell adjacent to the obstacle, and a cell outside
the inflation radius of the obstacle.

costVal = getCosts(costmap,[3 4;2 4;4 7])

costVal = 3×1

    0.8000
    0.4250
    0.4250

Although the plot of the costmap displays the cell with the obstacle and its adjacent cells in shades of
red, only the cell with the obstacle has a higher cost value of 0.8. The other cells still have the default
cost value of 0.425.

Input Arguments
costmap — Costmap
vehicleCostmap object

Costmap, specified as a vehicleCostmap object.

xyPoints — Points
M-by-2 real-valued matrix
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Points, specified as an M-by-2 real-valued matrix that represents the (x, y) coordinates of M points.
Example: [3.4 2.6] specifies a single point at (3.4, 2.6)
Example: [3 2;3 3;4 7] specifies three points: (3, 2), (3, 3), and (4, 7)

Output Arguments
costVals — Cost of points
M-element real-valued vector

Cost of points in xyPoints, returned as an M-element real-valued vector.

costMat — Cost of all cells
real-valued matrix

Cost of all cells in costmap, returned as a real-valued matrix of the same size as the costmap grid.
This size is specified by the MapSize property of the costmap.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
setCosts | vehicleCostmap

Introduced in R2018a
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plot
Plot vehicle costmap

Syntax
plot(costmap)
plot(costmap,Name,Value)

Description
The plot function displays a vehicle costmap. The darkness of each cell is proportional to the cost
value of the cell. Cells with low cost are bright, and cells containing obstacles with high cost are dark.
Inflated areas are displayed with a red hue, and cells outside the inflated area are displayed in
grayscale.

plot(costmap) plots the vehicle costmap in the current axes.

plot(costmap,Name,Value) plots the vehicle costmap using name-value pair arguments to specify
the parent axes or to adjust the display of inflated areas.

Examples

Display a Vehicle on a Costmap

Load a costmap from a parking lot. Display the costmap.

data = load('parkingLotCostmap.mat');
parkMap = data.parkingLotCostmap;
plot(parkMap)

Create a template polyshape object with the dimensions of the car.

carDims = parkMap.CollisionChecker.VehicleDimensions

carDims = 
  vehicleDimensions with properties:

           Length: 4.7000
            Width: 1.8000
           Height: 1.4000
        Wheelbase: 2.8000
     RearOverhang: 1
    FrontOverhang: 0.9000
       WorldUnits: 'meters'

ro = carDims.RearOverhang;
fo = carDims.FrontOverhang;
wb = carDims.Wheelbase;
hw = carDims.Width/2;
X = [-ro,wb+fo,wb+fo,-ro];
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Y = [-hw,-hw,hw,hw];
templateShape = polyshape(X',Y');

Create a function handle to move the template to a specified vehicle pose. This move function
translates the polyshape s to the coordinate (x,y) and then rotates the polyshape by an angle theta
about the point (x,y).

move = @(s,x,y,theta) rotate(translate(s,[x,y]), ...
    theta,[x,y]);

Move the car template to a pose.

carPose = [5,5,75];
carShape = move(templateShape,carPose(1),carPose(2),carPose(3));

Plot the car on the costmap.

hold on
plot(carShape)

Input Arguments
costmap — Costmap
vehicleCostmap object

Costmap, specified as a vehicleCostmap object.
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Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Inflation','off'

Inflation — Display inflated areas
'on' (default) | 'off'

Display inflated areas, specified as the comma-separated pair consisting of 'Inflation' and one of
the following.

• 'on'—Cells in the inflated area have a red hue.
• 'off'—Cells containing obstacles have a red hue, but other cells in the inflated area are

displayed in grayscale.

Parent — Axes on which to plot costmap
axes handle

Axes on which to plot the costmap, specified as the comma-separated pair consisting of 'Parent'
and an axes handle. By default, plot uses the current axes handle, which is returned by the gca
function.

See Also
polyshape | vehicleCostmap | vehicleDimensions

Introduced in R2018a
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setCosts
Set cost value of cells in vehicle costmap

Syntax
setCosts(costmap,xyPoints,costVals)

Description
setCosts(costmap,xyPoints,costVals) sets the costs, costVals, for the (x, y) points in
xyPoints in the vehicle costmap.

Examples

Mark Rectangular Obstacle on Vehicle Costmap

Create a 10-by-15 meter vehicle costmap. Cells have a side length of 1 meter.

costmap = vehicleCostmap(10,15);

Define a set of (x,y) coordinates that correspond to a 3-by-5 meter rectangle.

[x,y] = meshgrid(2:4,2:6);
xyPoints = [x(:),y(:)];

Mark the rectangle as an obstacle by increasing the cost of its cells to 0.9.

costVal = 0.9;
setCosts(costmap,xyPoints,costVal);
plot(costmap)
title('Costmap with Rectangular Obstacle')
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Input Arguments
costmap — Costmap
vehicleCostmap object

Costmap, specified as a vehicleCostmap object.

xyPoints — Points
M-by-2 real-valued matrix

Points, specified as an M-by-2 real-valued matrix that represents the (x, y) coordinates of M points.
Example: [3.4 2.6] specifies a single point at (3.4, 2.6)
Example: [3 2;3 3;4 7] specifies three points: (3, 2), (3, 3), and (4, 7)

costVals — Cost of points
M-element real-valued vector

Cost of points in xyPoints, specified as an M-element real-valued vector.
Example: 0.8 specifies the cost of a single point
Example: [0.2 0.5 0.8] specifies the cost of three points
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
getCosts | vehicleCostmap

Introduced in R2018a
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vehicleDimensions
Store vehicle dimensions

Description
The vehicleDimensions object stores vehicle dimensions. The figure shows the dimensions that
are included in the vehicleDimensions.

The position of the vehicle is often represented as a single point located on the ground at the center
of the rear axle, as indicated by the red dot in the figure. This position corresponds to the natural
center of rotation of the vehicle.

The table lists typical vehicle types and their corresponding dimensions.

Vehicle
Classificati
on

Length Width Height Wheelbase Front
Overhang

Rear
Overhang

Automobile
(sedan)

4.7 m 1.8 m 1.4 m 2.8 m 0.9 m 1.0 m

Motorcycle 2.2 m 0.6 m 1.5 m 1.51 m 0.37 m 0.32 m

Creation
Syntax
vdims = vehicleDimensions

 vehicleDimensions

4-935



vdims = vehicleDimensions(l,w,h)
vdims = vehicleDimensions( ___ ,Name,Value)

Description

vdims = vehicleDimensions creates a vehicleDimensions object with a default length of 4.7
m, width of 1.8 m, and height of 1.4 m.

vdims = vehicleDimensions(l,w,h) creates a vehicleDimensions object and sets the
Length, Width, and Height properties.

vdims = vehicleDimensions( ___ ,Name,Value) uses one or more name-value pair arguments
to set the Wheelbase, FrontOverhang, RearOverhang, and WorldUnits properties. Name is the
property name and Value is the corresponding value. Name must appear inside single quotes (' ').
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Properties
Length — Length of vehicle
4.7 (default) | positive real scalar

Length of vehicle, specified as a positive real scalar.
Data Types: double

Width — Width of vehicle
1.8 (default) | positive real scalar

Width of vehicle, specified as a positive real scalar.
Data Types: double

Height — Height of vehicle
1.4 (default) | positive real scalar

Height of vehicle, specified as a positive real scalar.
Data Types: double

FrontOverhang — Front overhang of vehicle
0.9 (default) | real scalar

Front overhang of vehicle, specified as a real scalar. The front overhang is the distance between the
front of the vehicle and the front axle. FrontOverhang can be negative.
Data Types: double

RearOverhang — Rear overhang of vehicle
1.0 (default) | real scalar

Rear overhang of vehicle, specified as a real scalar. The rear overhang is the distance between the
rear of the vehicle and the rear axle. RearOverhang can be negative.
Data Types: double
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Wheelbase — Distance between axles
2.8 (default) | positive real scalar

The distance between the front and rear axles of the vehicle, specified as a positive real scalar.
Data Types: double

WorldUnits — Units of measurement
'meters' (default) | character array

Units of measurement, specified as a character array. The units do not affect the values of
measurements.

Examples

Specify Dimensions of a Motorcycle

Store the dimensions of a motorcycle with length 2.2, width 0.6, and height 1.5 meters. Also specify
the distance that the motorcycle extends ahead of the front axle and behind the rear axle.

vdims = vehicleDimensions(2.2,0.6,1.5, ...
    'FrontOverhang',0.37,'RearOverhang',0.32)

vdims = 
  vehicleDimensions with properties:

           Length: 2.2000
            Width: 0.6000
           Height: 1.5000
        Wheelbase: 1.5100
     RearOverhang: 0.3200
    FrontOverhang: 0.3700
       WorldUnits: 'meters'

Tips
• The Length of the vehicle is the sum of the Wheelbase, FrontOverhang, and RearOverhang. If

you change FrontOverhang, then the value of Wheelbase automatically adjusts to keep Length
constant. Any change resulting in a negative wheelbase causes an error.

• You can use the vehicle dimensions to define a vehicleCostmap that represents the planning
search space around a vehicle. Path planning algorithms, such as pathPlannerRRT, use vehicle
dimensions to find a path for the vehicle to follow.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• All inputs to vehicleDimensions must be compile-time constants.
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See Also
vehicle | vehicleCostmap

Introduced in R2018a
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objectDetection
Report for single object detection

Description
An objectDetection object contains an object detection report that was obtained by a sensor for a
single object. You can use the objectDetection output as the input to trackers such as
multiObjectTracker.

Creation

Syntax
detection = objectDetection(time,measurement)
detection = objectDetection( ___ ,Name,Value)

Description

detection = objectDetection(time,measurement) creates an object detection at the
specified time from the specified measurement.

detection = objectDetection( ___ ,Name,Value) creates a detection object with
properties specified as one or more Name,Value pair arguments. Any unspecified properties have
default values. You cannot specify the Time or Measurement properties using Name,Value pairs.

Input Arguments

time — Detection time
nonnegative real scalar

Detection time, specified as a nonnegative real scalar. This argument sets the Time property.

measurement — Object measurement
real-valued N-element vector

Object measurement, specified as a real-valued N-element vector. N is determined by the coordinate
system used to report detections and other parameters that you specify in the
MeasurementParameters property for the objectDetection object.

This argument sets the Measurement property.

Output Arguments

detection — Detection report
objectDetection object

Detection report for a single object, returned as an objectDetection object. An
objectDetection object contains these properties:
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Property Definition
Time Measurement time
Measurement Object measurements
MeasurementNoise Measurement noise covariance matrix
SensorIndex Unique ID of the sensor
ObjectClassID Object classification
ObjectAttributes Additional information passed to tracker
MeasurementParameters Parameters used by initialization functions of

nonlinear Kalman tracking filters

Properties
Time — Detection time
nonnegative real scalar

Detection time, specified as a nonnegative real scalar. You cannot set this property as a name-value
pair. Use the time input argument instead.
Example: 5.0
Data Types: double

Measurement — Object measurement
real-valued N-element vector

Object measurement, specified as a real-valued N-element vector. You cannot set this property as a
name-value pair. Use the measurement input argument instead.
Example: [1.0;-3.4]
Data Types: double | single

MeasurementNoise — Measurement noise covariance
scalar | real positive semi-definite symmetric N-by-N matrix

Measurement noise covariance, specified as a scalar or a real positive semi-definite symmetric N-by-
N matrix. N is the number of elements in the measurement vector. For the scalar case, the matrix is a
square diagonal N-by-N matrix having the same data interpretation as the measurement.
Example: [5.0,1.0;1.0,10.0]
Data Types: double | single

SensorIndex — Sensor identifier
1 | positive integer

Sensor identifier, specified as a positive integer. The sensor identifier lets you distinguish between
different sensors and must be unique to the sensor.
Example: 5
Data Types: double

ObjectClassID — Object class identifier
0 (default) | positive integer
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Object class identifier, specified as a positive integer. Object class identifiers distinguish between
different kinds of objects. The value 0 denotes an unknown object type. If the class identifier is
nonzero, multiObjectTracker immediately creates a confirmed track from the detection.
Example: 1
Data Types: double

MeasurementParameters — Measurement function parameters
{} (default) | structure array | cell containing structure array | cell array

Measurement function parameters, specified as a structure array, a cell containing a structure array,
or a cell array. The property contains all the arguments used by the measurement function specified
by the MeasurementFcn property of a nonlinear tracking filter such as trackingEKF or
trackingUKF.

The table shows sample fields for the MeasurementParameters structures.

Field Description Example
Frame Frame used to report

measurements, specified as one
of these values:

• 'rectangular' —
Detections are reported in
rectangular coordinates.

• 'spherical' — Detections
are reported in spherical
coordinates.

'spherical'

OriginPosition Position offset of the origin of
the frame relative to the parent
frame, specified as an [x y z]
real-valued vector.

[0 0 0]

OriginVelocity Velocity offset of the origin of
the frame relative to the parent
frame, specified as a [vx vy
vz] real-valued vector.

[0 0 0]

Orientation Frame rotation matrix, specified
as a 3-by-3 real-valued
orthonormal matrix.

[1 0 0; 0 1 0; 0 0 1]

HasAzimuth Logical scalar indicating if
azimuth is included in the
measurement.

1

HasElevation Logical scalar indicating if
elevation is included in the
measurement. For
measurements reported in a
rectangular frame, and if
HasElevation is false, the
reported measurements assume
0 degrees of elevation.

1
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Field Description Example
HasRange Logical scalar indicating if

range is included in the
measurement.

1

HasVelocity Logical scalar indicating if the
reported detections include
velocity measurements. For
measurements reported in the
rectangular frame, if
HasVelocity is false, the
measurements are reported as
[x y z]. If HasVelocity is
true, measurements are
reported as [x y z vx vy
vz].

1

IsParentToChild Logical scalar indicating if
Orientation performs a frame
rotation from the parent
coordinate frame to the child
coordinate frame. When
IsParentToChild is false,
then Orientation performs a
frame rotation from the child
coordinate frame to the parent
coordinate frame.

0

ObjectAttributes — Object attributes
{} (default) | cell array

Object attributes passed through the tracker, specified as a cell array. These attributes are added to
the output of the multiObjectTracker but not used by the tracker.
Example: {[10,20,50,100],'radar1'}

Examples

Create Detection from Position Measurement

Create a detection from a position measurement. The detection is made at a timestamp of one second
from a position measurement of [100;250;10] in Cartesian coordinates.

detection = objectDetection(1,[100;250;10])

detection = 
  objectDetection with properties:

                     Time: 1
              Measurement: [3x1 double]
         MeasurementNoise: [3x3 double]
              SensorIndex: 1
            ObjectClassID: 0
    MeasurementParameters: {}

4 Objects

4-942



         ObjectAttributes: {}

Create Detection With Measurement Noise

Create an objectDetection from a time and position measurement. The detection is made at a
time of one second for an object position measurement of [100;250;10]. Add measurement noise
and set other properties using Name-Value pairs.

detection = objectDetection(1,[100;250;10],'MeasurementNoise',10, ...
    'SensorIndex',1,'ObjectAttributes',{'Example object',5})

detection = 
  objectDetection with properties:

                     Time: 1
              Measurement: [3x1 double]
         MeasurementNoise: [3x3 double]
              SensorIndex: 1
            ObjectClassID: 0
    MeasurementParameters: {}
         ObjectAttributes: {'Example object'  [5]}

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
multiObjectTracker | radarDetectionGenerator | trackingEKF | trackingKF |
trackingUKF | visionDetectionGenerator

Introduced in R2017a
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trackingKF
Linear Kalman filter for object tracking

Description
A trackingKF object is a discrete-time linear Kalman filter used to track the positions and velocities
of objects that can be encountered in an automated driving scenario. Such objects include
automobiles, pedestrians, bicycles, and stationary structures or obstacles.

A Kalman filter is a recursive algorithm for estimating the evolving state of a process when
measurements are made on the process. The filter is linear when the evolution of the state follows a
linear motion model and the measurements are linear functions of the state. The filter assumes that
both the process and measurements have additive noise. When the process noise and measurement
noise are Gaussian, the Kalman filter is the optimal minimum mean squared error (MMSE) state
estimator for linear processes.

You can use this object in these ways:

• Explicitly set the motion model. Set the motion model property, MotionModel, to Custom, and
then use the StateTransitionModel property to set the state transition matrix.

• Set the MotionModel property to a predefined state transition model:

Motion Model
'1D Constant Velocity'
'1D Constant Acceleration'
'2D Constant Velocity'
'2D Constant Acceleration'
'3D Constant Velocity'
'3D Constant Acceleration'

Creation

Syntax
filter = trackingKF
filter = trackingKF(F,H)
filter = trackingKF(F,H,G)
filter = trackingKF('MotionModel',model)
filter = trackingKF( ___ ,Name,Value)

Description

filter = trackingKF creates a linear Kalman filter object for a discrete-time, 2-D, constant-
velocity moving object. The Kalman filter uses default values for the StateTransitionModel,
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MeasurementModel, and ControlModel properties. The function also sets the MotionModel
property to '2D Constant Velocity'.

filter = trackingKF(F,H) specifies the state transition model, F, and the measurement model,
H. With this syntax, the function also sets the MotionModel property to 'Custom'.

filter = trackingKF(F,H,G) also specifies the control model, G. With this syntax, the function
also sets the MotionModel property to 'Custom'.

filter = trackingKF('MotionModel',model) sets the motion model property, MotionModel,
to model.

filter = trackingKF( ___ ,Name,Value) configures the properties of the Kalman filter by using
one or more Name,Value pair arguments and any of the previous syntaxes. Any unspecified
properties take default values.

Properties
State — Kalman filter state
0 (default) | real-valued scalar | real-valued M-element vector

Kalman filter state, specified as a real-valued M-element vector. M is the size of the state vector.
Typical state vector sizes are described in the MotionModel property. When the initial state is
specified as a scalar, the state is expanded into an M-element vector.

You can set the state to a scalar in these cases:

• When the MotionModel property is set to 'Custom', M is determined by the size of the state
transition model.

• When the MotionModel property is set to '2D Constant Velocity', '3D Constant
Velocity', '2D Constant Acceleration', or '3D Constant Acceleration', you must
first specify the state as an M-element vector. You can use a scalar for all subsequent
specifications of the state vector.

Example: [200;0.2;-40;-0.01]
Data Types: double

StateCovariance — State estimation error covariance
1 (default) | positive scalar | positive-definite real-valued M-by-M matrix

State error covariance, specified as a positive scalar or a positive-definite real-valued M-by-M matrix,
where M is the size of the state. Specifying the value as a scalar creates a multiple of the M-by-M
identity matrix. This matrix represents the uncertainty in the state.
Example: [20 0.1; 0.1 1]
Data Types: double

MotionModel — Kalman filter motion model
'Custom' (default) | '1D Constant Velocity' | '2D Constant Velocity' | '3D Constant
Velocity' | '1D Constant Acceleration' | '2D Constant Acceleration' | '3D Constant
Acceleration'

Kalman filter motion model, specified as 'Custom' or one of these predefined models. In this case,
the state vector and state transition matrix take the form specified in the table.

 trackingKF

4-945



Motion Model Form of State Vector Form of State Transition
Model

'1D Constant Velocity' [x;vx] [1 dt; 0 1]
'2D Constant Velocity' [x;vx;y;vy] Block diagonal matrix with the

[1 dt; 0 1] block repeated
for the x and y spatial
dimensions

'3D Constant Velocity' [x;vx;y;vy;z;vz] Block diagonal matrix with the
[1 dt; 0 1] block repeated
for the x, y, and z spatial
dimensions.

'1D Constant
Acceleration'

[x;vx;ax] [1 dt 0.5*dt^2; 0 1 dt;
0 0 1]

'2D Constant
Acceleration'

[x;vx;ax;y;vy;ay] Block diagonal matrix with [1
dt 0.5*dt^2; 0 1 dt; 0 0
1] blocks repeated for the x and
y spatial dimensions

'3D Constant
Acceleration'

[x;vx,ax;y;vy;ay;z;vz;az
]

Block diagonal matrix with the
[1 dt 0.5*dt^2; 0 1 dt;
0 0 1] block repeated for the
x, y, and z spatial dimensions

When the ControlModel property is defined, every nonzero element of the state transition model is
replaced by dt.

When MotionModel is 'Custom', you must specify a state transition model matrix, a measurement
model matrix, and optionally, a control model matrix as input arguments to the Kalman filter.
Data Types: char

StateTransitionModel — State transition model between time steps
[1 1 0 0; 0 1 0 0; 0 0 1 1; 0 0 0 1] (default) | real-valued M-by-M matrix

State transition model between time steps, specified as a real-valued M-by-M matrix. M is the size of
the state vector. In the absence of controls and noise, the state transition model relates the state at
any time step to the state at the previous step. The state transition model is a function of the filter
time step size.
Example: [1 0; 1 2]
Dependencies

To enable this property, set MotionModel to 'Custom'.
Data Types: double

ControlModel — Control model
[] (default) | M-by-L real-valued matrix

Control model, specified as an M-by-L matrix. M is the dimension of the state vector and L is the
number of controls or forces. The control model adds the effect of controls on the evolution of the
state.
Example: [.01 0.2]
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Data Types: double

ProcessNoise — Covariance of process noise
1 (default) | positive scalar | real-valued positive-definite M-by-M matrix

Covariance of process noise, specified as a positive scalar or an M-by-M matrix where M is the
dimension of the state. If you specify this property as a scalar, the filter uses the value as a multiplier
of the M-by-M identity matrix. Process noise expresses the uncertainty in the dynamic model and is
assumed to be zero-mean Gaussian white noise.

Tip If you specify the MotionModel property as any of the predefined motion model, then the
corresponding process noise is automatically generated during construction and updated during
propagation. In this case, you do not need to specify the ProcessNoise property. In fact, the filter
neglects your process noise input during object construction. If you want to specify the process noise
other than the default values, use the trackingEKF object.

Data Types: double

MeasurementModel — Measurement model from state vector
[1 0 0 0; 0 0 1 0] (default) | real-valued N-by-M matrix

Measurement model from the state vector, specified as a real-valued N-by-M matrix, where N is the
size of the measurement vector and M is the size of the state vector. The measurement model is a
linear matrix that determines predicted measurements from the predicted state.
Example: [1 0.5 0.01; 1.0 1 0]
Data Types: double

MeasurementNoise — Measurement noise covariance
1 (default) | positive scalar | positive-definite real-valued N-by-N matrix

Covariance of the measurement noise, specified as a positive scalar or a positive-definite, real-valued
N-by-N matrix, where N is the size of the measurement vector. If you specify this property as a scalar,
the filter uses the value as a multiplier of the N-by-N identity matrix. Measurement noise represents
the uncertainty of the measurement and is assumed to be zero-mean Gaussian white noise.
Example: 0.2
Data Types: double

Object Functions
predict Predict state and state estimation error covariance of linear Kalman filter
correct Correct state and state estimation error covariance using tracking filter
correctjpda Correct state and state estimation error covariance using tracking filter and JPDA
distance Distances between current and predicted measurements of tracking filter
likelihood Likelihood of measurement from tracking filter
clone Create duplicate tracking filter
residual Measurement residual and residual noise from tracking filter
initialize Initialize state and covariance of tracking filter

Examples
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Constant-Velocity Linear Kalman Filter

Create a linear Kalman filter that uses a 2D Constant Velocity motion model. Assume that the
measurement consists of the object's x-y location.

Specify the initial state estimate to have zero velocity.

x = 5.3;
y = 3.6;
initialState = [x;0;y;0];
KF = trackingKF('MotionModel','2D Constant Velocity','State',initialState);

Create the measured positions from a constant-velocity trajectory.

vx = 0.2;
vy = 0.1;
T  = 0.5;
pos = [0:vx*T:2;5:vy*T:6]';

Predict and correct the state of the object.

for k = 1:size(pos,1)
    pstates(k,:) = predict(KF,T);
    cstates(k,:) = correct(KF,pos(k,:));
end

Plot the tracks.

plot(pos(:,1),pos(:,2),'k.', pstates(:,1),pstates(:,3),'+', ...
    cstates(:,1),cstates(:,3),'o')
xlabel('x [m]')
ylabel('y [m]')
grid
xt  = [x-2 pos(1,1)+0.1 pos(end,1)+0.1];
yt = [y pos(1,2) pos(end,2)];
text(xt,yt,{'First measurement','First position','Last position'})
legend('Object position', 'Predicted position', 'Corrected position')
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More About
Filter Parameters

This table relates the filter model parameters to the object properties. M is the size of the state
vector. N is the size of the measurement vector. L is the size of the control model.

Model Parameter Description Filter Property Size
Fk State transition model

that specifies a linear
model of the force-free
equations of motion of
the object. This model,
together with the
control model,
determines the state at
time k+1 as a function
of the state at time k.
The state transition
model depends on the
time step of the filter.

StateTransitionMod
el

M-by-M
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Model Parameter Description Filter Property Size
Hk Measurement model

that specifies how the
measurements are
linear functions of the
state.

MeasurementModel N-by-M

Gk Control model
describing the controls
or forces acting on the
object.

ControlModel M-by-L

xk Estimate of the state of
the object.

State M-

Pk Estimated covariance
matrix of the state. The
covariance represents
the uncertainty in the
values of the state.

StateCovariance M-by-M

Qk Estimate of the process
noise covariance matrix
at step k. Process noise
is a measure of the
uncertainty in your
dynamic model and is
assumed to be zero-
mean white Gaussian
noise.

ProcessNoise M-by-M

Rk Estimate of the
measurement noise
covariance at step k.
Measurement noise
represents the
uncertainty of the
measurement and is
assumed to be zero-
mean white Gaussian
noise.

MeasurementNoise N-by-N

Algorithms
The Kalman filter describes the motion of an object by estimating its state. The state generally
consists of object position and velocity and possibly its acceleration. The state can span one, two, or
three spatial dimensions. Most frequently, you use the Kalman filter to model constant-velocity or
constant-acceleration motion. A linear Kalman filter assumes that the process obeys the following
linear stochastic difference equation:

xk + 1 = Fkxk + Gkuk + vk

xk is the state at step k. Fk is the state transition model matrix. Gk is the control model matrix. uk
represents known generalized controls acting on the object. In addition to the specified equations of
motion, the motion may be affected by random noise perturbations, vk. The state, the state transition
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matrix, and the controls together provide enough information to determine the future motion of the
object in the absence of noise.

In the Kalman filter, the measurements are also linear functions of the state,

zk = Hkxk + wk

where Hk is the measurement model matrix. This model expresses the measurements as functions of
the state. A measurement can consist of an object position, position and velocity, or its position,
velocity, and acceleration, or some function of these quantities. The measurements can also include
noise perturbations, wk.

These equations, in the absence of noise, model the actual motion of the object and the actual
measurements. The noise contributions at each step are unknown and cannot be modeled. Only the
noise covariance matrices are known. The state covariance matrix is updated with knowledge of the
noise covariance only.

For a brief description of the linear Kalman filter algorithm, see “Linear Kalman Filters” .

References
[1] Brown, R.G. and P.Y.C. Wang. Introduction to Random Signal Analysis and Applied Kalman

Filtering. 3rd Edition. New York: John Wiley & Sons, 1997.

[2] Kalman, R. E. "A New Approach to Linear Filtering and Prediction Problems." Transaction of the
ASME–Journal of Basic Engineering, Vol. 82, Series D, March 1960, pp. 35–45.

[3] Blackman, Samuel. Multiple-Target Tracking with Radar Applications. Artech House. 1986.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• When you create a trackingKF object, and you specify the MotionModel property as any value
other than 'Custom', then you must specify the state vector explicitly at construction time using
the State property. The choice of motion model determines the size of the state vector. However,
motion models do not specify the data type, for example, double precision or single precision. Both
size and data type are required for code generation.

See Also
Functions
initcakf | initcvkf

Objects
multiObjectTracker | trackingABF | trackingEKF | trackingUKF

Topics
“Linear Kalman Filters”
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Introduced in R2017a
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trackingABF
Alpha-beta filter for object tracking

Description
The trackingABF object represents an alpha-beta filter designed for object tracking for an object
that follows a linear motion model and has a linear measurement model. Linear motion is defined by
constant velocity or constant acceleration. Use the filter to predict the future location of an object, to
reduce noise for a detected location, or to help associate multiple objects with their tracks.

Creation

Syntax
abf = trackingABF
abf = trackingABF(Name,Value)

Description

abf = trackingABF returns an alpha-beta filter for a discrete time, 2-D constant velocity system.
The motion model is named '2D Constant Velocity' with the state defined as [x; vx; y; vy].

abf = trackingABF(Name,Value) specifies the properties of the filter using one or more
Name,Value pair arguments. Any unspecified properties take default values.

Properties
MotionModel — Model of target motion
'2D Constant Velocity' (default) | '1D Constant Velocity' | '3D Constant Velocity' |
'1D Constant Acceleration' | '2D Constant Acceleration' | '3D Constant
Acceleration'

Model of target motion, specified as a character vector or string. Specifying 1D, 2D, or 3D specifies
the dimension of the target's motion. Specifying Constant Velocity assumes that the target
motion is a constant velocity at each simulation step. Specifying Constant Acceleration assumes
that the target motion is a constant acceleration at each simulation step.
Data Types: char | string

State — Filter state
real-valued M-element vector | scalar

Filter state, specified as a real-valued M-element vector. A scalar input is extended to an M-element
vector. The state vector is the concatenated states from each dimension. For example, if
MotionModel is set to '3D Constant Acceleration', the state vector is in the form:[x; x';
x''; y; y'; y''; z; z'; z''] where ' and '' indicate first and second order derivatives,
respectively.

 trackingABF

4-953



Example: [200;0.2;150;0.1;0;0.25]
Data Types: double

StateCovariance — State estimation error covariance
M-by-M matrix | scalar

State error covariance, specified as an M-by-M matrix, where M is the size of the filter state. A scalar
input is extended to an M-by-M matrix. The covariance matrix represents the uncertainty in the filter
state.
Example: eye(6)

ProcessNoise — Process noise covariance
D-by-D matrix | scalar

Process noise covariance, specified as a scalar or a D-by-D matrix, where D is the dimensionality of
motion. For example, if MotionModel is '2D Constant Velocity', then D = 2. A scalar input is
extended to a D-by-D matrix.
Example: [20 0.1; 0.1 1]

MeasurementNoise — Measurement noise covariance
D-by-D matrix | scalar

Measurement noise covariance, specified as a scalar or a D-by-D matrix, where D is the
dimensionality of motion. For example, if MotionModel is '2D Constant Velocity', then D = 2.
A scalar input is extended to a M-by-M matrix.
Example: [20 0.1; 0.1 1]

Coefficients — Alpha-beta filter coefficients
row vector | scalar

Alpha-beta filter coefficients, specified as a scalar or row vector. A scalar input is extended to a row
vector. If you specify constant velocity in the MotionModel property, the coefficients are [alpha
beta]. If you specify constant acceleration in the MotionModel property, the coefficients are
[alpha beta gamma].
Example: [20 0.1]

Object Functions
predict Predict state and state estimation error covariance of tracking filter
correct Correct state and state estimation error covariance using tracking filter
correctjpda Correct state and state estimation error covariance using tracking filter and JPDA
distance Distances between current and predicted measurements of tracking filter
likelihood Likelihood of measurement from tracking filter
clone Create duplicate tracking filter

Examples

Run trackingABF Filter

This example shows how to create and run a trackingABF filter. Call the predict and correct
functions to track an object and correct the state estimation based on measurements.
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Create the filter. Specify the initial state.

state = [1;2;3;4];
abf = trackingABF('State',state);

Call predict to get the predicted state and covariance of the filter. Use a 0.5 sec time step.

[xPred,pPred] = predict(abf, 0.5);

Call correct with a given measurement.

meas = [1;1];
[xCorr,pCorr] = correct(abf, meas);

Continue to predict the filter state. Specify the desired time step in seconds if necessary.

[xPred,pPred] = predict(abf);         % Predict over 1 second
[xPred,pPred] = predict(abf,2);       % Predict over 2 seconds

Modify the filter coefficients and correct again with a new measurement.

abf.Coefficients = [0.4 0.2];
[xCorr,pCorr] = correct(abf,[8;14]);

References
[1] Blackman, Samuel S. "Multiple-target tracking with radar applications." Dedham, MA, Artech

House, Inc., 1986, 463 p. (1986).

[2] Bar-Shalom, Yaakov, X. Rong Li, and Thiagalingam Kirubarajan. Estimation with applications to
tracking and navigation: theory algorithms and software. John Wiley & Sons, 2004.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
multiObjectTracker | trackingEKF | trackingKF | trackingUKF

Introduced in R2020a
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trackingEKF
Extended Kalman filter for object tracking

Description
A trackingEKF object is a discrete-time extended Kalman filter used to track the positions and
velocities of objects that can be encountered in an automated driving scenario. Such objects include
automobiles, pedestrians, bicycles, and stationary structures or obstacles.

A Kalman filter is a recursive algorithm for estimating the evolving state of a process when
measurements are made on the process. The extended Kalman filter can model the evolution of a
state when the state follows a nonlinear motion model, when the measurements are nonlinear
functions of the state, or when both conditions apply. The extended Kalman filter is based on the
linearization of the nonlinear equations. This approach leads to a filter formulation similar to the
linear Kalman filter, trackingKF.

The process and measurements can have Gaussian noise, which you can include in these ways:

• Add noise to both the process and the measurements. In this case, the sizes of the process noise
and measurement noise must match the sizes of the state vector and measurement vector,
respectively.

• Add noise in the state transition function, the measurement model function, or in both functions.
In these cases, the corresponding noise sizes are not restricted.

Creation

Syntax
filter = trackingEKF
filter = trackingEKF(transitionfcn,measurementfcn,state)
filter = trackingEKF( ___ ,Name,Value)

Description

filter = trackingEKF creates an extended Kalman filter object for a discrete-time system by
using default values for the StateTransitionFcn, MeasurementFcn, and State properties. The
process and measurement noises are assumed to be additive.

filter = trackingEKF(transitionfcn,measurementfcn,state) specifies the state
transition function, transitionfcn, the measurement function, measurementfcn, and the initial
state of the system, state.

filter = trackingEKF( ___ ,Name,Value) configures the properties of the extended Kalman
filter object by using one or more Name,Value pair arguments and any of the previous syntaxes. Any
unspecified properties have default values.
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Properties
State — Kalman filter state
real-valued M-element vector

Kalman filter state, specified as a real-valued M-element vector, where M is the size of the filter state.
Example: [200; 0.2]
Data Types: double

StateCovariance — State estimation error covariance
positive-definite real-valued M-by-M matrix

State error covariance, specified as a positive-definite real-valued M-by-M matrix where M is the size
of the filter state. The covariance matrix represents the uncertainty in the filter state.
Example: [20 0.1; 0.1 1]

StateTransitionFcn — State transition function
function handle

State transition function, specified as a function handle. This function calculates the state vector at
time step k from the state vector at time step k – 1. The function can take additional input
parameters, such as control inputs or time step size. The function can also include noise values.

The valid syntaxes for the state transition function depend on whether the filter has additive process
noise. The table shows the valid syntaxes based on the value of the HasAdditiveProcessNoise
property.

Valid Syntaxes (HasAdditiveProcessNoise
= true)

Valid Syntaxes (HasAdditiveProcessNoise
= false)

x(k) = statetransitionfcn(x(k-1))
x(k) = statetransitionfcn(x(k-1),parameters)

• x(k) is the state at time k.
• parameters stands for all additional

arguments required by the state transition
function.

x(k) = statetransitionfcn(x(k-1),w(k-1))
x(k) = statetransitionfcn(x(k-1),w(k-1),dt)
x(k) = statetransitionfcn(__,parameters)

• x(k) is the state at time k.
• w(k) is a value for the process noise at time

k.
• dt is the time step of the trackingEKF filter,

filter, specified in the most recent call to
the predict function. The dt argument
applies when you use the filter within a
tracker and call the predict function with
the filter to predict the state of the tracker at
the next time step. For the nonadditive
process noise case, the tracker assumes that
you explicitly specify the time step by using
this syntax: predict(filter,dt).

• parameters stands for all additional
arguments required by the state transition
function.

Example: @constacc
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Data Types: function_handle

StateTransitionJacobianFcn — Jacobian of state transition function
function handle

Jacobian of the state transition function, specified as a function handle. This function has the same
input arguments as the state transition function.

The valid syntaxes for the Jacobian of the state transition function depend on whether the filter has
additive process noise. The table shows the valid syntaxes based on the value of the
HasAdditiveProcessNoise property.

Valid Syntaxes (HasAdditiveProcessNoise
= true)

Valid Syntaxes (HasAdditiveProcessNoise
= false)

Jx(k) = statejacobianfcn(x(k))
Jx(k) = statejacobianfcn(x(k),parameters)

• x(k) is the state at time k.
• Jx(k) denotes the Jacobian of the predicted

state with respect to the previous state. This
Jacobian is an M-by-M matrix at time k. The
Jacobian function can take additional input
parameters, such as control inputs or time-
step size.

• parameters stands for all additional
arguments required by the Jacobian function,
such as control inputs or time-step size.

[Jx(k),Jw(k)] = statejacobianfcn(x(k),w(k))
[Jx(k),Jw(k)] = statejacobianfcn(x(k),w(k),dt)
[Jx(k),Jw(k)] = statejacobianfcn(__,parameters)

• x(k) is the state at time k
• w(k) is a sample Q-element vector of the

process noise at time k. Q is the size of the
process noise covariance. The process noise
vector in the nonadditive case does not need
to have the same dimensions as the state
vector.

• Jx(k) denotes the Jacobian of the predicted
state with respect to the previous state. This
Jacobian is an M-by-M matrix at time k. The
Jacobian function can take additional input
parameters, such as control inputs or time-
step size.

• Jw(k) denotes the M-by-Q Jacobian of the
predicted state with respect to the process
noise elements.

• dt is the time step of the trackingEKF filter,
filter, specified in the most recent call to
the predict function. The dt argument
applies when you use the filter within a
tracker and call the predict function with
the filter to predict the state of the tracker at
the next time step. For the nonadditive
process noise case, the tracker assumes that
you explicitly specify the time step by using
this syntax: predict(filter,dt).

• parameters stands for all additional
arguments required by the Jacobian function,
such as control inputs or time-step size.

If this property is not specified, the Jacobians are computed by numeric differencing at each call of
the predict function. This computation can increase the processing time and numeric inaccuracy.
Example: @constaccjac
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Data Types: function_handle

ProcessNoise — Process noise covariance
1 (default) | positive real scalar | positive-definite real-valued matrix

Process noise covariance, specified as a scalar or matrix.

• When HasAdditiveProcessNoise is true, specify the process noise covariance as a positive
real scalar or a positive-definite real-valued M-by-M matrix. M is the dimension of the state vector.
When specified as a scalar, the matrix is a multiple of the M-by-M identity matrix.

• When HasAdditiveProcessNoise is false, specify the process noise covariance as a Q-by-Q
matrix. Q is the size of the process noise vector.

You must specify ProcessNoise before any call to the predict function. In later calls to
predict, you can optionally specify the process noise as a scalar. In this case, the process noise
matrix is a multiple of the Q-by-Q identity matrix.

Example: [1.0 0.05; 0.05 2]

HasAdditiveProcessNoise — Model additive process noise
true (default) | false

Option to model process noise as additive, specified as true or false. When this property is true,
process noise is added to the state vector. Otherwise, noise is incorporated into the state transition
function.

MeasurementFcn — Measurement model function
function handle

Measurement model function, specified as a function handle. This function can be a nonlinear
function that models measurements from the predicted state. Input to the function is the M-element
state vector. The output is the N-element measurement vector. The function can take additional input
arguments, such as sensor position and orientation.

• If HasAdditiveMeasurementNoise is true, specify the function using one of these syntaxes:

z(k) = measurementfcn(x(k))

z(k) = measurementfcn(x(k),parameters)

x(k) is the state at time k and z(k) is the predicted measurement at time k. The parameters
argument stands for all additional arguments required by the measurement function.

• If HasAdditiveMeasurementNoise is false, specify the function using one of these syntaxes:

z(k) = measurementfcn(x(k),v(k))

z(k) = measurementfcn(x(k),v(k),parameters)

x(k) is the state at time k and v(k) is the measurement noise at time k. The parameters
argument stands for all additional arguments required by the measurement function.

Example: @cameas
Data Types: function_handle

MeasurementJacobianFcn — Jacobian of measurement function
function handle
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Jacobian of the measurement function, specified as a function handle. The function has the same
input arguments as the measurement function. The function can take additional input parameters,
such sensor position and orientation.

• If HasAdditiveMeasurmentNoise is true, specify the Jacobian function using one of these
syntaxes:

Jmx(k) = measjacobianfcn(x(k))

Jmx(k) = measjacobianfcn(x(k),parameters)

x(k) is the state at time k. Jx(k) denotes the N-by-M Jacobian of the measurement function with
respect to the state. The parameters argument stands for all arguments required by the
measurement function.

• If HasAdditiveMeasurmentNoise is false, specify the Jacobian function using one of these
syntaxes:

[Jmx(k),Jmv(k)] = measjacobianfcn(x(k),v(k))

[Jmx(k),Jmv(k)] = measjacobianfcn(x(k),v(k),parameters)

x(k) is the state at time k and v(k) is an R-dimensional sample noise vector. Jmx(k) denotes the
N-by-M Jacobian of the measurement function with respect to the state. Jmv(k) denotes the
Jacobian of the N-by-R measurement function with respect to the measurement noise. The
parameters argument stands for all arguments required by the measurement function.

If not specified, measurement Jacobians are computed using numerical differencing at each call to
the correct function. This computation can increase processing time and numerical inaccuracy.
Example: @cameasjac
Data Types: function_handle

MeasurementNoise — Measurement noise covariance
1 (default) | positive scalar | positive-definite real-valued matrix

Measurement noise covariance, specified as a positive scalar or positive-definite real-valued matrix.

• When HasAdditiveMeasurementNoise is true, specify the measurement noise covariance as a
scalar or an N-by-N matrix. N is the size of the measurement vector. When specified as a scalar,
the matrix is a multiple of the N-by-N identity matrix.

• When HasAdditiveMeasurementNoise is false, specify the measurement noise covariance as
an R-by-R matrix. R is the size of the measurement noise vector.

You must specify MeasurementNoise before any call to the correct function. After the first call
to correct, you can optionally specify the measurement noise as a scalar. In this case, the
measurement noise matrix is a multiple of the R-by-R identity matrix.

Example: 0.2

HasAdditiveMeasurmentNoise — Model additive measurement noise
true (default) | false

Option to enable additive measurement noise, specified as true or false. When this property is
true, noise is added to the measurement. Otherwise, noise is incorporated into the measurement
function.
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Object Functions
predict Predict state and state estimation error covariance of tracking filter
correct Correct state and state estimation error covariance using tracking filter
correctjpda Correct state and state estimation error covariance using tracking filter and JPDA
distance Distances between current and predicted measurements of tracking filter
likelihood Likelihood of measurement from tracking filter
clone Create duplicate tracking filter
residual Measurement residual and residual noise from tracking filter
initialize Initialize state and covariance of tracking filter

Examples

Constant-Velocity Extended Kalman Filter

Create a two-dimensional trackingEKF object and use name-value pairs to define the
StateTransitionJacobianFcn and MeasurementJacobianFcn properties. Use the predefined
constant-velocity motion and measurement models and their Jacobians.

EKF = trackingEKF(@constvel,@cvmeas,[0;0;0;0], ...
    'StateTransitionJacobianFcn',@constveljac, ...
    'MeasurementJacobianFcn',@cvmeasjac);

Run the filter. Use the predict and correct functions to propagate the state. You may call predict
and correct in any order and as many times you want. Specify the measurement in Cartesian
coordinates.

measurement = [1;1;0];
[xpred, Ppred] = predict(EKF);
[xcorr, Pcorr] = correct(EKF,measurement);
[xpred, Ppred] = predict(EKF);
[xpred, Ppred] = predict(EKF)

xpred = 4×1

    1.2500
    0.2500
    1.2500
    0.2500

Ppred = 4×4

   11.7500    4.7500         0         0
    4.7500    3.7500         0         0
         0         0   11.7500    4.7500
         0         0    4.7500    3.7500
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More About
Filter Parameters

This table relates the filter model parameters to the object properties. M is the size of the state
vector. N is the size of the measurement vector.

Filter Parameter Description Filter Property Size
f State transition function

that specifies the
equations of motion of
the object. This function
determines the state at
time k+1 as a function
of the state and the
controls at time k. The
state transition function
depends on the time-
increment of the filter.

StateTransitionFcn Function returns M-
element vector

h Measurement function
that specifies how the
measurements are
functions of the state
and measurement noise.

MeasurementFcn Function returns N-
element vector

xk Estimate of the object
state.

State M-element vector

Pk State error covariance
matrix representing the
uncertainty in the
values of the state.

StateCovariance M-by-M matrix

Qk Estimate of the process
noise covariance matrix
at step k. Process noise
is a measure of the
uncertainty in the
dynamic model. It is
assumed to be zero-
mean white Gaussian
noise.

ProcessNoise M-by-M matrix when
HasAdditiveProcess
Noise is true. Q-by-Q
matrix when
HasAdditiveProcess
Noise is false

Rk Estimate of the
measurement noise
covariance at step k.
Measurement noise
reflects the uncertainty
of the measurement. It
is assumed to be zero-
mean white Gaussian
noise.

MeasurementNoise N-by-N matrix when
HasAdditiveMeasure
mentNoise is true. R-
by-R when
HasAdditiveMeasure
mentNoise is false.
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Filter Parameter Description Filter Property Size
F Function determining

Jacobian of propagated
state with respect to
previous state.

StateTransitionJac
obianFcn

M-by-M matrix

H Function determining
Jacobians of
measurement with
respect to the state and
measurement noise.

MeasurementJacobia
nFcn

N-by-M for state vector
Jacobian and N-by-R for
measurement vector
Jacobian

Algorithms
The extended Kalman filter estimates the state of a process governed by this nonlinear stochastic
equation:

xk + 1 = f (xk, uk, wk, t)

xk is the state at step k. f() is the state transition function. Random noise perturbations, wk, can affect
the object motion. The filter also supports a simplified form,

xk + 1 = f (xk, uk, t) + wk

To use the simplified form, set HasAdditiveProcessNoise to true.

In the extended Kalman filter, the measurements are also general functions of the state:

zk = h(xk, vk, t)

h(xk,vk,t) is the measurement function that determines the measurements as functions of the state.
Typical measurements are position and velocity or some function of position and velocity. The
measurements can also include noise, represented by vk. Again, the filter offers a simpler formulation.

zk = h(xk, t) + vk

To use the simplified form, set HasAdditiveMeasurmentNoise to true.

These equations represent the actual motion and the actual measurements of the object. However,
the noise contribution at each step is unknown and cannot be modeled deterministically. Only the
statistical properties of the noise are known.

References
[1] Brown, R.G. and P.Y.C. Wang. Introduction to Random Signal Analysis and Applied Kalman

Filtering. 3rd Edition. New York: John Wiley & Sons, 1997.

[2] Kalman, R. E. “A New Approach to Linear Filtering and Prediction Problems.” Transactions of the
ASME–Journal of Basic Engineering. Vol. 82, Series D, March 1960, pp. 35–45.

[3] Blackman, Samuel and R. Popoli. Design and Analysis of Modern Tracking Systems. Artech
House.1999.

[4] Blackman, Samuel. Multiple-Target Tracking with Radar Applications. Artech House. 1986.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
cameas | cameasjac | constacc | constaccjac | constturn | constturnjac | constvel |
constveljac | ctmeas | ctmeasjac | cvmeas | cvmeasjac | initcaekf | initctekf |
initcvekf

Objects
multiObjectTracker | trackingABF | trackingKF | trackingUKF

Topics
“Extended Kalman Filters”

Introduced in R2017a
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trackingUKF
Unscented Kalman filter for object tracking

Description
The trackingUKF object is a discrete-time unscented Kalman filter used to track the positions and
velocities of objects that can be encountered in an automated driving scenario. Such objects include
automobiles, pedestrians, bicycles, and stationary structures or obstacles.

An unscented Kalman filter is a recursive algorithm for estimating the evolving state of a process
when measurements are made on the process. The unscented Kalman filter can model the evolution
of a state that obeys a nonlinear motion model. The measurements can also be nonlinear functions of
the state, and the process and measurements can have noise.

Use an unscented Kalman filter when one of both of these conditions apply:

• The current state is a nonlinear function of the previous state.
• The measurements are nonlinear functions of the state.

The unscented Kalman filter estimates the uncertainty about the state, and its propagation through
the nonlinear state and measurement equations, by using a fixed number of sigma points. Sigma
points are chosen by using the unscented transformation, as parameterized by the Alpha, Beta, and
Kappa properties.

Creation

Syntax
filter = trackingUKF
filter = trackingUKF(transitionfcn,measurementfcn,state)
filter = trackingUKF( ___ ,Name,Value)

Description

filter = trackingUKF creates an unscented Kalman filter object for a discrete-time system by
using default values for the StateTransitionFcn, MeasurementFcn, and State properties. The
process and measurement noises are assumed to be additive.

filter = trackingUKF(transitionfcn,measurementfcn,state) specifies the state
transition function, transitionfcn, the measurement function, measurementfcn, and the initial
state of the system, state.

filter = trackingUKF( ___ ,Name,Value) configures the properties of the unscented Kalman
filter object using one or more Name,Value pair arguments and any of the previous syntaxes. Any
unspecified properties have default values.
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Properties
State — Kalman filter state
real-valued M-element vector

Kalman filter state, specified as a real-valued M-element vector, where M is the size of the filter state.
Example: [200; 0.2]
Data Types: double

StateCovariance — State estimation error covariance
positive-definite real-valued M-by-M matrix

State error covariance, specified as a positive-definite real-valued M-by-M matrix where M is the size
of the filter state. The covariance matrix represents the uncertainty in the filter state.
Example: [20 0.1; 0.1 1]

StateTransitionFcn — State transition function
function handle

State transition function, specified as a function handle. This function calculates the state vector at
time step k from the state vector at time step k – 1. The function can take additional input
parameters, such as control inputs or time step size. The function can also include noise values.

The valid syntaxes for the state transition function depend on whether the filter has additive process
noise. The table shows the valid syntaxes based on the value of the HasAdditiveProcessNoise
property.

Valid Syntaxes (HasAdditiveProcessNoise
= true)

Valid Syntaxes (HasAdditiveProcessNoise
= false)

x(k) = statetransitionfcn(x(k-1))
x(k) = statetransitionfcn(x(k-1),parameters)

• x(k) is the state at time k.
• parameters stands for all additional

arguments required by the state transition
function.

x(k) = statetransitionfcn(x(k-1),w(k-1))
x(k) = statetransitionfcn(x(k-1),w(k-1),dt)
x(k) = statetransitionfcn(__,parameters)

• x(k) is the state at time k.
• w(k) is a value for the process noise at time

k.
• dt is the time step of the trackingUKF filter,

filter, specified in the most recent call to
the predict function. The dt argument
applies when you use the filter within a
tracker and call the predict function with
the filter to predict the state of the tracker at
the next time step. For the nonadditive
process noise case, the tracker assumes that
you explicitly specify the time step by using
this syntax: predict(filter,dt).

• parameters stands for all additional
arguments required by the state transition
function.

Example: @constacc
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Data Types: function_handle

ProcessNoise — Process noise covariance
1 (default) | positive real scalar | positive-definite real-valued matrix

Process noise covariance, specified as a scalar or matrix.

• When HasAdditiveProcessNoise is true, specify the process noise covariance as a positive
real scalar or a positive-definite real-valued M-by-M matrix. M is the dimension of the state vector.
When specified as a scalar, the matrix is a multiple of the M-by-M identity matrix.

• When HasAdditiveProcessNoise is false, specify the process noise covariance as a Q-by-Q
matrix. Q is the size of the process noise vector.

You must specify ProcessNoise before any call to the predict function. In later calls to
predict, you can optionally specify the process noise as a scalar. In this case, the process noise
matrix is a multiple of the Q-by-Q identity matrix.

Example: [1.0 0.05; 0.05 2]

HasAdditiveProcessNoise — Model additive process noise
true (default) | false

Option to model process noise as additive, specified as true or false. When this property is true,
process noise is added to the state vector. Otherwise, noise is incorporated into the state transition
function.

MeasurementFcn — Measurement model function
function handle

Measurement model function, specified as a function handle. This function can be a nonlinear
function that models measurements from the predicted state. Input to the function is the M-element
state vector. The output is the N-element measurement vector. The function can take additional input
arguments, such as sensor position and orientation.

• If HasAdditiveMeasurementNoise is true, specify the function using one of these syntaxes:

z(k) = measurementfcn(x(k))

z(k) = measurementfcn(x(k),parameters)

x(k) is the state at time k and z(k) is the predicted measurement at time k. The parameters
argument stands for all additional arguments required by the measurement function.

• If HasAdditiveMeasurementNoise is false, specify the function using one of these syntaxes:

z(k) = measurementfcn(x(k),v(k))

z(k) = measurementfcn(x(k),v(k),parameters)

x(k) is the state at time k and v(k) is the measurement noise at time k. The parameters
argument stands for all additional arguments required by the measurement function.

Example: @cameas
Data Types: function_handle

MeasurementNoise — Measurement noise covariance
1 (default) | positive scalar | positive-definite real-valued matrix
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Measurement noise covariance, specified as a positive scalar or positive-definite real-valued matrix.

• When HasAdditiveMeasurementNoise is true, specify the measurement noise covariance as a
scalar or an N-by-N matrix. N is the size of the measurement vector. When specified as a scalar,
the matrix is a multiple of the N-by-N identity matrix.

• When HasAdditiveMeasurementNoise is false, specify the measurement noise covariance as
an R-by-R matrix. R is the size of the measurement noise vector.

You must specify MeasurementNoise before any call to the correct function. After the first call
to correct, you can optionally specify the measurement noise as a scalar. In this case, the
measurement noise matrix is a multiple of the R-by-R identity matrix.

Example: 0.2

HasAdditiveMeasurmentNoise — Model additive measurement noise
true (default) | false

Option to enable additive measurement noise, specified as true or false. When this property is
true, noise is added to the measurement. Otherwise, noise is incorporated into the measurement
function.

Alpha — Sigma point spread around state
1.0e-3 (default) | positive scalar greater than 0 and less than or equal to 1

Sigma point spread around state, specified as a positive scalar greater than 0 and less than or equal
to 1.

Beta — Distribution of sigma points
2 (default) | nonnegative scalar

Distribution of sigma points, specified as a nonnegative scalar. This parameter incorporates
knowledge of the noise distribution of states for generating sigma points. For Gaussian distributions,
setting Beta to 2 is optimal.

Kappa — Secondary scaling factor for generating sigma points
0 (default) | scalar from 0 to 3

Secondary scaling factor for generation of sigma points, specified as a scalar from 0 to 3. This
parameter helps specify the generation of sigma points.

Object Functions
predict Predict state and state estimation error covariance of tracking filter
correct Correct state and state estimation error covariance using tracking filter
correctjpda Correct state and state estimation error covariance using tracking filter and JPDA
distance Distances between current and predicted measurements of tracking filter
likelihood Likelihood of measurement from tracking filter
clone Create duplicate tracking filter
residual Measurement residual and residual noise from tracking filter
initialize Initialize state and covariance of tracking filter

Examples
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Constant-Velocity Unscented Kalman Filter

Create a trackingUKF object using the predefined constant-velocity motion model, constvel, and
the associated measurement model, cvmeas. These models assume that the state vector has the form
[x;vx;y;vy] and that the position measurement is in Cartesian coordinates, [x;y;z]. Set the sigma point
spread property to 1e-2.

filter = trackingUKF(@constvel,@cvmeas,[0;0;0;0],'Alpha',1e-2);

Run the filter. Use the predict and correct functions to propagate the state. You can call predict
and correct in any order and as many times as you want.

meas = [1;1;0]; 
[xpred, Ppred] = predict(filter);
[xcorr, Pcorr] = correct(filter,meas);
[xpred, Ppred] = predict(filter);
[xpred, Ppred] = predict(filter)

xpred = 4×1

    1.2500
    0.2500
    1.2500
    0.2500

Ppred = 4×4

   11.7500    4.7500   -0.0000    0.0000
    4.7500    3.7500    0.0000   -0.0000
   -0.0000    0.0000   11.7500    4.7500
    0.0000   -0.0000    4.7500    3.7500

More About
Filter Parameters

This table relates the filter model parameters to the object properties. M is the size of the state
vector. N is the size of the measurement vector.

Model Parameter Description Filter Property Size
f State transition function

that specifies the
equations of motion of
the object. This function
determines the state at
time k+1 as a function
of the state and the
controls at time k. The
state transition function
depends on the time-
increment of the filter.

StateTransitionFcn Function returns M-
element vector
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Model Parameter Description Filter Property Size
h Measurement function

that specifies how the
measurements are
functions of the state
and measurement noise.

MeasurementFcn Function returns N-
element vector

xk Estimate of the object
state.

State M

Pk State error covariance
matrix representing the
uncertainty in the
values of the state

StateCovariance M-by-M

Qk Estimate of the process
noise covariance matrix
at step k. Process noise
is measure of the
uncertainty in your
dynamic model and is
assumed to be zero-
mean white Gaussian
noise

ProcessNoise M-by-M when
HasAdditiveProcess
Noise is true. Q-by-Q
when
HasAdditiveProcess
Noiseis false.

Rk Estimate of the
measurement noise
covariance at step k.
Measurement noise
reflects the uncertainty
of the measurement and
is assumed to be zero-
mean white Gaussian
noise.

MeasurementNoise N-by-N when
HasAdditiveMeasure
mentNoise is true. R-
by-R when
HasAdditiveMeasure
mentNoise is false.

α Determines spread of
sigma points.

Alpha scalar

β A priori knowledge of
sigma point distribution.

Beta scalar

κ Secondary scaling
parameter.

Kappa scalar

Algorithms
The unscented Kalman filter estimates the state of a process governed by a nonlinear stochastic
equation

xk + 1 = f (xk, uk, wk, t)

where xk is the state at step k. f() is the state transition function, uk are the controls on the process.
The motion may be affected by random noise perturbations, wk. The filter also supports a simplified
form,

xk + 1 = f (xk, uk, t) + wk
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To use the simplified form, set HasAdditiveProcessNoise to true.

In the unscented Kalman filter, the measurements are also general functions of the state,

zk = h(xk, vk, t)

where h(xk,vk,t) is the measurement function that determines the measurements as functions of the
state. Typical measurements are position and velocity or some function of these. The measurements
can include noise as well, represented by vk. Again the class offers a simpler formulation

zk = h(xk, t) + vk

To use the simplified form, set HasAdditiveMeasurmentNoise to true.

These equations represent the actual motion of the object and the actual measurements. However,
the noise contribution at each step is unknown and cannot be modeled exactly. Only statistical
properties of the noise are known.
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[3] Wan, Eric A. and R. van der Merwe. “The Unscented Kalman Filter for Nonlinear Estimation”.
Adaptive Systems for Signal Processing, Communications, and Control. AS-SPCC, IEEE, 2000,
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Simon Haykin. John Wiley & Sons, Inc., 2001.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
cameas | cameasjac | constacc | constaccjac | constturn | constturnjac | constvel |
constveljac | ctmeas | ctmeasjac | cvmeas | cvmeasjac | initcaukf | initctukf |
initcvukf

Objects
multiObjectTracker | trackingABF | trackingEKF | trackingKF
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Introduced in R2017a
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clone
Create duplicate tracking filter

Syntax
filterClone = clone(filter)

Description
filterClone = clone(filter) creates a copy of a tracking filter that has the same property
values as the original filter.

Input Arguments
filter — Filter for object tracking
trackingKF object | trackingEKF object | trackingUKF object

Filter for object tracking, specified as one of these objects:

• trackingKF — Linear Kalman filter
• trackingEKF — Extended Kalman filter
• trackingUKF — Unscented Kalman filter
• trackingABF — Alpha-beta filter

Output Arguments
filterClone — Cloned filter
tracking filter object

Cloned filter, returned as a tracking filter object of the same type as filter. The cloned filter has the
same properties as the original filter.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
correct | correctjpda | distance | initialize | likelihood | predict | residual

Introduced in R2017a
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correct
Correct state and state estimation error covariance using tracking filter

Syntax
[xcorr,Pcorr] = correct(filter,zmeas)

[xcorr,Pcorr] = correct(filter,zmeas,measparams)

[xcorr,Pcorr] = correct(filter,zmeas,zcov)

[xcorr,Pcorr,zcorr] = correct(filter,zmeas)
[xcorr,Pcorr,zcorr] = correct(filter,zmeas,zcov)

correct(filter, ___ )
xcorr = correct(filter, ___ )

Description
[xcorr,Pcorr] = correct(filter,zmeas) returns the corrected state, xcorr, and the
corrected state estimation error covariance, Pcorr, for the next time step of the input tracking filter
based on the current measurement, zmeas. The corrected values overwrite the internal state and
state estimation error covariance of filter.

[xcorr,Pcorr] = correct(filter,zmeas,measparams) specifies additional parameters used
by the measurement function that is defined in the MeasurementFcn property of filter. You can
return any of the outputs from preceding syntaxes.

If filter is a trackingKF or trackingABF object, then you cannot use this syntax.

[xcorr,Pcorr] = correct(filter,zmeas,zcov) specifies additional measurement covariance,
zcov, used in the MeasurementNoise property of filter.

You can use this syntax only when filter is a trackingKF object.

[xcorr,Pcorr,zcorr] = correct(filter,zmeas) also returns the correction of
measurements, zcorr.

You can use this syntax only when filter is a trackingABF object.

[xcorr,Pcorr,zcorr] = correct(filter,zmeas,zcov) returns the correction of
measurements, zcorr, and also specifies additional measurement covariance, zcov, used in the
MeasurementNoise property of filter.

You can use this syntax only when filter is a trackingABF object.

correct(filter, ___ ) updates filter with the corrected state and state estimation error
covariance without returning the corrected values. Specify the tracking filter and any of the input
argument combinations from preceding syntaxes.

xcorr = correct(filter, ___ ) updates filter with the corrected state and state estimation
error covariance but returns only the corrected state, xcorr.
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Examples

Constant-Velocity Extended Kalman Filter

Create a two-dimensional trackingEKF object and use name-value pairs to define the
StateTransitionJacobianFcn and MeasurementJacobianFcn properties. Use the predefined
constant-velocity motion and measurement models and their Jacobians.

EKF = trackingEKF(@constvel,@cvmeas,[0;0;0;0], ...
    'StateTransitionJacobianFcn',@constveljac, ...
    'MeasurementJacobianFcn',@cvmeasjac);

Run the filter. Use the predict and correct functions to propagate the state. You may call predict
and correct in any order and as many times you want. Specify the measurement in Cartesian
coordinates.

measurement = [1;1;0];
[xpred, Ppred] = predict(EKF);
[xcorr, Pcorr] = correct(EKF,measurement);
[xpred, Ppred] = predict(EKF);
[xpred, Ppred] = predict(EKF)

xpred = 4×1

    1.2500
    0.2500
    1.2500
    0.2500

Ppred = 4×4

   11.7500    4.7500         0         0
    4.7500    3.7500         0         0
         0         0   11.7500    4.7500
         0         0    4.7500    3.7500

Input Arguments
filter — Filter for object tracking
trackingKF object | trackingEKF object | trackingUKF object

Filter for object tracking, specified as one of these objects:

• trackingKF — Linear Kalman filter
• trackingEKF — Extended Kalman filter
• trackingUKF — Unscented Kalman filter
• trackingABF — Alpha-beta filter

zmeas — Measurement of filter
vector | matrix

Measurement of the tracked object, specified as a vector or matrix.
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Data Types: single | double

measparams — Measurement parameters
comma-separated list of arguments

Measurement function arguments, specified as a comma-separated list of arguments. These
arguments are the same ones that are passed into the measurement function specified by the
MeasurementFcn property of the tracking filter. If filter is a trackingKF or trackingABF
object, then you cannot specify measparams.

Suppose you set MeasurementFcn to @cameas, and then call correct:

[xcorr,Pcorr] = correct(filter,frame,sensorpos,sensorvel)

The correct function internally calls the following:

meas = cameas(state,frame,sensorpos,sensorvel)

zcov — Measurement covariance
M-by-M matrix

Measurement covariance, specified as an M-by-M matrix, where M is the dimension of the
measurement. The same measurement covariance matrix is assumed for all measurements in zmeas.
Data Types: single | double

Output Arguments
xcorr — Corrected state of filter
vector | matrix

Corrected state of the filter, specified as a vector or matrix. The State property of the input filter
is overwritten with this value.

Pcorr — Corrected state covariance of filter
vector | matrix

Corrected state covariance of the filter, specified as a vector or matrix. The StateCovariance
property of the input filter is overwritten with this value.

zcorr — Corrected measurement of filter
vector | matrix

Corrected measurement of the filter, specified as a vector or matrix. You can return zcorr only when
filter is a trackingABF object.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
clone | correctjpda | distance | initialize | likelihood | predict | residual
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Introduced in R2017a
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correctjpda
Correct state and state estimation error covariance using tracking filter and JPDA

Syntax
[xcorr,Pcorr] = correctjpda(filter,zmeas)

[xcorr,Pcorr] = correctjpda(filter,zmeas,jpdacoeffs,measparams)

[xcorr,Pcorr] = correctjpda(filter,zmeas,jpdacoeffs,zcov)

[xcorr,Pcorr,zcorr] = correctjpda(filter,zmeas,jpdacoeffs)
[xcorr,Pcorr,zcorr] = correctjpda(filter,zmeas,jpdacoeffs,zcov)

correctjpda(filter, ___ )
xcorr = correctjpda(filter, ___ )

Description
[xcorr,Pcorr] = correctjpda(filter,zmeas) returns the corrected state, xcorr, and the
corrected state estimation error covariance, Pcorr, for the next time step of the input tracking filter.
The corrected values are based on a set of measurements, zmeas, and their joint probabilistic data
association coefficients, jpdacoeffs. These values overwrite the internal state and state estimation
error covariance of filter.

[xcorr,Pcorr] = correctjpda(filter,zmeas,jpdacoeffs,measparams) specifies
additional parameters used by the measurement function that is defined in the MeasurementFcn
property of the tracking filter object.

If filter is a trackingKF or trackingABF object, then you cannot use this syntax.

[xcorr,Pcorr] = correctjpda(filter,zmeas,jpdacoeffs,zcov) specifies additional
measurement covariance, zcov, used in the MeasurementNoise property of filter.

You can use this syntax only when filter is a trackingKF object.

[xcorr,Pcorr,zcorr] = correctjpda(filter,zmeas,jpdacoeffs) also returns the
correction of measurements, zcorr.

You can use this syntax only when filter is a trackingABF object.

[xcorr,Pcorr,zcorr] = correctjpda(filter,zmeas,jpdacoeffs,zcov) returns the
correction of measurements, zcorr, and also specifies additional measurement covariance, zcov,
used in the MeasurementNoise property of filter.

You can use this syntax only when filter is a trackingABF object.

correctjpda(filter, ___ ) updates filter with the corrected state and state estimation error
covariance without returning the corrected values. Specify the tracking filter and any of the input
argument combinations from preceding syntaxes.
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xcorr = correctjpda(filter, ___ ) updates filter with the corrected state and state
estimation error covariance but returns only the corrected state, xcorr.

Input Arguments
filter — Filter for object tracking
trackingKF object | trackingEKF object | trackingUKF object

Filter for object tracking, specified as one of these objects:

• trackingKF — Linear Kalman filter
• trackingEKF — Extended Kalman filter
• trackingUKF — Unscented Kalman filter
• trackingABF — Alpha-beta filter

zmeas — Measurements
M-by-N matrix

Measurements, specified as an M-by-N matrix, where M is the dimension of a single measurement,
and N is the number of measurements.
Data Types: single | double

jpdacoeffs — Joint probabilistic data association coefficients
(N+1)-element vector

Joint probabilistic data association coefficients, specified as an (N+1)-element vector. The ith (i = 1,
…, N) element of jpdacoeffs is the joint probability that the ith measurement in zmeas is
associated with the filter. The last element of jpdacoeffs corresponds to the probability that no
measurement is associated with the filter. The sum of all elements of jpdacoeffs must equal 1.
Data Types: single | double

zcov — Measurement covariance
M-by-M matrix

Measurement covariance, specified as an M-by-M matrix, where M is the dimension of the
measurement. The same measurement covariance matrix is assumed for all measurements in zmeas.
Data Types: single | double

measparams — Measurement parameters
comma-separated list of arguments

Measurement function arguments, specified as a comma-separated list of arguments. These
arguments are the same ones that are passed into the measurement function specified by the
MeasurementFcn property of the tracking filter. If filter is a trackingKF or trackingABF
object, then you cannot specify measparams.

Suppose you set MeasurementFcn to @cameas, and then call correctjpda:

[xcorr,Pcorr] = correctjpda(filter,frame,sensorpos,sensorvel)

The correctjpda function internally calls the following:
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meas = cameas(state,frame,sensorpos,sensorvel)

Output Arguments
xcorr — Corrected state
P-element vector

Corrected state, returned as a P-element vector, where P is the dimension of the estimated state. The
corrected state represents the a posteriori estimate of the state vector, taking into account the
current measurements and their associated probabilities.

Pcorr — Corrected state error covariance
positive-definite P-by-P matrix

Corrected state error covariance, returned as a positive-definite P-by-P matrix, where P is the
dimension of the state estimate. The corrected state covariance matrix represents the a posteriori
estimate of the state covariance matrix, taking into account the current measurements and their
associated probabilities.

zcorr — Corrected measurements
M-by-N matrix

Corrected measurements, returned as an M-by-N matrix, where M is the dimension of a single
measurement, and N is the number of measurements. You can return zcorr only when filter is a
trackingABF object.

More About
JPDA Correction Algorithm for Discrete Extended Kalman Filter

In the measurement update of a regular Kalman filter, the filter usually only needs to update the state
and covariance based on one measurement. For instance, the equations for measurement update of a
discrete extended Kalman filter can be given as

xk+ = xk−+ Kk(y − h(xk−))
Pk+ = Pk−− KkSkKkT

where xk
− and xk

+ are the a priori and a posteriori state estimates, respectively, Kk is the Kalman gain,
y is the actual measurement, and h(xk

−) is the predicted measurement. Pk
− and Pk

+ are the a priori
and a posteriori state error covariance matrices, respectively. The innovation matrix Sk is defined as

Sk = HkPk−HkT

where Hk is the Jacobian matrix for the measurement function h.

In the workflow of a JPDA tracker, the filter needs to process multiple probable measurements yi (i =
1, …, N) with varied probabilities of association βi (i = 0, 1, …, N). Note that β0 is the probability that
no measurements is associated with the filter. The measurement update equations for a discrete
extended Kalman filter used for a JPDA tracker are

xk+ = xk−+ Kk ∑
i = 1

N
βi yi− h(xk−)

Pk+ = Pk−− (1 − β0)KkSkKkT + Pk
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where

Pk = Kk ∑
i = 1

N
βi yi− h(xk−) yi− h(xk−) T − δy δy T KkT

and

δy = ∑
j = 1

N
β j y j− h(xk−)

Note that these equations only apply to trackingEKF and are not the exact equations used in other
tracking filters.

References
[1] Fortmann, T., Y. Bar-Shalom, and M. Scheffe. "Sonar Tracking of Multiple Targets Using Joint

Probabilistic Data Association." IEEE Journal of Ocean Engineering. Vol. 8, Number 3, 1983,
pp. 173–184.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

correctjpda supports only double-precision code generation, not single-precision.

See Also
clone | correct | distance | initialize | likelihood | predict | residual

Introduced in R2019a
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distance
Distances between current and predicted measurements of tracking filter

Syntax
dist = distance(filter,zmeas)
dist = distance(filter,zmeas,measparams)

Description
dist = distance(filter,zmeas) computes the normalized distances between one or more
current object measurements, zmeas, and the corresponding predicted measurements computed by
the input filter. Use this function to assign measurements to tracks.

This distance computation takes into account the covariance of the predicted state and the
measurement noise.

dist = distance(filter,zmeas,measparams) specifies additional parameters that are used by
the MeasurementFcn of the filter.

If filter is a trackingKF or trackingABF object, then you cannot use this syntax.

Input Arguments
filter — Filter for object tracking
trackingKF object | trackingEKF object | trackingUKF object

Filter for object tracking, specified as one of these objects:

• trackingKF — Linear Kalman filter
• trackingEKF — Extended Kalman filter
• trackingUKF — Unscented Kalman filter
• trackingABF — Alpha-beta filter

zmeas — Measurements of tracked objects
matrix

Measurements of tracked objects, specified as a matrix. Each row of the matrix contains a
measurement vector.

measparams — Parameters for measurement function
cell array

Parameters for measurement function, specified as a cell array. The parameters are passed to the
measurement function that is defined in the MeasurementFcn property of the filter. If filter is
a trackingKF or trackingABF object, then you cannot specify measparams.

Suppose you set the MeasurementFcn property of filter to @cameas, and then set these values:

measurementParams = {frame,sensorpos,sensorpos}
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The distance function internally calls the following:

cameas(state,frame,sensorpos,sensorvel)

Output Arguments
dist — Distances between measurements
row vector

Distances between measurements, returned as a row vector. Each element corresponds to a distance
between the predicted measurement in the input filter and a measurement contained in a row of
zmeas.

Algorithms
The distance function computes the normalized distance between the filter object and a set of
measurements. This distance computation is a variant of the Mahalanobis distance and takes into
account the residual (the difference between the object measurement and the value predicted by the
filter), the residual covariance, and the measurement noise.

Consider an extended Kalman filter with state x and measurement z. The equations used to compute
the residual, zres, and the residual covariance, S, are

zres = z – h(x),
S = R + HPHT,

where:

• h is the measurement function defined in the MeasurementFcn property of the filter.
• R is the measurement noise covariance defined in the MeasurementNoise property of the filter.
• H is the Jacobian of the measurement function defined in the MeasurementJacobianFcn

property of the filter.

The residual covariance calculation for other filters can vary slightly from the one shown because
tracking filters have different ways of propagating the covariance to the measurement space. For
example, instead of using the Jacobian of the measurement function to propagate the covariance,
unscented Kalman filters sample the covariance, and then propagate the sampled points.

The equation for the Mahalanobis distance, d2, is
d2 = zres

TS–1z,

The distance function computes the normalized distance, dn, as
dn = d2 + log(|S|),

where log(|S|) is the logarithm of the determinant of residual covariance S.

The log(|S|) term accounts for tracks that are coasted, meaning that they are predicted but have not
had an update for a long time. Tracks in this state can make S very large, resulting in a smaller
Mahalanobis distance relative to the updated tracks. This difference in distance values can cause the
coasted tracks to incorrectly take detections from the updated tracks. The log(|S|) term compensates
for this effect by penalizing such tracks, whose predictions are highly uncertain.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
clone | correct | correctjpda | initialize | likelihood | predict | residual

Introduced in R2017a
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initialize
Initialize state and covariance of tracking filter

Syntax
initialize(filter,state,statecov)
initialize(filter,state,statecov,Name,Value)

Description
initialize(filter,state,statecov) initializes the filter by setting the State and
StateCovariance properties of the filter with the corresponding state and statecov inputs.

initialize(filter,state,statecov,Name,Value) also initializes properties of filter by
using one or more name-value pairs. Specify the name of the filter property and the value to which
you want to initialize it. You cannot change the size or type of the properties that you initialize.

Input Arguments
filter — Filter for object tracking
trackingKF object | trackingEKF object | trackingUKF object

Filter for object tracking, specified as one of these objects:

• trackingKF — Linear Kalman filter
• trackingEKF — Extended Kalman filter
• trackingUKF — Unscented Kalman filter

state — Filter state
real-valued M-element vector

Filter state, specified as a real-valued M-element vector, where M is the size of the filter state.
Example: [200; 0.2]
Data Types: double

statecov — State estimation error covariance
positive-definite real-valued M-by-M matrix

State estimation error covariance, specified as a positive-definite real-valued M-by-M matrix. M is the
size of the filter state. The covariance matrix represents the uncertainty in the filter state.
Example: [20 0.1; 0.1 1]

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
clone | correct | correctjpda | distance | likelihood | predict | residual

Introduced in R2018b
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likelihood
Likelihood of measurement from tracking filter

Syntax
measlikelihood = likelihood(filter,zmeas)
measlikelihood = likelihood(filter,zmeas,measparams)

Description
measlikelihood = likelihood(filter,zmeas) returns the likelihood of a measurement,
zmeas, that was produced by the specified filter, filter.

measlikelihood = likelihood(filter,zmeas,measparams) specifies additional parameters
that are used by the MeasurementFcn of the filter.

If filter is a trackingKF or trackingABF object, then you cannot use this syntax.

Input Arguments
filter — Filter for object tracking
trackingKF object | trackingEKF object | trackingUKF object

Filter for object tracking, specified as one of these objects:

• trackingKF — Linear Kalman filter
• trackingEKF — Extended Kalman filter
• trackingUKF — Unscented Kalman filter
• trackingABF — Alpha-beta filter

zmeas — Current measurement of tracked object
vector | matrix

Current measurement of a tracked object, specified a vector or matrix.

measparams — Parameters for measurement function
cell array

Parameters for measurement function, specified as a cell array. The parameters are passed to the
measurement function that is defined in the MeasurementFcn of the input filter. If filter is a
trackingKF or trackingABF object, then you cannot specify measparams.

Output Arguments
measlikelihood — Likelihood of measurement
scalar

Likelihood of measurement, returned as a scalar.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
clone | correct | correctjpda | distance | initialize | predict | residual

Introduced in R2018a
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predict
Predict state and state estimation error covariance of tracking filter

Syntax
[xpred,Ppred] = predict(filter)

[xpred,Ppred] = predict(filter,dt)
[xpred,Ppred] = predict(filter,predparams)

[xpred,Ppred,zpred] = predict(filter)
[xpred,Ppred,zpred] = predict(filter,dt)

predict(filter, ___ )
xpred = predict(filter, ___ )

Description
[xpred,Ppred] = predict(filter) returns the predicted state, xpred, and the predicted state
estimation error covariance, Ppred, for the next time step of the input tracking filter. The predicted
values overwrite the internal state and state estimation error covariance of filter.

[xpred,Ppred] = predict(filter,dt) specifies the time step as a positive scalar in seconds,
and returns one or more of the outputs from the preceding syntaxes.

[xpred,Ppred] = predict(filter,predparams) specifies additional prediction parameters
used by the state transition function. The state transition function is defined in the
StateTransitionFcn property of filter.

[xpred,Ppred,zpred] = predict(filter) also returns the predicted measurement at the next
time step.

You can use this syntax only when filter is a trackingABF object.

[xpred,Ppred,zpred] = predict(filter,dt) returns the predicted state, state estimation
error covariance, and measurement at the specified time step.

You can use this syntax only when filter is a trackingABF object.

predict(filter, ___ ) updates filter with the predicted state and state estimation error
covariance without returning the predicted values. Specify the tracking filter and any of the input
argument combinations from preceding syntaxes.

xpred = predict(filter, ___ ) updates filter with the predicted state and state estimation
error covariance but returns only the predicted state, xpred.

Examples
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Constant-Velocity Extended Kalman Filter

Create a two-dimensional trackingEKF object and use name-value pairs to define the
StateTransitionJacobianFcn and MeasurementJacobianFcn properties. Use the predefined
constant-velocity motion and measurement models and their Jacobians.

EKF = trackingEKF(@constvel,@cvmeas,[0;0;0;0], ...
    'StateTransitionJacobianFcn',@constveljac, ...
    'MeasurementJacobianFcn',@cvmeasjac);

Run the filter. Use the predict and correct functions to propagate the state. You may call predict
and correct in any order and as many times you want. Specify the measurement in Cartesian
coordinates.

measurement = [1;1;0];
[xpred, Ppred] = predict(EKF);
[xcorr, Pcorr] = correct(EKF,measurement);
[xpred, Ppred] = predict(EKF);
[xpred, Ppred] = predict(EKF)

xpred = 4×1

    1.2500
    0.2500
    1.2500
    0.2500

Ppred = 4×4

   11.7500    4.7500         0         0
    4.7500    3.7500         0         0
         0         0   11.7500    4.7500
         0         0    4.7500    3.7500

Input Arguments
filter — Filter for object tracking
trackingEKF object | trackingUKF object

Filter for object tracking, specified as one of these objects:

• trackingEKF — Extended Kalman filter
• trackingUKF — Unscented Kalman filter
• trackingABF — Alpha-beta filter

To use the predict function with a trackingKF linear Kalman filter, see predict (trackingKF).

dt — Time step
positive scalar

Time step for next prediction, specified as a positive scalar in seconds.

4 Objects

4-990



predparams — Prediction parameters
comma-separated list of arguments

Prediction parameters used by the state transition function, specified as a comma-separated list of
arguments. These arguments are the same arguments that are passed into the state transition
function specified by the StateTransitionFcn property of the input filter.

Suppose you set the StateTransitionFcn property to @constacc and then call the predict
function:

[xpred,Ppred] = predict(filter,dt)

The predict function internally calls the following:

state = constacc(state,dt)

Output Arguments
xpred — Predicted state of filter
vector | matrix

Predicted state of the filter, specified as a vector or matrix. The State property of the input filter
is overwritten with this value.

Ppred — Predicted state covariance of filter
vector | matrix

Predicted state covariance of the filter, specified as a vector or matrix. The StateCovariance
property of the input filter is overwritten with this value.

zpred — Predicted measurement
vector | matrix

Predicted measurement, specified as a vector or matrix. You can return zpred only when filter is a
trackingABF object.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
clone | correct | correctjpda | distance | initialize | likelihood | residual

Introduced in R2017a
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predict
Predict state and state estimation error covariance of linear Kalman filter

Syntax
[xpred,Ppred] = predict(filter)

[xpred,Ppred] = predict(filter,u)
[xpred,Ppred] = predict(filter,F)
[xpred,Ppred] = predict(filter,F,Q)
[xpred,Ppred] = predict(filter,u,F,G)
[xpred,Ppred] = predict(filter,u,F,G,Q)

[xpred,Ppred] = predict(filter,dt)
[xpred,Ppred] = predict(filter,u,dt)

predict(filter, ___ )
xpred = predict(filter, ___ )

Description
[xpred,Ppred] = predict(filter) returns the predicted state, xpred, and the predicted state
estimation error covariance, Ppred, for the next time step of the input linear Kalman filter. The
predicted values overwrite the internal state and state estimation error covariance of filter.

This syntax applies when you set the ControlModel property of filter to an empty matrix.

[xpred,Ppred] = predict(filter,u) specifies a control input, or force, u, and returns one or
more of the outputs from the preceding syntaxes.

This syntax applies when you set the ControlModel property of filter to a nonempty matrix.

[xpred,Ppred] = predict(filter,F) specifies the state transition model, F. Use this syntax to
change the state transition model during a simulation.

This syntax applies when you set the ControlModel property of filter to an empty matrix.

[xpred,Ppred] = predict(filter,F,Q) specifies the state transition model, F, and the process
noise covariance, Q. Use this syntax to change the state transition model and process noise
covariance during a simulation.

This syntax applies when you set the ControlModel property of filter to an empty matrix.

[xpred,Ppred] = predict(filter,u,F,G) specifies the force or control input, u, the state
transition model, F, and the control model, G. Use this syntax to change the state transition model
and control model during a simulation.

This syntax applies when you set the ControlModel property of filter to a nonempty matrix.
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[xpred,Ppred] = predict(filter,u,F,G,Q) specifies the force or control input, u, the state
transition model, F, the control model, G, and the process noise covariance, Q. Use this syntax to
change the state transition model, control model, and process noise covariance during a simulation.

This syntax applies when you set the ControlModel property of filter to a nonempty matrix.

[xpred,Ppred] = predict(filter,dt) returns the predicted outputs after time step dt.

This syntax applies when the MotionModel property of filter is not set to 'Custom' and the
ControlModel property is set to an empty matrix.

[xpred,Ppred] = predict(filter,u,dt) also specifies a force or control input, u.

This syntax applies when the MotionModel property of filter is not set to 'Custom' and the
ControlModel property is set to a nonempty matrix.

predict(filter, ___ ) updates filter with the predicted state and state estimation error
covariance without returning the predicted values. Specify the tracking filter and any of the input
argument combinations from preceding syntaxes.

xpred = predict(filter, ___ ) updates filter with the predicted state and state estimation
error covariance but returns only the predicted state, xpred.

Examples

Constant-Velocity Linear Kalman Filter

Create a linear Kalman filter that uses a 2D Constant Velocity motion model. Assume that the
measurement consists of the object's x-y location.

Specify the initial state estimate to have zero velocity.

x = 5.3;
y = 3.6;
initialState = [x;0;y;0];
KF = trackingKF('MotionModel','2D Constant Velocity','State',initialState);

Create the measured positions from a constant-velocity trajectory.

vx = 0.2;
vy = 0.1;
T  = 0.5;
pos = [0:vx*T:2;5:vy*T:6]';

Predict and correct the state of the object.

for k = 1:size(pos,1)
    pstates(k,:) = predict(KF,T);
    cstates(k,:) = correct(KF,pos(k,:));
end

Plot the tracks.

plot(pos(:,1),pos(:,2),'k.', pstates(:,1),pstates(:,3),'+', ...
    cstates(:,1),cstates(:,3),'o')
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xlabel('x [m]')
ylabel('y [m]')
grid
xt  = [x-2 pos(1,1)+0.1 pos(end,1)+0.1];
yt = [y pos(1,2) pos(end,2)];
text(xt,yt,{'First measurement','First position','Last position'})
legend('Object position', 'Predicted position', 'Corrected position')

Input Arguments
filter — Linear Kalman filter for object tracking
trackingKF object

Linear Kalman filter for object tracking, specified as a trackingKF object.

u — Control vector
real-valued L-element vector

Control vector, specified as a real-valued L-element vector.

F — State transition model
real-valued M-by-M matrix

State transition model, specified as a real-valued M-by-M matrix, where M is the size of the state
vector.
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Q — Process noise covariance matrix
positive-definite, real-valued M-by-M matrix

Process noise covariance matrix, specified as a positive-definite, real-valued M-by-M matrix, where M
is the length of the state vector.

G — Control model
real-valued M-by-L matrix

Control model, specified as a real-valued M-by-L matrix. M is the size of the state vector. L is the
number of independent controls.

dt — Time step
positive scalar

Time step, specified as a positive scalar. Units are in seconds.

Output Arguments
xpred — Predicted state
real-valued M-element vector

Predicted state, returned as a real-valued M-element vector. The predicted state represents the
deducible estimate of the state vector, propagated from the previous state using the state transition
and control models.

Ppred — Predicted state error covariance matrix
real-valued M-by-M matrix

Predicted state covariance matrix, specified as a real-valued M-by-M matrix. M is the size of the state
vector. The predicted state covariance matrix represents the deducible estimate of the covariance
matrix vector. The filter propagates the covariance matrix from the previous estimate.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
clone | correct | correctjpda | distance | initialize | likelihood | residual

Introduced in R2017a
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residual
Measurement residual and residual noise from tracking filter

Syntax
[zres,rescov] = residual(filter,zmeas)
[zres,rescov] = residual(filter,zmeas,measparams)

Description
[zres,rescov] = residual(filter,zmeas) computes the residual and residual covariance of
the current given measurement, zmeas, with the predicted measurement in the tracking filter,
filter. This function applies to filters that assume a Gaussian distribution for noise.

[zres,rescov] = residual(filter,zmeas,measparams) specifies additional parameters that
are used by the MeasurementFcn of the filter.

If filter is a trackingKF object, then you cannot use this syntax.

Input Arguments
filter — Filter for object tracking
trackingKF object | trackingEKF object | trackingUKF object

Filter for object tracking, specified as one of these objects:

• trackingKF — Linear Kalman filter
• trackingEKF — Extended Kalman filter
• trackingUKF — Unscented Kalman filter

zmeas — Current measurement of tracked object
vector | matrix

Current measurement of a tracked object, specified as a vector or matrix.

measparams — Parameters for measurement function
cell array

Parameters for measurement function, specified as a cell array. The parameters are passed to the
measurement function that is defined in the MeasurementFcn property of the input filter. If
filter is a trackingKF object, then you cannot specify measparams.

Output Arguments
zres — Residual between current and predicted measurement
matrix

Residual between current and predicted measurement, returned as a matrix.
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rescov — Residual covariance
matrix

Residual covariance, returned as a matrix.

Algorithms
The residual is the difference between a measurement and the value predicted by the filter. For
Kalman filters, the residual calculation depends on whether the filter is linear or nonlinear.

Linear Kalman Filters

Given a linear Kalman filter with a current measurement of z, the residual zres is defined as
zres = z – Hx,

where:

• H is the measurement model set by the MeasurementModel property of the filter.
• x is the current filter state.

The covariance of the residual, S, is defined as
S = R + HPHT,

where:

• P is the state covariance matrix.
• R is the measurement noise matrix set by the MeasurementNoise property of the filter.

Nonlinear Kalman Filters

Given a nonlinear Kalman filter with a current measurement of z, the residual zres is defined as:
zres = z – h(x),

where:

• h is the measurement function set by the MeasurementFcn property.
• x is the current filter state.

The covariance of the residual, S, is defined as:
S = R + Rp,

where:

• R is the measurement noise matrix set by the MeasurementNoise property of the filter.
• Rp is the state covariance matrix projected onto the measurement space.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
clone | correct | correctjpda | distance | initialize | likelihood | predict

Introduced in R2018a
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quaternion
Create a quaternion array

Description
A quaternion is a four-part hyper-complex number used in three-dimensional rotations and
orientations.

A quaternion number is represented in the form a + bi + c j + dk, where a, b, c, and d parts are real
numbers, and i, j, and k are the basis elements, satisfying the equation: i2 = j2 = k2 = ijk = −1.

The set of quaternions, denoted by H, is defined within a four-dimensional vector space over the real
numbers, R4. Every element of H has a unique representation based on a linear combination of the
basis elements, i, j, and k.

All rotations in 3-D can be described by an axis of rotation and angle about that axis. An advantage of
quaternions over rotation matrices is that the axis and angle of rotation is easy to interpret. For
example, consider a point in R3. To rotate the point, you define an axis of rotation and an angle of
rotation.

The quaternion representation of the rotation may be expressed as
q = cos θ 2 + sin θ 2 ubi + uc j + udk , where θ is the angle of rotation and [ub, uc, and ud] is the axis
of rotation.

Creation
Syntax
quat = quaternion()
quat = quaternion(A,B,C,D)
quat = quaternion(matrix)
quat = quaternion(RV,'rotvec')
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quat = quaternion(RV,'rotvecd')
quat = quaternion(RM,'rotmat',PF)
quat = quaternion(E,'euler',RS,PF)
quat = quaternion(E,'eulerd',RS,PF)

Description

quat = quaternion() creates an empty quaternion.

quat = quaternion(A,B,C,D) creates a quaternion array where the four quaternion parts are
taken from the arrays A, B, C, and D. All the inputs must have the same size and be of the same data
type.

quat = quaternion(matrix) creates an N-by-1 quaternion array from an N-by-4 matrix, where
each column becomes one part of the quaternion.

quat = quaternion(RV,'rotvec') creates an N-by-1 quaternion array from an N-by-3 matrix of
rotation vectors, RV. Each row of RV represents a rotation vector in radians.

quat = quaternion(RV,'rotvecd') creates an N-by-1 quaternion array from an N-by-3 matrix of
rotation vectors, RV. Each row of RV represents a rotation vector in degrees.

quat = quaternion(RM,'rotmat',PF) creates an N-by-1 quaternion array from the 3-by-3-by-N
array of rotation matrices, RM. PF can be either 'point' if the Euler angles represent point rotations
or 'frame' for frame rotations.

quat = quaternion(E,'euler',RS,PF) creates an N-by-1 quaternion array from the N-by-3
matrix, E. Each row of E represents a set of Euler angles in radians. The angles in E are rotations
about the axes in sequence RS.

quat = quaternion(E,'eulerd',RS,PF) creates an N-by-1 quaternion array from the N-by-3
matrix, E. Each row of E represents a set of Euler angles in degrees. The angles in E are rotations
about the axes in sequence RS.

Input Arguments

A,B,C,D — Quaternion parts
comma-separated arrays of the same size

Parts of a quaternion, specified as four comma-separated scalars, matrices, or multi-dimensional
arrays of the same size.
Example: quat = quaternion(1,2,3,4) creates a quaternion of the form 1 + 2i + 3j + 4k.
Example: quat = quaternion([1,5],[2,6],[3,7],[4,8]) creates a 1-by-2 quaternion array
where quat(1,1) = 1 + 2i + 3j + 4k and quat(1,2) = 5 + 6i + 7j + 8k
Data Types: single | double

matrix — Matrix of quaternion parts
N-by-4 matrix

Matrix of quaternion parts, specified as an N-by-4 matrix. Each row represents a separate quaternion.
Each column represents a separate quaternion part.
Example: quat = quaternion(rand(10,4)) creates a 10-by-1 quaternion array.
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Data Types: single | double

RV — Matrix of rotation vectors
N-by-3 matrix

Matrix of rotation vectors, specified as an N-by-3 matrix. Each row of RV represents the [X Y Z]
elements of a rotation vector. A rotation vector is a unit vector representing the axis of rotation scaled
by the angle of rotation in radians or degrees.

To use this syntax, specify the first argument as a matrix of rotation vectors and the second argument
as the 'rotvec' or 'rotvecd'.
Example: quat = quaternion(rand(10,3),'rotvec') creates a 10-by-1 quaternion array.
Data Types: single | double

RM — Rotation matrices
3-by-3 matrix | 3-by-3-by-N array

Array of rotation matrices, specified by a 3-by-3 matrix or 3-by-3-by-N array. Each page of the array
represents a separate rotation matrix.
Example: quat = quaternion(rand(3),'rotmat','point')
Example: quat = quaternion(rand(3),'rotmat','frame')
Data Types: single | double

PF — Type of rotation matrix
'point' | 'frame'

Type of rotation matrix, specified by 'point' or 'frame'.
Example: quat = quaternion(rand(3),'rotmat','point')
Example: quat = quaternion(rand(3),'rotmat','frame')
Data Types: char | string

E — Matrix of Euler angles
N-by-3 matrix

Matrix of Euler angles, specified by an N-by-3 matrix. If using the 'euler' syntax, specify E in
radians. If using the 'eulerd' syntax, specify E in degrees.
Example: quat = quaternion(E,'euler','YZY','point')
Example: quat = quaternion(E,'euler','XYZ','frame')
Data Types: single | double

RS — Rotation sequence
character vector | scalar string

Rotation sequence, specified as a three-element character vector:

• 'YZY'
• 'YXY'
• 'ZYZ'
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• 'ZXZ'
• 'XYX'
• 'XZX'
• 'XYZ'
• 'YZX'
• 'ZXY'
• 'XZY'
• 'ZYX'
• 'YXZ'

Assume you want to determine the new coordinates of a point when its coordinate system is rotated
using frame rotation. The point is defined in the original coordinate system as:

point = [sqrt(2)/2,sqrt(2)/2,0];

In this representation, the first column represents the x-axis, the second column represents the y-
axis, and the third column represents the z-axis.

You want to rotate the point using the Euler angle representation [45,45,0]. Rotate the point using
two different rotation sequences:

• If you create a quaternion rotator and specify the 'ZYX' sequence, the frame is first rotated 45°
around the z-axis, then 45° around the new y-axis.

quatRotator = quaternion([45,45,0],'eulerd','ZYX','frame');
newPointCoordinate = rotateframe(quatRotator,point)

newPointCoordinate =

    0.7071   -0.0000    0.7071

• If you create a quaternion rotator and specify the 'YZX' sequence, the frame is first rotated 45°
around the y-axis, then 45° around the new z-axis.

quatRotator = quaternion([45,45,0],'eulerd','YZX','frame');
newPointCoordinate = rotateframe(quatRotator,point)

newPointCoordinate =

    0.8536    0.1464    0.5000
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Data Types: char | string

Object Functions
angvel Angular velocity from quaternion array
classUnderlying Class of parts within quaternion
compact Convert quaternion array to N-by-4 matrix
conj Complex conjugate of quaternion
ctranspose, ' Complex conjugate transpose of quaternion array
dist Angular distance in radians
euler Convert quaternion to Euler angles (radians)
eulerd Convert quaternion to Euler angles (degrees)
exp Exponential of quaternion array
ldivide, .\ Element-wise quaternion left division
log Natural logarithm of quaternion array
meanrot Quaternion mean rotation
minus, - Quaternion subtraction
mtimes, * Quaternion multiplication
norm Quaternion norm
normalize Quaternion normalization
ones Create quaternion array with real parts set to one and imaginary parts set to zero
parts Extract quaternion parts
power, .^ Element-wise quaternion power
prod Product of a quaternion array
randrot Uniformly distributed random rotations
rdivide, ./ Element-wise quaternion right division
rotateframe Quaternion frame rotation
rotatepoint Quaternion point rotation
rotmat Convert quaternion to rotation matrix
rotvec Convert quaternion to rotation vector (radians)
rotvecd Convert quaternion to rotation vector (degrees)
slerp Spherical linear interpolation
times, .* Element-wise quaternion multiplication
transpose, .' Transpose a quaternion array
uminus, - Quaternion unary minus
zeros Create quaternion array with all parts set to zero

Examples

Create Empty Quaternion
quat = quaternion()
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quat = 

  0x0 empty quaternion array

By default, the underlying class of the quaternion is a double.

classUnderlying(quat)

ans = 
'double'

Create Quaternion by Specifying Individual Quaternion Parts

You can create a quaternion array by specifying the four parts as comma-separated scalars, matrices,
or multidimensional arrays of the same size.

Define quaternion parts as scalars.

A = 1.1;
B = 2.1;
C = 3.1;
D = 4.1;
quatScalar = quaternion(A,B,C,D)

quatScalar = quaternion
     1.1 + 2.1i + 3.1j + 4.1k

Define quaternion parts as column vectors.

A = [1.1;1.2];
B = [2.1;2.2];
C = [3.1;3.2];
D = [4.1;4.2];
quatVector = quaternion(A,B,C,D)

quatVector=2×1 quaternion array
     1.1 + 2.1i + 3.1j + 4.1k
     1.2 + 2.2i + 3.2j + 4.2k

Define quaternion parts as matrices.

A = [1.1,1.3; ...
     1.2,1.4];
B = [2.1,2.3; ...
     2.2,2.4];
C = [3.1,3.3; ...
     3.2,3.4];
D = [4.1,4.3; ...
     4.2,4.4];
quatMatrix = quaternion(A,B,C,D)

quatMatrix=2×2 quaternion array
     1.1 + 2.1i + 3.1j + 4.1k     1.3 + 2.3i + 3.3j + 4.3k
     1.2 + 2.2i + 3.2j + 4.2k     1.4 + 2.4i + 3.4j + 4.4k
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Define quaternion parts as three dimensional arrays.
A = randn(2,2,2);
B = zeros(2,2,2);
C = zeros(2,2,2);
D = zeros(2,2,2);
quatMultiDimArray = quaternion(A,B,C,D)

quatMultiDimArray = 2x2x2 quaternion array
quatMultiDimArray(:,:,1) = 

     0.53767 +       0i +       0j +       0k     -2.2588 +       0i +       0j +       0k
      1.8339 +       0i +       0j +       0k     0.86217 +       0i +       0j +       0k

quatMultiDimArray(:,:,2) = 

     0.31877 +       0i +       0j +       0k    -0.43359 +       0i +       0j +       0k
     -1.3077 +       0i +       0j +       0k     0.34262 +       0i +       0j +       0k

Create Quaternion by Specifying Quaternion Parts Matrix

You can create a scalar or column vector of quaternions by specify an N-by-4 matrix of quaternion
parts, where columns correspond to the quaternion parts A, B, C, and D.

Create a column vector of random quaternions.

quatParts = rand(3,4)

quatParts = 3×4

    0.8147    0.9134    0.2785    0.9649
    0.9058    0.6324    0.5469    0.1576
    0.1270    0.0975    0.9575    0.9706

quat = quaternion(quatParts)

quat=3×1 quaternion array
     0.81472 + 0.91338i +  0.2785j + 0.96489k
     0.90579 + 0.63236i + 0.54688j + 0.15761k
     0.12699 + 0.09754i + 0.95751j + 0.97059k

To retrieve the quatParts matrix from quaternion representation, use compact.

retrievedquatParts = compact(quat)

retrievedquatParts = 3×4

    0.8147    0.9134    0.2785    0.9649
    0.9058    0.6324    0.5469    0.1576
    0.1270    0.0975    0.9575    0.9706
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Create Quaternion by Specifying Rotation Vectors

You can create an N-by-1 quaternion array by specifying an N-by-3 matrix of rotation vectors in
radians or degrees. Rotation vectors are compact spatial representations that have a one-to-one
relationship with normalized quaternions.

Rotation Vectors in Radians

Create a scalar quaternion using a rotation vector and verify the resulting quaternion is normalized.

rotationVector = [0.3491,0.6283,0.3491];
quat = quaternion(rotationVector,'rotvec')

quat = quaternion
     0.92124 + 0.16994i + 0.30586j + 0.16994k

norm(quat)

ans = 1.0000

You can convert from quaternions to rotation vectors in radians using the rotvec function. Recover
the rotationVector from the quaternion, quat.

rotvec(quat)

ans = 1×3

    0.3491    0.6283    0.3491

Rotation Vectors in Degrees

Create a scalar quaternion using a rotation vector and verify the resulting quaternion is normalized.

rotationVector = [20,36,20];
quat = quaternion(rotationVector,'rotvecd')

quat = quaternion
     0.92125 + 0.16993i + 0.30587j + 0.16993k

norm(quat)

ans = 1

You can convert from quaternions to rotation vectors in degrees using the rotvecd function. Recover
the rotationVector from the quaternion, quat.

rotvecd(quat)

ans = 1×3

   20.0000   36.0000   20.0000
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Create Quaternion by Specifying Rotation Matrices

You can create an N-by-1 quaternion array by specifying a 3-by-3-by-N array of rotation matrices.
Each page of the rotation matrix array corresponds to one element of the quaternion array.

Create a scalar quaternion using a 3-by-3 rotation matrix. Specify whether the rotation matrix should
be interpreted as a frame or point rotation.

rotationMatrix = [1 0         0; ...
                  0 sqrt(3)/2 0.5; ...
                  0 -0.5      sqrt(3)/2];
quat = quaternion(rotationMatrix,'rotmat','frame')

quat = quaternion
     0.96593 + 0.25882i +       0j +       0k

You can convert from quaternions to rotation matrices using the rotmat function. Recover the
rotationMatrix from the quaternion, quat.

rotmat(quat,'frame')

ans = 3×3

    1.0000         0         0
         0    0.8660    0.5000
         0   -0.5000    0.8660

Create Quaternion by Specifying Euler Angles

You can create an N-by-1 quaternion array by specifying an N-by-3 array of Euler angles in radians or
degrees.

Euler Angles in Radians

Use the euler syntax to create a scalar quaternion using a 1-by-3 vector of Euler angles in radians.
Specify the rotation sequence of the Euler angles and whether the angles represent a frame or point
rotation.

E = [pi/2,0,pi/4];
quat = quaternion(E,'euler','ZYX','frame')

quat = quaternion
     0.65328 +  0.2706i +  0.2706j + 0.65328k

You can convert from quaternions to Euler angles using the euler function. Recover the Euler
angles, E, from the quaternion, quat.

euler(quat,'ZYX','frame')

ans = 1×3

    1.5708         0    0.7854
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Euler Angles in Degrees

Use the eulerd syntax to create a scalar quaternion using a 1-by-3 vector of Euler angles in degrees.
Specify the rotation sequence of the Euler angles and whether the angles represent a frame or point
rotation.

E = [90,0,45];
quat = quaternion(E,'eulerd','ZYX','frame')

quat = quaternion
     0.65328 +  0.2706i +  0.2706j + 0.65328k

You can convert from quaternions to Euler angles in degrees using the eulerd function. Recover the
Euler angles, E, from the quaternion, quat.

eulerd(quat,'ZYX','frame')

ans = 1×3

   90.0000         0   45.0000

Quaternion Algebra

Quaternions form a noncommutative associative algebra over the real numbers. This example
illustrates the rules of quaternion algebra.

Addition and Subtraction

Quaternion addition and subtraction occur part-by-part, and are commutative:

Q1 = quaternion(1,2,3,4)

Q1 = quaternion
     1 + 2i + 3j + 4k

Q2 = quaternion(9,8,7,6)

Q2 = quaternion
     9 + 8i + 7j + 6k

Q1plusQ2 = Q1 + Q2

Q1plusQ2 = quaternion
     10 + 10i + 10j + 10k

Q2plusQ1 = Q2 + Q1

Q2plusQ1 = quaternion
     10 + 10i + 10j + 10k

Q1minusQ2 = Q1 - Q2
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Q1minusQ2 = quaternion
    -8 - 6i - 4j - 2k

Q2minusQ1 = Q2 - Q1

Q2minusQ1 = quaternion
     8 + 6i + 4j + 2k

You can also perform addition and subtraction of real numbers and quaternions. The first part of a
quaternion is referred to as the real part, while the second, third, and fourth parts are referred to as
the vector. Addition and subtraction with real numbers affect only the real part of the quaternion.

Q1plusRealNumber = Q1 + 5

Q1plusRealNumber = quaternion
     6 + 2i + 3j + 4k

Q1minusRealNumber = Q1 - 5

Q1minusRealNumber = quaternion
    -4 + 2i + 3j + 4k

Multiplication

Quaternion multiplication is determined by the products of the basis elements and the distributive
law. Recall that multiplication of the basis elements, i, j, and k, are not commutative, and therefore
quaternion multiplication is not commutative.

Q1timesQ2 = Q1 * Q2

Q1timesQ2 = quaternion
    -52 + 16i + 54j + 32k

Q2timesQ1 = Q2 * Q1

Q2timesQ1 = quaternion
    -52 + 36i + 14j + 52k

isequal(Q1timesQ2,Q2timesQ1)

ans = logical
   0

You can also multiply a quaternion by a real number. If you multiply a quaternion by a real number,
each part of the quaternion is multiplied by the real number individually:

Q1times5 = Q1*5

Q1times5 = quaternion
      5 + 10i + 15j + 20k

Multiplying a quaternion by a real number is commutative.
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isequal(Q1*5,5*Q1)

ans = logical
   1

Conjugation

The complex conjugate of a quaternion is defined such that each element of the vector portion of the
quaternion is negated.

Q1

Q1 = quaternion
     1 + 2i + 3j + 4k

conj(Q1)

ans = quaternion
     1 - 2i - 3j - 4k

Multiplication between a quaternion and its conjugate is commutative:

isequal(Q1*conj(Q1),conj(Q1)*Q1)

ans = logical
   1

Quaternion Array Manipulation

You can organize quaternions into vectors, matrices, and multidimensional arrays. Built-in MATLAB®
functions have been enhanced to work with quaternions.

Concatenate

Quaternions are treated as individual objects during concatenation and follow MATLAB rules for
array manipulation.

Q1 = quaternion(1,2,3,4);
Q2 = quaternion(9,8,7,6);

qVector = [Q1,Q2]

qVector=1×2 quaternion array
     1 + 2i + 3j + 4k     9 + 8i + 7j + 6k

Q3 = quaternion(-1,-2,-3,-4);
Q4 = quaternion(-9,-8,-7,-6);

qMatrix = [qVector;Q3,Q4]

qMatrix=2×2 quaternion array
     1 + 2i + 3j + 4k     9 + 8i + 7j + 6k
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    -1 - 2i - 3j - 4k    -9 - 8i - 7j - 6k

qMultiDimensionalArray(:,:,1) = qMatrix;
qMultiDimensionalArray(:,:,2) = qMatrix

qMultiDimensionalArray = 2x2x2 quaternion array
qMultiDimensionalArray(:,:,1) = 

     1 + 2i + 3j + 4k     9 + 8i + 7j + 6k
    -1 - 2i - 3j - 4k    -9 - 8i - 7j - 6k

qMultiDimensionalArray(:,:,2) = 

     1 + 2i + 3j + 4k     9 + 8i + 7j + 6k
    -1 - 2i - 3j - 4k    -9 - 8i - 7j - 6k

Indexing

To access or assign elements in a quaternion array, use indexing.

qLoc2 = qMultiDimensionalArray(2)

qLoc2 = quaternion
    -1 - 2i - 3j - 4k

Replace the quaternion at index two with a quaternion one.

qMultiDimensionalArray(2) = ones('quaternion')

qMultiDimensionalArray = 2x2x2 quaternion array
qMultiDimensionalArray(:,:,1) = 

     1 + 2i + 3j + 4k     9 + 8i + 7j + 6k
     1 + 0i + 0j + 0k    -9 - 8i - 7j - 6k

qMultiDimensionalArray(:,:,2) = 

     1 + 2i + 3j + 4k     9 + 8i + 7j + 6k
    -1 - 2i - 3j - 4k    -9 - 8i - 7j - 6k

Reshape

To reshape quaternion arrays, use the reshape function.

qMatReshaped = reshape(qMatrix,4,1)

qMatReshaped=4×1 quaternion array
     1 + 2i + 3j + 4k
    -1 - 2i - 3j - 4k
     9 + 8i + 7j + 6k
    -9 - 8i - 7j - 6k
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Transpose

To transpose quaternion vectors and matrices, use the transpose function.

qMatTransposed = transpose(qMatrix)

qMatTransposed=2×2 quaternion array
     1 + 2i + 3j + 4k    -1 - 2i - 3j - 4k
     9 + 8i + 7j + 6k    -9 - 8i - 7j - 6k

Permute

To permute quaternion vectors, matrices, and multidimensional arrays, use the permute function.

qMultiDimensionalArray

qMultiDimensionalArray = 2x2x2 quaternion array
qMultiDimensionalArray(:,:,1) = 

     1 + 2i + 3j + 4k     9 + 8i + 7j + 6k
     1 + 0i + 0j + 0k    -9 - 8i - 7j - 6k

qMultiDimensionalArray(:,:,2) = 

     1 + 2i + 3j + 4k     9 + 8i + 7j + 6k
    -1 - 2i - 3j - 4k    -9 - 8i - 7j - 6k

qMatPermute = permute(qMultiDimensionalArray,[3,1,2])

qMatPermute = 2x2x2 quaternion array
qMatPermute(:,:,1) = 

     1 + 2i + 3j + 4k     1 + 0i + 0j + 0k
     1 + 2i + 3j + 4k    -1 - 2i - 3j - 4k

qMatPermute(:,:,2) = 

     9 + 8i + 7j + 6k    -9 - 8i - 7j - 6k
     9 + 8i + 7j + 6k    -9 - 8i - 7j - 6k

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Topics
“Rotations, Orientations, and Quaternions for Automated Driving”

Introduced in R2020a
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objectTrack
Single object track report

Description
objectTrack captures the track information of a single object. objectTrack is the standard output
format for trackers.

Creation

Syntax
track = objectTrack
track = objectTrack(Name,Value)

Description

track = objectTrack creates an objectTrack object with default property values. An
objectTrack object contains information like the age and state of a single track.

track = objectTrack(Name,Value) allows you to set properties using one or more name-value
pairs. Enclose each property name in single quotes.

Properties
TrackID — Unique track identifier
1 (default) | nonnegative integer

Unique track identifier, specified as a nonnegative integer. This property distinguishes different
tracks.
Example: 2

BranchID — Unique track branch identifier
0 (default) | nonnegative integer

Unique track branch identifier, specified as a nonnegative integer. This property distinguishes
different track branches.
Example: 1

SourceIndex — Index of source track reporting system
1 (default) | nonnegative integer

Index of source track reporting system, specified as a nonnegative integer. This property identifies
the source that reports the track.
Example: 3
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ObjectClassID — Object class identifier
0 (default) | nonnegative integer

Object class identifier, specified as a nonnegative integer. This property distinguishes between
different user-defined types of objects. For example, you can use 1 for objects of type "car", and 2 for
objects of type "pedestrian". 0 is reserved for unknown classification.
Example: 3

UpdateTime — Update time of track
0 (default) | nonnegative real scalar

Time at which the track was updated by a tracker, specified as a nonnegative real scalar.
Example: 1.2
Data Types: single | double

Age — Number of times track was updated
1 (default) | positive integer

Number of times the track was updated, specified as a positive integer. When a track is initialized, its
Age is equal to 1. Any subsequent update with a hit or miss increases the track Age by 1.
Example: 2

State — Current state of track
zeros(6,1) (default) | real-valued N-element vector

The current state of the track at the UpdateTime, specified as a real-valued N-element vector, where
N is the dimension of the state. The format of track state depends on the model used to track the
object. For example, for 3-D constant velocity model used with constvel, the state vector is [x; vx; y;
vy; z; vz].
Example: [1 0.2 3 0.2]
Data Types: single | double

StateCovariance — Current state uncertainty covariance of track
eye(6,6) (default) | real positive semidefinite symmetric N-by-N matrix

The current state uncertainty covariance of the track, specified as a real positive semidefinite
symmetric N-by-N matrix, where N is the dimension of state specified in the State property.
Data Types: single | double

TrackLogic — Track confirmation and deletion logic type
'History' (default) | 'Integrated' | 'Score'

Confirmation and deletion logic type, specified as:

• 'History' – Track confirmation and deletion is based on the number of times the track has been
assigned to a detection in the latest tracker updates.

• 'Score' – Track confirmation and deletion is based on a log-likelihood track score. A high score
means that the track is more likely to be valid. A low score means that the track is more likely to
be a false alarm.

• 'Integrated' – Track confirmation and deletion is based on the integrated probability of track
existence.
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TrackLogicState — State of track logic
1-by-M logical vector | 1-by-2 real-valued scar | nonnegative scalar

The current state of the track logic type. Based on the logic type specified in the TrackLogic
property, the logic state is specified as:

• 'History' – A 1-by-M logical vector, where M is the number of latest track logical states
recorded. true (1) values indicate hits, and false (0) values indicate misses. For example, [1 0
1 1 1] represents four hits and one miss in the last five updates. The default value for logic state
is 1.

• 'Score' – A 1-by-2 real-valued vector, [cs, ms]. cs is the current score, and ms is the maximum
score. The default value is [0, 0].

• 'Integrated' – A nonnegative scalar. The scalar represents the integrated probability of
existence of the track. The default value is 0.5.

IsConfirmed — Indicate if track is confirmed
true (default) | false

Indicate if the track is confirmed, specified as true or false.
Data Types: logical

IsCoasted — Indicate if track is coasted
false (default) | true

Indicate if the track is coasted, specified as true or false. A track is coasted if its latest update is
based on prediction instead of correction using detections.
Data Types: logical

IsSelfReported — Indicate if track is self reported
true (default) | false

Indicate if the track is self reported, specified as true or false. A track is self reported if it is
reported from internal sources (senors, trackers, or fusers). To limit the propagation of rumors in a
tracking system, use the value false if the track was updated by an external source.
Example: false
Data Types: logical

ObjectAttributes — Object attributes
struct() (default) | structure

Object attributes passed by the tracker, specified as a structure.

StateParameters — Parameters of the track state reference frame
struct() (default) | structure | structure array

Parameters of the track state reference frame, specified as a structure or a structure array. Use this
property to define the track state reference frame and how to transform the track from the source
coordinate system to the fuser coordinate system.

Object Functions
toStruct Convert objectTrack object to struct
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Examples

Create Track Report using objectTrack

Create a report of a track using objectTrack.

x = (1:6)';
P = diag(1:6);
track = objectTrack('State',x,'StateCovariance',P);
disp(track)

  objectTrack with properties:

             TrackID: 1
            BranchID: 0
         SourceIndex: 1
          UpdateTime: 0
                 Age: 1
               State: [6x1 double]
     StateCovariance: [6x6 double]
     StateParameters: [1x1 struct]
       ObjectClassID: 0
          TrackLogic: 'History'
     TrackLogicState: 1
         IsConfirmed: 1
           IsCoasted: 0
      IsSelfReported: 1
    ObjectAttributes: [1x1 struct]

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

• The TrackLogic property can only be set during construction.

See Also

Introduced in R2020a
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toStruct
Convert objectTrack object to struct

Syntax
S = toStruct(objTrack)

Description
S = toStruct(objTrack) converts an array of objectTrack objects, objTrack, to an array of
structures whose fields are equivalent to the properties of objTrack.

Examples

Convert objectTrack to Struct

Create a report of a track using objectTrack.

  x = (1:6)';
  P = diag(1:6);
  track = objectTrack('State', x, 'StateCovariance', P)

track = 
  objectTrack with properties:

             TrackID: 1
            BranchID: 0
         SourceIndex: 1
          UpdateTime: 0
                 Age: 1
               State: [6x1 double]
     StateCovariance: [6x6 double]
     StateParameters: [1x1 struct]
       ObjectClassID: 0
          TrackLogic: 'History'
     TrackLogicState: 1
         IsConfirmed: 1
           IsCoasted: 0
      IsSelfReported: 1
    ObjectAttributes: [1x1 struct]

Convert the track object to a structure.

  S = toStruct(track)

S = struct with fields:
             TrackID: 1
            BranchID: 0
         SourceIndex: 1
          UpdateTime: 0
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                 Age: 1
               State: [6x1 double]
     StateCovariance: [6x6 double]
     StateParameters: [1x1 struct]
       ObjectClassID: 0
          TrackLogic: 'History'
     TrackLogicState: 1
         IsConfirmed: 1
           IsCoasted: 0
      IsSelfReported: 1
    ObjectAttributes: [1x1 struct]

Input Arguments
objTrack — Reports of object track
array of objectTrack object

Reports of object tracks, specified as an array of objectTrack objects.

Output Arguments
S — Structures converted from objectTrack
array of structure

Structures converted from objectTrack, returned as an array of structures. The dimension of the
returned structure is same with the dimension of the objTrack input. The fields of each structure
are equivalent to the properties of objectTrack.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
objectTrack

Introduced in R2020a
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classUnderlying
Class of parts within quaternion

Syntax
underlyingClass = classUnderlying(quat)

Description
underlyingClass = classUnderlying(quat) returns the name of the class of the parts of the
quaternion quat.

Examples

Get Underlying Class of Quaternion

A quaternion is a four-part hyper-complex number used in three-dimensional representations. The
four parts of the quaternion are of data type single or double.

Create two quaternions, one with an underlying data type of single, and one with an underlying
data type of double. Verify the underlying data types by calling classUnderlying on the
quaternions.

qSingle = quaternion(single([1,2,3,4]))

qSingle = quaternion
     1 + 2i + 3j + 4k

classUnderlying(qSingle)

ans = 
'single'

qDouble = quaternion([1,2,3,4])

qDouble = quaternion
     1 + 2i + 3j + 4k

classUnderlying(qDouble)

ans = 
'double'

You can separate quaternions into their parts using the parts function. Verify the parts of each
quaternion are the correct data type. Recall that double is the default MATLAB® type.

[aS,bS,cS,dS] = parts(qSingle)

aS = single
    1
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bS = single
    2

cS = single
    3

dS = single
    4

[aD,bD,cD,dD] = parts(qDouble)

aD = 1

bD = 2

cD = 3

dD = 4

Quaternions follow the same implicit casting rules as other data types in MATLAB. That is, a
quaternion with underlying data type single that is combined with a quaternion with underlying
data type double results in a quaternion with underlying data type single. Multiply qDouble and
qSingle and verify the resulting underlying data type is single.

q = qDouble*qSingle;
classUnderlying(q)

ans = 
'single'

Input Arguments
quat — Quaternion to investigate
scalar | vector | matrix | multi-dimensional array

Quaternion to investigate, specified as a quaternion or array of quaternions.
Data Types: quaternion

Output Arguments
underlyingClass — Underlying class of quaternion object
'single' | 'double'

Underlying class of quaternion, returned as the character vector 'single' or 'double'.
Data Types: char

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
Functions
compact | parts

Objects
quaternion

Topics
“Rotations, Orientations, and Quaternions for Automated Driving”

Introduced in R2020a
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angvel
Angular velocity from quaternion array

Syntax
AV = angvel(Q,dt,'frame')
AV = angvel(Q,dt,'point')
[AV,qf] = angvel(Q,dt,fp,qi)

Description
AV = angvel(Q,dt,'frame') returns the angular velocity array from an array of quaternions, Q.
The quaternions in Q correspond to frame rotation. The initial quaternion is assumed to represent
zero rotation.

AV = angvel(Q,dt,'point') returns the angular velocity array from an array of quaternions, Q.
The quaternions in Q correspond to point rotation. The initial quaternion is assumed to represent zero
rotation.

[AV,qf] = angvel(Q,dt,fp,qi) allows you to specify the initial quaternion, qi, and the type of
rotation, fp. It also returns the final quaternion, qf.

Examples

Generate Angular Velocity From Quaternion Array

Create an array of quaternions.

eulerAngles = [(0:10:90).',zeros(numel(0:10:90),2)];
q = quaternion(eulerAngles,'eulerd','ZYX','frame');

Specify the time step and generate the angular velocity array.

dt = 1;
av = angvel(q,dt,'frame') % units in rad/s

av = 10×3

         0         0         0
         0         0    0.1743
         0         0    0.1743
         0         0    0.1743
         0         0    0.1743
         0         0    0.1743
         0         0    0.1743
         0         0    0.1743
         0         0    0.1743
         0         0    0.1743

 angvel

4-1021



Input Arguments
Q — Quaternions
N-by-1 vector of quaternions

Quaternions, specified as an N-by-1 vector of quaternions.
Data Types: quaternion

dt — Time step
nonnegative scalar

Time step, specified as a nonnegative scalar.
Data Types: single | double

fp — Type of rotation
'frame' | 'point'

Type of rotation, specified as 'frame' or 'point'.

qi — Initial quaternion
quaternion

Initial quaternion, specified as a quaternion.
Data Types: quaternion

Output Arguments
AV — Angular velocity
N-by-3 real matrix

Angular velocity, returned as an N-by-3 real matrix. N is the number of quaternions given in the input
Q. Each row of the matrix corresponds to an angular velocity vector.

qf — Final quaternion
quaternion

Final quaternion, returned as a quaternion. qf is the same as the last quaternion in the Q input.
Data Types: quaternion

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
quaternion

Topics
“Rotations, Orientations, and Quaternions for Automated Driving”
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Introduced in R2020a
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compact
Convert quaternion array to N-by-4 matrix

Syntax
matrix = compact(quat)

Description
matrix = compact(quat) converts the quaternion array, quat, to an N-by-4 matrix. The columns
are made from the four quaternion parts. The ith row of the matrix corresponds to quat(i).

Examples

Convert Quaternion Array to Compact Representation of Parts

Create a scalar quaternion with random parts. Convert the parts to a 1-by-4 vector using compact.

randomParts = randn(1,4)

randomParts = 1×4

    0.5377    1.8339   -2.2588    0.8622

quat = quaternion(randomParts)

quat = quaternion
     0.53767 +  1.8339i -  2.2588j + 0.86217k

quatParts = compact(quat)

quatParts = 1×4

    0.5377    1.8339   -2.2588    0.8622

Create a 2-by-2 array of quaternions, then convert the representation to a matrix of quaternion parts.
The output rows correspond to the linear indices of the quaternion array.

quatArray = [quaternion([1:4;5:8]),quaternion([9:12;13:16])]

quatArray=2×2 quaternion array
      1 +  2i +  3j +  4k      9 + 10i + 11j + 12k
      5 +  6i +  7j +  8k     13 + 14i + 15j + 16k

quatArrayParts = compact(quatArray)

quatArrayParts = 4×4
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     1     2     3     4
     5     6     7     8
     9    10    11    12
    13    14    15    16

Input Arguments
quat — Quaternion to convert
scalar | vector | matrix | multidimensional array

Quaternion to convert, specified as scalar, vector, matrix, or multidimensional array of quaternions.
Data Types: quaternion

Output Arguments
matrix — Quaternion in matrix form
N-by-4 matrix

Quaternion in matrix form, returned as an N-by-4 matrix, where N = numel(quat).
Data Types: single | double

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
classUnderlying | parts

Objects
quaternion

Topics
“Rotations, Orientations, and Quaternions for Automated Driving”

Introduced in R2020a
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conj
Complex conjugate of quaternion

Syntax
quatConjugate = conj(quat)

Description
quatConjugate = conj(quat) returns the complex conjugate of the quaternion, quat.

If q = a + bi + c j + dk, the complex conjugate of q is q* = a− bi − c j − dk. Considered as a rotation
operator, the conjugate performs the opposite rotation. For example,

q = quaternion(deg2rad([16 45 30]),'rotvec');
a = q*conj(q);
rotatepoint(a,[0,1,0])

ans =

     0     1     0

Examples

Complex Conjugate of Quaternion

Create a quaternion scalar and get the complex conjugate.

q = normalize(quaternion([0.9 0.3 0.3 0.25]))

q = quaternion
     0.87727 + 0.29242i + 0.29242j + 0.24369k

qConj = conj(q)

qConj = quaternion
     0.87727 - 0.29242i - 0.29242j - 0.24369k

Verify that a quaternion multiplied by its conjugate returns a quaternion one.

q*qConj

ans = quaternion
     1 + 0i + 0j + 0k
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Input Arguments
quat — Quaternion
scalar | vector | matrix | multidimensional array

Quaternion to conjugate, specified as a scalar, vector, matrix, or array of quaternions.
Data Types: quaternion

Output Arguments
quatConjugate — Quaternion conjugate
scalar | vector | matrix | multidimensional array

Quaternion conjugate, returned as a quaternion or array of quaternions the same size as quat.
Data Types: quaternion

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
norm | times, .*

Objects
quaternion

Topics
“Rotations, Orientations, and Quaternions for Automated Driving”

Introduced in R2020a
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ctranspose, '
Complex conjugate transpose of quaternion array

Syntax
quatTransposed = quat'

Description
quatTransposed = quat' returns the complex conjugate transpose of the quaternion, quat.

Examples

Vector Complex Conjugate Transpose

Create a vector of quaternions and compute its complex conjugate transpose.

quat = quaternion(randn(4,4))

quat=4×1 quaternion array
      0.53767 +  0.31877i +   3.5784j +   0.7254k
       1.8339 -   1.3077i +   2.7694j - 0.063055k
      -2.2588 -  0.43359i -   1.3499j +  0.71474k
      0.86217 +  0.34262i +   3.0349j -  0.20497k

quatTransposed = quat'

quatTransposed=1×4 quaternion array
      0.53767 -  0.31877i -   3.5784j -   0.7254k       1.8339 +   1.3077i -   2.7694j + 0.063055k      -2.2588 +  0.43359i +   1.3499j -  0.71474k      0.86217 -  0.34262i -   3.0349j +  0.20497k

Matrix Complex Conjugate Transpose

Create a matrix of quaternions and compute its complex conjugate transpose.

quat = [quaternion(randn(2,4)),quaternion(randn(2,4))]

quat=2×2 quaternion array
      0.53767 -   2.2588i +  0.31877j -  0.43359k       3.5784 -   1.3499i +   0.7254j +  0.71474k
       1.8339 +  0.86217i -   1.3077j +  0.34262k       2.7694 +   3.0349i - 0.063055j -  0.20497k

quatTransposed = quat'

quatTransposed=2×2 quaternion array
      0.53767 +   2.2588i -  0.31877j +  0.43359k       1.8339 -  0.86217i +   1.3077j -  0.34262k
       3.5784 +   1.3499i -   0.7254j -  0.71474k       2.7694 -   3.0349i + 0.063055j +  0.20497k
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Input Arguments
quat — Quaternion to transpose
scalar | vector | matrix

Quaternion to transpose, specified as a vector or matrix or quaternions. The complex conjugate
transpose is defined for 1-D and 2-D arrays.
Data Types: quaternion

Output Arguments
quatTransposed — Conjugate transposed quaternion
scalar | vector | matrix

Conjugate transposed quaternion, returned as an N-by-M array, where quat was specified as an M-
by-N array.
Data Types: quaternion

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
transpose, .'

Objects
quaternion

Topics
“Rotations, Orientations, and Quaternions for Automated Driving”

Introduced in R2020a
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dist
Angular distance in radians

Syntax
distance = dist(quatA,quatB)

Description
distance = dist(quatA,quatB) returns the angular distance in radians between two
quaternions, quatA and quatB.

Examples

Calculate Quaternion Distance

Calculate the quaternion distance between a single quaternion and each element of a vector of
quaternions. Define the quaternions using Euler angles.

q = quaternion([0,0,0],'eulerd','zyx','frame')

q = quaternion
     1 + 0i + 0j + 0k

qArray = quaternion([0,45,0;0,90,0;0,180,0;0,-90,0;0,-45,0],'eulerd','zyx','frame')

qArray=5×1 quaternion array
       0.92388 +         0i +   0.38268j +         0k
       0.70711 +         0i +   0.70711j +         0k
    6.1232e-17 +         0i +         1j +         0k
       0.70711 +         0i -   0.70711j +         0k
       0.92388 +         0i -   0.38268j +         0k

quaternionDistance = rad2deg(dist(q,qArray))

quaternionDistance = 5×1

   45.0000
   90.0000
  180.0000
   90.0000
   45.0000

If both arguments to dist are vectors, the quaternion distance is calculated between corresponding
elements. Calculate the quaternion distance between two quaternion vectors.

angles1 = [30,0,15; ...
           30,5,15; ...
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           30,10,15; ...
           30,15,15];
angles2 = [30,6,15; ...
           31,11,15; ...
           30,16,14; ...
           30.5,21,15.5];

qVector1 = quaternion(angles1,'eulerd','zyx','frame');
qVector2 = quaternion(angles2,'eulerd','zyx','frame');

rad2deg(dist(qVector1,qVector2))

ans = 4×1

    6.0000
    6.0827
    6.0827
    6.0287

Note that a quaternion represents the same rotation as its negative. Calculate a quaternion and its
negative.

qPositive = quaternion([30,45,-60],'eulerd','zyx','frame')

qPositive = quaternion
     0.72332 - 0.53198i + 0.20056j +  0.3919k

qNegative = -qPositive

qNegative = quaternion
    -0.72332 + 0.53198i - 0.20056j -  0.3919k

Find the distance between the quaternion and its negative.

dist(qPositive,qNegative)

ans = 0

The components of a quaternion may look different from the components of its negative, but both
expressions represent the same rotation.

Input Arguments
quatA,quatB — Quaternions to calculate distance between
scalar | vector | matrix | multidimensional array

Quaternions to calculate distance between, specified as comma-separated quaternions or arrays of
quaternions. quatA and quatB must have compatible sizes:

• size(quatA) == size(quatB), or
• numel(quatA) == 1, or
• numel(quatB) == 1, or
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• if [Adim1,…,AdimN] = size(quatA) and [Bdim1,…,BdimN] = size(quatB), then for i =
1:N, either Adimi==Bdimi or Adim==1 or Bdim==1.

If one of the quaternion arguments contains only one quaternion, then this function returns the
distances between that quaternion and every quaternion in the other argument.

Data Types: quaternion

Output Arguments
distance — Angular distance (radians)
scalar | vector | matrix | multidimensional array

Angular distance in radians, returned as an array. The dimensions are the maximum of the union of
size(quatA) and size(quatB).
Data Types: single | double

Algorithms
The dist function returns the angular distance between two quaternions.

A quaternion may be defined by an axis (ub,uc,ud) and angle of rotation θq:
q = cos θq 2 + sin θq 2 ubi + uc j + udk .

Given a quaternion in the form, q = a + bi + c j + dk, where a is the real part, you can solve for the
angle of q as θq = 2cos−1(a).

Consider two quaternions, p and q, and the product z = p * conjugate(q). As p approaches q, the angle
of z goes to 0, and z approaches the unit quaternion.

The angular distance between two quaternions can be expressed as θz = 2cos−1 real z .

Using the quaternion data type syntax, the angular distance is calculated as:

angularDistance = 2*acos(abs(parts(p*conj(q))));
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
conj | parts

Objects
quaternion

Topics
“Rotations, Orientations, and Quaternions for Automated Driving”

Introduced in R2020a
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euler
Convert quaternion to Euler angles (radians)

Syntax
eulerAngles = euler(quat,rotationSequence,rotationType)

Description
eulerAngles = euler(quat,rotationSequence,rotationType) converts the quaternion,
quat, to an N-by-3 matrix of Euler angles.

Examples

Convert Quaternion to Euler Angles in Radians

Convert a quaternion frame rotation to Euler angles in radians using the 'ZYX' rotation sequence.

quat = quaternion([0.7071 0.7071 0 0]);
eulerAnglesRandians = euler(quat,'ZYX','frame')

eulerAnglesRandians = 1×3

         0         0    1.5708

Input Arguments
quat — Quaternion to convert to Euler angles
scalar | vector | matrix | multidimensional array

Quaternion to convert to Euler angles, specified as a scalar, vector, matrix, or multidimensional array
of quaternions.
Data Types: quaternion

rotationSequence — Rotation sequence
'ZYX' | 'ZYZ' | 'ZXY' | 'ZXZ' | 'YXZ' | 'YXY' | 'YZX' | 'XYZ' | 'XYX' | 'XZY' | 'XZX'

Rotation sequence of Euler representation, specified as a character vector or string.

The rotation sequence defines the order of rotations about the axes. For example, if you specify a
rotation sequence of 'YZX':

1 The first rotation is about the y-axis.
2 The second rotation is about the new z-axis.
3 The third rotation is about the new x-axis.

Data Types: char | string
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rotationType — Type of rotation
'point' | 'frame'

Type of rotation, specified as 'point' or 'frame'.

In a point rotation, the frame is static and the point moves. In a frame rotation, the point is static and
the frame moves. Point rotation and frame rotation define equivalent angular displacements but in
opposite directions.

Data Types: char | string

Output Arguments
eulerAngles — Euler angle representation (radians)
N-by-3 matrix

Euler angle representation in radians, returned as a N-by-3 matrix. N is the number of quaternions in
the quat argument.

For each row of eulerAngles, the first element corresponds to the first axis in the rotation
sequence, the second element corresponds to the second axis in the rotation sequence, and the third
element corresponds to the third axis in the rotation sequence.

The data type of the Euler angles representation is the same as the underlying data type of quat.
Data Types: single | double
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
eulerd | rotateframe | rotatepoint

Objects
quaternion

Topics
“Rotations, Orientations, and Quaternions for Automated Driving”

Introduced in R2020a
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eulerd
Convert quaternion to Euler angles (degrees)

Syntax
eulerAngles = eulerd(quat,rotationSequence,rotationType)

Description
eulerAngles = eulerd(quat,rotationSequence,rotationType) converts the quaternion,
quat, to an N-by-3 matrix of Euler angles in degrees.

Examples

Convert Quaternion to Euler Angles in Degrees

Convert a quaternion frame rotation to Euler angles in degrees using the 'ZYX' rotation sequence.

quat = quaternion([0.7071 0.7071 0 0]);
eulerAnglesDegrees = eulerd(quat,'ZYX','frame')

eulerAnglesDegrees = 1×3

         0         0   90.0000

Input Arguments
quat — Quaternion to convert to Euler angles
scalar | vector | matrix | multidimensional array

Quaternion to convert to Euler angles, specified as a scalar, vector, matrix, or multidimensional array
of quaternions.
Data Types: quaternion

rotationSequence — Rotation sequence
'ZYX' | 'ZYZ' | 'ZXY' | 'ZXZ' | 'YXZ' | 'YXY' | 'YZX' | 'XYZ' | 'XYX' | 'XZY' | 'XZX'

Rotation sequence of Euler angle representation, specified as a character vector or string.

The rotation sequence defines the order of rotations about the axes. For example, if you specify a
rotation sequence of 'YZX':

1 The first rotation is about the y-axis.
2 The second rotation is about the new z-axis.
3 The third rotation is about the new x-axis.

Data Types: char | string
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rotationType — Type of rotation
'point' | 'frame'

Type of rotation, specified as 'point' or 'frame'.

In a point rotation, the frame is static and the point moves. In a frame rotation, the point is static and
the frame moves. Point rotation and frame rotation define equivalent angular displacements but in
opposite directions.

Data Types: char | string

Output Arguments
eulerAngles — Euler angle representation (degrees)
N-by-3 matrix

Euler angle representation in degrees, returned as a N-by-3 matrix. N is the number of quaternions in
the quat argument.

For each row of eulerAngles, the first column corresponds to the first axis in the rotation sequence,
the second column corresponds to the second axis in the rotation sequence, and the third column
corresponds to the third axis in the rotation sequence.

The data type of the Euler angles representation is the same as the underlying data type of quat.
Data Types: single | double
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
euler | rotateframe | rotatepoint

Objects
quaternion

Topics
“Rotations, Orientations, and Quaternions for Automated Driving”

Introduced in R2020a
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exp
Exponential of quaternion array

Syntax
B = exp(A)

Description
B = exp(A) computes the exponential of the elements of the quaternion array A.

Examples

Exponential of Quaternion Array

Create a 4-by-1 quaternion array A.

A = quaternion(magic(4))

A=4×1 quaternion array
     16 +  2i +  3j + 13k
      5 + 11i + 10j +  8k
      9 +  7i +  6j + 12k
      4 + 14i + 15j +  1k

Compute the exponential of A.

B = exp(A)

B=4×1 quaternion array
     5.3525e+06 + 1.0516e+06i + 1.5774e+06j + 6.8352e+06k
        -57.359 -     89.189i -     81.081j -     64.865k
        -6799.1 +     2039.1i +     1747.8j +     3495.6k
          -6.66 +     36.931i +     39.569j +     2.6379k

Input Arguments
A — Input quaternion
scalar | vector | matrix | multidimensional array

Input quaternion, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: quaternion

Output Arguments
B — Result
scalar | vector | matrix | multidimensional array
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Result of quaternion exponential, returned as a scalar, vector, matrix, or multidimensional array.
Data Types: quaternion

Algorithms
Given a quaternion A = a + bi + c j + dk = a + v, the exponential is computed by

exp(A) = ea cos v + v
v sin v

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
log | power, .^

Objects
quaternion

Topics
“Rotations, Orientations, and Quaternions for Automated Driving”

Introduced in R2020a
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ldivide, .\
Element-wise quaternion left division

Syntax
C = A.\B

Description
C = A.\B performs quaternion element-wise division by dividing each element of quaternion B by
the corresponding element of quaternion A.

Examples

Divide a Quaternion Array by a Real Scalar

Create a 2-by-1 quaternion array, and divide it element-by-element by a real scalar.

A = quaternion([1:4;5:8])

A=2×1 quaternion array
     1 + 2i + 3j + 4k
     5 + 6i + 7j + 8k

B = 2;
C = A.\B

C=2×1 quaternion array
     0.066667 -  0.13333i -      0.2j -  0.26667k
     0.057471 - 0.068966i -  0.08046j - 0.091954k

Divide a Quaternion Array by Another Quaternion Array

Create a 2-by-2 quaternion array, and divide it element-by-element by another 2-by-2 quaternion
array.

q1 = quaternion([1:4;2:5;4:7;5:8]);
A = reshape(q1,2,2)

A=2×2 quaternion array
     1 + 2i + 3j + 4k     4 + 5i + 6j + 7k
     2 + 3i + 4j + 5k     5 + 6i + 7j + 8k

q2 = quaternion(magic(4));
B = reshape(q2,2,2)
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B=2×2 quaternion array
     16 +  2i +  3j + 13k      9 +  7i +  6j + 12k
      5 + 11i + 10j +  8k      4 + 14i + 15j +  1k

C = A.\B

C=2×2 quaternion array
          2.7 -      1.9i -      0.9j -      1.7k       1.5159 -  0.37302i -  0.15079j -  0.02381k
       2.2778 +  0.46296i -  0.57407j + 0.092593k       1.2471 +  0.91379i -  0.33908j -   0.1092k

Input Arguments
A — Divisor
scalar | vector | matrix | multidimensional array

Divisor, specified as a quaternion, an array of quaternions, a real scalar, or an array of real numbers.

A and B must have compatible sizes. In the simplest cases, they can be the same size or one can be a
scalar. Two inputs have compatible sizes if, for every dimension, the dimension sizes of the inputs are
the same or one of the dimensions is 1.
Data Types: quaternion | single | double

B — Dividend
scalar | vector | matrix | multidimensional array

Dividend, specified as a quaternion, an array of quaternions, a real scalar, or an array of real
numbers.

A and B must have compatible sizes. In the simplest cases, they can be the same size or one can be a
scalar. Two inputs have compatible sizes if, for every dimension, the dimension sizes of the inputs are
the same or one of the dimensions is 1.
Data Types: quaternion | single | double

Output Arguments
C — Result
scalar | vector | matrix | multidimensional array

Result of quaternion division, returned as a scalar, vector, matrix, or multidimensional array.
Data Types: quaternion

Algorithms
Quaternion Division

Given a quaternion A = a1 + a2i + a3 j + a4k and a real scalar p,

C = p . \A =
a1
p +

a2
p i +

a3
p j +

a4
p k
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Note For a real scalar p, A./p = A.\p.

Quaternion Division by a Quaternion Scalar

Given two quaternions A and B of compatible sizes, then

C = A . \B = A−1 . * B = con j(A)
norm(A)2

. * B

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
conj | norm | rdivide, ./ | times, .*

Objects
quaternion

Topics
“Rotations, Orientations, and Quaternions for Automated Driving”

Introduced in R2020a
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log
Natural logarithm of quaternion array

Syntax
B = log(A)

Description
B = log(A) computes the natural logarithm of the elements of the quaternion array A.

Examples

Logarithmic Values of Quaternion Array

Create a 3-by-1 quaternion array A.

A = quaternion(randn(3,4))

A=3×1 quaternion array
     0.53767 + 0.86217i - 0.43359j +  2.7694k
      1.8339 + 0.31877i + 0.34262j -  1.3499k
     -2.2588 -  1.3077i +  3.5784j +  3.0349k

Compute the logarithmic values of A.

B = log(A)

B=3×1 quaternion array
      1.0925 + 0.40848i - 0.20543j +  1.3121k
      0.8436 + 0.14767i + 0.15872j - 0.62533k
      1.6807 - 0.53829i +   1.473j +  1.2493k

Input Arguments
A — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: quaternion

Output Arguments
B — Logarithm values
scalar | vector | matrix | multidimensional array
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Quaternion natural logarithm values, returned as a scalar, vector, matrix, or multidimensional array.
Data Types: quaternion

Algorithms
Given a quaternion A = a + v = a + bi + c j + dk, the logarithm is computed by

log(A) = log A + v
v arccos a

A

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
exp | power, .^

Objects
quaternion

Topics
“Rotations, Orientations, and Quaternions for Automated Driving”

Introduced in R2020a
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meanrot
Quaternion mean rotation

Syntax
quatAverage = meanrot(quat)
quatAverage = meanrot(quat,dim)
quatAverage = meanrot( ___ ,nanflag)

Description
quatAverage = meanrot(quat) returns the average rotation of the elements of quat along the
first array dimension whose size not does equal 1.

• If quat is a vector, meanrot(quat) returns the average rotation of the elements.
• If quat is a matrix, meanrot(quat) returns a row vector containing the average rotation of each

column.
• If quat is a multidimensional array, then mearot(quat) operates along the first array dimension

whose size does not equal 1, treating the elements as vectors. This dimension becomes 1 while the
sizes of all other dimensions remain the same.

The meanrot function normalizes the input quaternions, quat, before calculating the mean.

quatAverage = meanrot(quat,dim) return the average rotation along dimension dim. For
example, if quat is a matrix, then meanrot(quat,2) is a column vector containing the mean of each
row.

quatAverage = meanrot( ___ ,nanflag) specifies whether to include or omit NaN values from
the calculation for any of the previous syntaxes. meanrot(quat,'includenan') includes all NaN
values in the calculation while mean(quat,'omitnan') ignores them.

Examples

Quaternion Mean Rotation

Create a matrix of quaternions corresponding to three sets of Euler angles.

eulerAngles = [40 20 10; ...
               50 10 5; ...
               45 70 1];

quat = quaternion(eulerAngles,'eulerd','ZYX','frame');

Determine the average rotation represented by the quaternions. Convert the average rotation to
Euler angles in degrees for readability.

quatAverage = meanrot(quat)
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quatAverage = quaternion
      0.88863 - 0.062598i +  0.27822j +  0.35918k

eulerAverage = eulerd(quatAverage,'ZYX','frame')

eulerAverage = 1×3

   45.7876   32.6452    6.0407

Average Out Rotational Noise

Use meanrot over a sequence of quaternions to average out additive noise.

Create a vector of 1e6 quaternions whose distance, as defined by the dist function, from
quaternion(1,0,0,0) is normally distributed. Plot the Euler angles corresponding to the noisy
quaternion vector.

nrows = 1e6;
ax = 2*rand(nrows,3) - 1;   
ax = ax./sqrt(sum(ax.^2,2));
ang = 0.5*randn(size(ax,1),1);
q = quaternion(ax.*ang ,'rotvec');

noisyEulerAngles = eulerd(q,'ZYX','frame');

figure(1)

subplot(3,1,1)
plot(noisyEulerAngles(:,1))
title('Z-Axis')
ylabel('Rotation (degrees)')
hold on

subplot(3,1,2)
plot(noisyEulerAngles(:,2))
title('Y-Axis')
ylabel('Rotation (degrees)')
hold on

subplot(3,1,3)
plot(noisyEulerAngles(:,3))
title('X-Axis')
ylabel('Rotation (degrees)')
hold on
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Use meanrot to determine the average quaternion given the vector of quaternions. Convert to Euler
angles and plot the results.

qAverage = meanrot(q);

qAverageInEulerAngles = eulerd(qAverage,'ZYX','frame');

figure(1)

subplot(3,1,1)
plot(ones(nrows,1)*qAverageInEulerAngles(:,1))
title('Z-Axis')

subplot(3,1,2)
plot(ones(nrows,1)*qAverageInEulerAngles(:,2))
title('Y-Axis')

subplot(3,1,3)
plot(ones(nrows,1)*qAverageInEulerAngles(:,3))
title('X-Axis')
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The meanrot Algorithm and Limitations

The meanrot Algorithm

The meanrot function outputs a quaternion that minimizes the squared Frobenius norm of the
difference between rotation matrices. Consider two quaternions:

• q0 represents no rotation.
• q90 represents a 90 degree rotation about the x-axis.

q0 = quaternion([0 0 0],'eulerd','ZYX','frame');
q90 = quaternion([0 0 90],'eulerd','ZYX','frame');

Create a quaternion sweep, qSweep, that represents rotations from 0 to 180 degrees about the x-axis.

eulerSweep = (0:1:180)';
qSweep = quaternion([zeros(numel(eulerSweep),2),eulerSweep], ...
    'eulerd','ZYX','frame');

Convert q0, q90, and qSweep to rotation matrices. In a loop, calculate the metric to minimize for
each member of the quaternion sweep. Plot the results and return the value of the Euler sweep that
corresponds to the minimum of the metric.

r0     = rotmat(q0,'frame');
r90    = rotmat(q90,'frame');
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rSweep = rotmat(qSweep,'frame');

metricToMinimize = zeros(size(rSweep,3),1);
for i = 1:numel(qSweep)
    metricToMinimize(i) = norm((rSweep(:,:,i) - r0),'fro').^2 + ...
                          norm((rSweep(:,:,i) - r90),'fro').^2;
end

plot(eulerSweep,metricToMinimize)
xlabel('Euler Sweep (degrees)')
ylabel('Metric to Minimize')

[~,eulerIndex] = min(metricToMinimize);
eulerSweep(eulerIndex)

ans = 45

The minimum of the metric corresponds to the Euler angle sweep at 45 degrees. That is, meanrot
defines the average between quaterion([0 0 0],'ZYX','frame') and quaternion([0 0
90],'ZYX','frame') as quaternion([0 0 45],'ZYX','frame'). Call meanrot with q0 and
q90 to verify the same result.

eulerd(meanrot([q0,q90]),'ZYX','frame')

ans = 1×3
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         0         0   45.0000

Limitations

The metric that meanrot uses to determine the mean rotation is not unique for quaternions
significantly far apart. Repeat the experiment above for quaternions that are separated by 180
degrees.

q180 = quaternion([0 0 180],'eulerd','ZYX','frame');
r180 = rotmat(q180,'frame');

for i = 1:numel(qSweep)
    metricToMinimize(i) = norm((rSweep(:,:,i) - r0),'fro').^2 + ...
                          norm((rSweep(:,:,i) - r180),'fro').^2;
end

plot(eulerSweep,metricToMinimize)
xlabel('Euler Sweep (degrees)')
ylabel('Metric to Minimize')

[~,eulerIndex] = min(metricToMinimize);
eulerSweep(eulerIndex)

ans = 159
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Quaternion means are usually calculated for rotations that are close to each other, which makes the
edge case shown in this example unlikely in real-world applications. To average two quaternions that
are significantly far apart, use the slerp function. Repeat the experiment using slerp and verify
that the quaternion mean returned is more intuitive for large distances.

qMean = slerp(q0,q180,0.5);
q0_q180 = eulerd(qMean,'ZYX','frame')

q0_q180 = 1×3

         0         0   90.0000

Input Arguments
quat — Quaternion
scalar | vector | matrix | multidimensional array

Quaternion for which to calculate the mean, specified as a scalar, vector, matrix, or multidimensional
array of quaternions.
Data Types: quaternion

dim — Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. If no value is specified, then the
default is the first array dimension whose size does not equal 1.

Dimension dim indicates the dimension whose length reduces to 1. The size(quatAverage,dim) is
1, while the sizes of all other dimensions remain the same.
Data Types: double | single

nanflag — NaN condition
'includenan' (default) | 'omitnan'

NaN condition, specified as one of these values:

• 'includenan' –– Include NaN values when computing the mean rotation, resulting in NaN.
• 'omitnan' –– Ignore all NaN values in the input.

Data Types: char | string

Output Arguments
quatAverage — Quaternion average rotation
scalar | vector | matrix | multidimensional array

Quaternion average rotation, returned as a scalar, vector, matrix, or multidimensional array.
Data Types: single | double
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Algorithms
meanrot determines a quaternion mean, q, according to [1]. q is the quaternion that minimizes the
squared Frobenius norm of the difference between rotation matrices:

q = arg
min

q ∈ S3 ∑i = 1

n
A q − A qi F

2

References
[1] Markley, F. Landis, Yang Chen, John Lucas Crassidis, and Yaakov Oshman. "Average Quaternions."

Journal of Guidance, Control, and Dynamics. Vol. 30, Issue 4, 2007, pp. 1193-1197.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
dist | slerp

Objects
quaternion

Topics
“Rotations, Orientations, and Quaternions for Automated Driving”

Introduced in R2020a
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minus, -
Quaternion subtraction

Syntax
C = A - B

Description
C = A - B subtracts quaternion B from quaternion A using quaternion subtraction. Either A or B
may be a real number, in which case subtraction is performed with the real part of the quaternion
argument.

Examples

Subtract a Quaternion from a Quaternion

Quaternion subtraction is defined as the subtraction of the corresponding parts of each quaternion.
Create two quaternions and perform subtraction.

Q1 = quaternion([1,0,-2,7]);
Q2 = quaternion([1,2,3,4]);

Q1minusQ2 = Q1 - Q2

Q1minusQ2 = quaternion
     0 - 2i - 5j + 3k

Subtract a Real Number from a Quaternion

Addition and subtraction of real numbers is defined for quaternions as acting on the real part of the
quaternion. Create a quaternion and then subtract 1 from the real part.

Q = quaternion([1,1,1,1])

Q = quaternion
     1 + 1i + 1j + 1k

Qminus1 = Q - 1

Qminus1 = quaternion
     0 + 1i + 1j + 1k
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Input Arguments
A — Input
scalar | vector | matrix | multidimensional array

Input, specified as a quaternion, array of quaternions, real number, or array of real numbers.
Data Types: quaternion | single | double

B — Input
scalar | vector | matrix | multidimensional array

Input, specified as a quaternion, array of quaternions, real number, or array of real numbers.
Data Types: quaternion | single | double

Output Arguments
C — Result
scalar | vector | matrix | multidimensional array

Result of quaternion subtraction, returned as a scalar, vector, matrix, or multidimensional array of
quaternions.
Data Types: quaternion

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
mtimes, * | times, .* | uminus, -

Objects
quaternion

Topics
“Rotations, Orientations, and Quaternions for Automated Driving”

Introduced in R2020a

4 Objects

4-1056



mtimes, *
Quaternion multiplication

Syntax
quatC = A*B

Description
quatC = A*B implements quaternion multiplication if either A or B is a quaternion. Either A or B
must be a scalar.

You can use quaternion multiplication to compose rotation operators:

• To compose a sequence of frame rotations, multiply the quaternions in the order of the desired
sequence of rotations. For example, to apply a p quaternion followed by a q quaternion, multiply in
the order pq. The rotation operator becomes pq ∗v pq , where v represents the object to rotate
specified in quaternion form. * represents conjugation.

• To compose a sequence of point rotations, multiply the quaternions in the reverse order of the
desired sequence of rotations. For example, to apply a p quaternion followed by a q quaternion,
multiply in the reverse order, qp. The rotation operator becomes qp v qp ∗.

Examples

Multiply Quaternion Scalar and Quaternion Vector

Create a 4-by-1 column vector, A, and a scalar, b. Multiply A times b.

A = quaternion(randn(4,4))

A=4×1 quaternion array
      0.53767 +  0.31877i +   3.5784j +   0.7254k
       1.8339 -   1.3077i +   2.7694j - 0.063055k
      -2.2588 -  0.43359i -   1.3499j +  0.71474k
      0.86217 +  0.34262i +   3.0349j -  0.20497k

b = quaternion(randn(1,4))

b = quaternion
    -0.12414 +  1.4897i +   1.409j +  1.4172k

C = A*b

C=4×1 quaternion array
      -6.6117 +   4.8105i +  0.94224j -   4.2097k
      -2.0925 +   6.9079i +   3.9995j -   3.3614k
       1.8155 -   6.2313i -    1.336j -     1.89k
      -4.6033 +   5.8317i + 0.047161j -    2.791k
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Input Arguments
A — Input
scalar | vector | matrix | multidimensional array

Input to multiply, specified as a quaternion, array of quaternions, real scalar, or array of real scalars.

If B is nonscalar, then A must be scalar.
Data Types: quaternion | single | double

B — Input
scalar | vector | matrix | multidimensional array

Input to multiply, specified as a quaternion, array of quaternions, real scalar, or array of real scalars.

If A is nonscalar, then B must be scalar.
Data Types: quaternion | single | double

Output Arguments
quatC — Quaternion product
scalar | vector | matrix | multidimensional array

Quaternion product, returned as a quaternion or array of quaternions.
Data Types: quaternion

Algorithms
Quaternion Multiplication by a Real Scalar

Given a quaternion

q = aq + bqi + cq j + dqk,

the product of q and a real scalar β is

βq = βaq + βbqi + βcq j + βdqk

Quaternion Multiplication by a Quaternion Scalar

The definition of the basis elements for quaternions,

i2 = j2 = k2 = ijk = − 1 ,

can be expanded to populate a table summarizing quaternion basis element multiplication:

 1 i j k
1 1 i j k
i i −1 k −j
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j j −k −1 i
k k j −i −1

When reading the table, the rows are read first, for example: ij = k and ji = −k.

Given two quaternions, q = aq + bqi + cq j + dqk, and p = ap + bpi + cp j + dpk, the multiplication can be
expanded as:

z = pq = ap + bpi + cp j + dpk aq + bqi + cq j + dqk
= apaq + apbqi + apcq j + apdqk

+bpaqi + bpbqi2 + bpcqij + bpdqik

+cpaq j + cpbq ji + cpcq j2 + cpdq jk

+dpaqk + dpbqki + dpcqkj + dpdqk2

You can simplify the equation using the quaternion multiplication table:

z = pq = apaq + apbqi + apcq j + apdqk
+bpaqi − bpbq + bpcqk − bpdq j
+cpaq j − cpbqk − cpcq + cpdqi
+dpaqk + dpbq j − dpcqi − dpdq

References
[1] Kuipers, Jack B. Quaternions and Rotation Sequences: A Primer with Applications to Orbits,

Aerospace, and Virtual Reality. Princeton, NJ: Princeton University Press, 2007.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
times, .*

Objects
quaternion

Topics
“Rotations, Orientations, and Quaternions for Automated Driving”

Introduced in R2020a
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norm
Quaternion norm

Syntax
N = norm(quat)

Description
N = norm(quat) returns the norm of the quaternion, quat.

Given a quaternion of the form Q = a + bi + c j + dk, the norm of the quaternion is defined as
norm(Q) = a2 + b2 + c2 + d2.

Examples

Calculate Quaternion Norm

Create a scalar quaternion and calculate its norm.

quat = quaternion(1,2,3,4);
norm(quat)

ans = 5.4772

The quaternion norm is defined as the square root of the sum of the quaternion parts squared.
Calculate the quaternion norm explicitly to verify the result of the norm function.

[a,b,c,d] = parts(quat);
sqrt(a^2+b^2+c^2+d^2)

ans = 5.4772

Input Arguments
quat — Quaternion
scalar | vector | matrix | multidimensional array

Quaternion for which to calculate the norm, specified as a scalar, vector, matrix, or multidimensional
array of quaternions.
Data Types: quaternion

Output Arguments
N — Quaternion norm
scalar | vector | matrix | multidimensional array
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Quaternion norm. If the input quat is an array, the output is returned as an array the same size as
quat. Elements of the array are real numbers with the same data type as the underlying data type of
the quaternion, quat.
Data Types: single | double

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
conj | normalize | parts

Objects
quaternion

Topics
“Rotations, Orientations, and Quaternions for Automated Driving”

Introduced in R2020a

 norm

4-1061



normalize
Quaternion normalization

Syntax
quatNormalized = normalize(quat)

Description
quatNormalized = normalize(quat) normalizes the quaternion.

Given a quaternion of the form Q = a + bi + c j + dk, the normalized quaternion is defined as
Q/ a2 + b2 + c2 + d2.

Examples

Normalize Elements of Quaternion Vector

Quaternions can represent rotations when normalized. You can use normalize to normalize a scalar,
elements of a matrix, or elements of a multi-dimensional array of quaternions. Create a column vector
of quaternions, then normalize them.

quatArray = quaternion([1,2,3,4; ...
                        2,3,4,1; ...
                        3,4,1,2]);
quatArrayNormalized = normalize(quatArray)

quatArrayNormalized=3×1 quaternion array
     0.18257 + 0.36515i + 0.54772j +  0.7303k
     0.36515 + 0.54772i +  0.7303j + 0.18257k
     0.54772 +  0.7303i + 0.18257j + 0.36515k

Input Arguments
quat — Quaternion to normalize
scalar | vector | matrix | multidimensional array

Quaternion to normalize, specified as a scalar, vector, matrix, or multidimensional array of
quaternions.
Data Types: quaternion

Output Arguments
quatNormalized — Normalized quaternion
scalar | vector | matrix | multidimensional array
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Normalized quaternion, returned as a quaternion or array of quaternions the same size as quat.
Data Types: quaternion

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
conj | norm | times, .*

Objects
quaternion

Topics
“Rotations, Orientations, and Quaternions for Automated Driving”

Introduced in R2020a

 normalize

4-1063



ones
Create quaternion array with real parts set to one and imaginary parts set to zero

Syntax
quatOnes = ones('quaternion')
quatOnes = ones(n,'quaternion')
quatOnes = ones(sz,'quaternion')
quatOnes = ones(sz1,...,szN,'quaternion')

quatOnes = ones( ___ ,'like',prototype,'quaternion')

Description
quatOnes = ones('quaternion') returns a scalar quaternion with the real part set to 1 and the
imaginary parts set to 0.

Given a quaternion of the form Q = a + bi + c j + dk, a quaternion one is defined as
Q = 1 + 0i + 0j + 0k.

quatOnes = ones(n,'quaternion') returns an n-by-n quaternion matrix with the real parts set
to 1 and the imaginary parts set to 0.

quatOnes = ones(sz,'quaternion') returns an array of quaternion ones where the size vector,
sz, defines size(qOnes).
Example: ones([1,4,2],'quaternion') returns a 1-by-4-by-2 array of quaternions with the real
parts set to 1 and the imaginary parts set to 0.

quatOnes = ones(sz1,...,szN,'quaternion') returns a sz1-by-...-by-szN array of ones where
sz1,…,szN indicates the size of each dimension.

quatOnes = ones( ___ ,'like',prototype,'quaternion') specifies the underlying class of
the returned quaternion array to be the same as the underlying class of the quaternion prototype.

Examples

Quaternion Scalar One

Create a quaternion scalar one.

quatOnes = ones('quaternion')

quatOnes = quaternion
     1 + 0i + 0j + 0k
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Square Matrix of Quaternion Ones

Create an n-by-n matrix of quaternion ones.

n = 3;
quatOnes = ones(n,'quaternion')

quatOnes=3×3 quaternion array
     1 + 0i + 0j + 0k     1 + 0i + 0j + 0k     1 + 0i + 0j + 0k
     1 + 0i + 0j + 0k     1 + 0i + 0j + 0k     1 + 0i + 0j + 0k
     1 + 0i + 0j + 0k     1 + 0i + 0j + 0k     1 + 0i + 0j + 0k

Multidimensional Array of Quaternion Ones

Create a multidimensional array of quaternion ones by defining array dimensions in order. In this
example, you create a 3-by-1-by-2 array. You can specify dimensions using a row vector or comma-
separated integers. Specify the dimensions using a row vector and display the results:

dims = [3,1,2];
quatOnesSyntax1 = ones(dims,'quaternion')

quatOnesSyntax1 = 3x1x2 quaternion array
quatOnesSyntax1(:,:,1) = 

     1 + 0i + 0j + 0k
     1 + 0i + 0j + 0k
     1 + 0i + 0j + 0k

quatOnesSyntax1(:,:,2) = 

     1 + 0i + 0j + 0k
     1 + 0i + 0j + 0k
     1 + 0i + 0j + 0k

Specify the dimensions using comma-separated integers, and then verify the equivalency of the two
syntaxes:

quatOnesSyntax2 = ones(3,1,2,'quaternion');
isequal(quatOnesSyntax1,quatOnesSyntax2)

ans = logical
   1

Underlying Class of Quaternion Ones

A quaternion is a four-part hyper-complex number used in three-dimensional rotations and
orientations. You can specify the underlying data type of the parts as single or double. The default
is double.
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Create a quaternion array of ones with the underlying data type set to single.

quatOnes = ones(2,'like',single(1),'quaternion')

quatOnes=2×2 quaternion array
     1 + 0i + 0j + 0k     1 + 0i + 0j + 0k
     1 + 0i + 0j + 0k     1 + 0i + 0j + 0k

Verify the underlying class using the classUnderlying function.

classUnderlying(quatOnes)

ans = 
'single'

Input Arguments
n — Size of square quaternion matrix
integer value

Size of square quaternion matrix, specified as an integer value.

If n is zero or negative, then quatOnes is returned as an empty matrix.
Example: ones(4,'quaternion') returns a 4-by-4 matrix of quaternions with the real parts set to
1 and the imaginary parts set to 0.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

sz — Output size
row vector of integer values

Output size, specified as a row vector of integer values. Each element of sz indicates the size of the
corresponding dimension in quatOnes. If the size of any dimension is 0 or negative, then quatOnes
is returned as an empty array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

prototype — Quaternion prototype
variable

Quaternion prototype, specified as a variable.
Example: ones(2,'like',quat,'quaternion') returns a 2-by-2 matrix of quaternions with the
same underlying class as the prototype quaternion, quat.
Data Types: quaternion

sz1,...,szN — Size of each dimension
two or more integer values

Size of each dimension, specified as two or more integers. If the size of any dimension is 0 or
negative, then quatOnes is returned as an empty array.
Example: ones(2,3,'quaternion') returns a 2-by-3 matrix of quaternions with the real parts set
to 1 and the imaginary parts set to 0.
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Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
quatOnes — Quaternion ones
scalar | vector | matrix | multidimensional array

Quaternion ones, returned as a scalar, vector, matrix, or multidimensional array of quaternions.

Given a quaternion of the form Q = a + bi + c j + dk, a quaternion one is defined as
Q = 1 + 0i + 0j + 0k.
Data Types: quaternion

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
zeros

Objects
quaternion

Topics
“Rotations, Orientations, and Quaternions for Automated Driving”

Introduced in R2020a
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parts
Extract quaternion parts

Syntax
[a,b,c,d] = parts(quat)

Description
[a,b,c,d] = parts(quat) returns the parts of the quaternion array as arrays, each the same size
as quat.

Examples

Convert Quaternion to Matrix of Quaternion Parts

Convert a quaternion representation to parts using the parts function.

Create a two-element column vector of quaternions by specifying the parts.

quat = quaternion([1:4;5:8])

quat=2×1 quaternion array
     1 + 2i + 3j + 4k
     5 + 6i + 7j + 8k

Recover the parts from the quaternion matrix using the parts function. The parts are returned as
separate output arguments, each the same size as the input 2-by-1 column vector of quaternions.

[qA,qB,qC,qD] = parts(quat)

qA = 2×1

     1
     5

qB = 2×1

     2
     6

qC = 2×1

     3
     7

qD = 2×1
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     4
     8

Input Arguments
quat — Quaternion
scalar | vector | matrix | multidimensional array

Quaternion, specified as a quaternion or array of quaternions.
Data Types: quaternion

Output Arguments
[a,b,c,d] — Quaternion parts
scalar | vector | matrix | multidimensional array

Quaternion parts, returned as four arrays: a, b, d, and d. Each part is the same size as quat.
Data Types: single | double

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
classUnderlying | compact

Objects
quaternion

Topics
“Rotations, Orientations, and Quaternions for Automated Driving”

Introduced in R2020a
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power, .^
Element-wise quaternion power

Syntax
C = A.^b

Description
C = A.^b raises each element of A to the corresponding power in b.

Examples

Raise a Quaternion to a Real Scalar Power

Create a quaternion and raise it to a real scalar power.

A = quaternion(1,2,3,4)

A = quaternion
     1 + 2i + 3j + 4k

b = 3;
C = A.^b

C = quaternion
     -86 -  52i -  78j - 104k

Raise a Quaternion Array to Powers from a Multidimensional Array

Create a 2-by-1 quaternion array and raise it to powers from a 2-D array.

A = quaternion([1:4;5:8])

A=2×1 quaternion array
     1 + 2i + 3j + 4k
     5 + 6i + 7j + 8k

b = [1 0 2; 3 2 1]

b = 2×3

     1     0     2
     3     2     1

C = A.^b
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C=2×3 quaternion array
        1 +    2i +    3j +    4k        1 +    0i +    0j +    0k      -28 +    4i +    6j +    8k
    -2110 -  444i -  518j -  592k     -124 +   60i +   70j +   80k        5 +    6i +    7j +    8k

Input Arguments
A — Base
scalar | vector | matrix | multidimensional array

Base, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: quaternion | single | double

b — Exponent
scalar | vector | matrix | multidimensional array

Exponent, specified as a real scalar, vector, matrix, or multidimensional array.
Data Types: single | double

Output Arguments
C — Result
scalar | vector | matrix | multidimensional array

Each element of quaternion A raised to the corresponding power in b, returned as a scalar, vector,
matrix, or multidimensional array.
Data Types: quaternion

Algorithms
The polar representation of a quaternion A = a + bi + c j + dk is given by

A = A cosθ + u sinθ

where θ is the angle of rotation, and û is the unit quaternion.

Quaternion A raised by a real exponent b is given by

P = A . ^b = A b cos bθ + u sin bθ

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
exp | log
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Objects
quaternion

Topics
“Rotations, Orientations, and Quaternions for Automated Driving”

Introduced in R2020a
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prod
Product of a quaternion array

Syntax
quatProd = prod(quat)
quatProd = prod(quat,dim)

Description
quatProd = prod(quat) returns the quaternion product of the elements of the array.

quatProd = prod(quat,dim) calculates the quaternion product along dimension dim.

Examples

Product of Quaternions in Each Column

Create a 3-by-3 array whose elements correspond to their linear indices.

A = reshape(quaternion(randn(9,4)),3,3)

A=3×3 quaternion array
      0.53767 +   2.7694i +    1.409j -  0.30344k      0.86217 +   0.7254i -   1.2075j +   0.8884k     -0.43359 -  0.20497i +  0.48889j -   0.8095k
       1.8339 -   1.3499i +   1.4172j +  0.29387k      0.31877 - 0.063055i +  0.71724j -   1.1471k      0.34262 -  0.12414i +   1.0347j -   2.9443k
      -2.2588 +   3.0349i +   0.6715j -  0.78728k      -1.3077 +  0.71474i +   1.6302j -   1.0689k       3.5784 +   1.4897i +  0.72689j +   1.4384k

Find the product of the quaternions in each column. The length of the first dimension is 1, and the
length of the second dimension matches size(A,2).

B = prod(A)

B=1×3 quaternion array
     -19.837 -  9.1521i +  15.813j -  19.918k     -5.4708 - 0.28535i +   3.077j -  1.2295k      -10.69 -  8.5199i -  2.8801j - 0.65338k

Product of Specified Dimension of Quaternion Array

You can specify which dimension of a quaternion array to take the product of.

Create a 2-by-2-by-2 quaternion array.

A = reshape(quaternion(randn(8,4)),2,2,2);

Find the product of the elements in each page of the array. The length of the first dimension matches
size(A,1), the length of the second dimension matches size(A,2), and the length of the third
dimension is 1.
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dim = 3;
B = prod(A,dim)

B=2×2 quaternion array
     -2.4847 +  1.1659i - 0.37547j +  2.8068k     0.28786 - 0.29876i - 0.51231j -  4.2972k
     0.38986 -  3.6606i -  2.0474j -   6.047k      -1.741 - 0.26782i +  5.4346j +  4.1452k

Input Arguments
quat — Quaternion
scalar | vector | matrix | multidimensional array

Quaternion, specified as scalar, vector, matrix, or multidimensional array of quaternions.
Example: qProd = prod(quat) calculates the quaternion product along the first non-singleton
dimension of quat.
Data Types: quaternion

dim — Dimension
first non-singleton dimension (default) | positive integer

Dimension along which to calculate the quaternion product, specified as a positive integer. If dim is
not specified, prod operates along the first non-singleton dimension of quat.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
quatProd — Quaternion product
positive integer

Quaternion product, returned as quaternion array with one less non-singleton dimension than quat.

For example, if quat is a 2-by-2-by-5 array,

• prod(quat,1) returns a 1-by-2-by-5 array.
• prod(quat,2) returns a 2-by-1-by-5 array.
• prod(quat,3) returns a 2-by-2 array.

Data Types: quaternion

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
mtimes, * | times, .*

4 Objects
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Objects
quaternion

Topics
“Rotations, Orientations, and Quaternions for Automated Driving”

Introduced in R2020a
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rdivide, ./
Element-wise quaternion right division

Syntax
C = A./B

Description
C = A./B performs quaternion element-wise division by dividing each element of quaternion A by
the corresponding element of quaternion B.

Examples

Divide a Quaternion Array by a Real Scalar

Create a 2-by-1 quaternion array, and divide it element-by-element by a real scalar.

A = quaternion([1:4;5:8])

A=2×1 quaternion array
     1 + 2i + 3j + 4k
     5 + 6i + 7j + 8k

B = 2;
C = A./B

C=2×1 quaternion array
     0.5 +   1i + 1.5j +   2k
     2.5 +   3i + 3.5j +   4k

Divide a Quaternion Array by Another Quaternion Array

Create a 2-by-2 quaternion array, and divide it element-by-element by another 2-by-2 quaternion
array.

q1 = quaternion(magic(4));
A = reshape(q1,2,2)

A=2×2 quaternion array
     16 +  2i +  3j + 13k      9 +  7i +  6j + 12k
      5 + 11i + 10j +  8k      4 + 14i + 15j +  1k

q2 = quaternion([1:4;3:6;2:5;4:7]);
B = reshape(q2,2,2)
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B=2×2 quaternion array
     1 + 2i + 3j + 4k     2 + 3i + 4j + 5k
     3 + 4i + 5j + 6k     4 + 5i + 6j + 7k

C = A./B

C=2×2 quaternion array
          2.7 -      0.1i -      2.1j -      1.7k       2.2778 + 0.092593i -  0.46296j -  0.57407k
       1.8256 - 0.081395i +  0.45349j -  0.24419k       1.4524 -      0.5i +   1.0238j -   0.2619k

Input Arguments
A — Dividend
scalar | vector | matrix | multidimensional array

Dividend, specified as a quaternion, an array of quaternions, a real scalar, or an array of real
numbers.

A and B must have compatible sizes. In the simplest cases, they can be the same size or one can be a
scalar. Two inputs have compatible sizes if, for every dimension, the dimension sizes of the inputs are
the same or one of the dimensions is 1.
Data Types: quaternion | single | double

B — Divisor
scalar | vector | matrix | multidimensional array

Divisor, specified as a quaternion, an array of quaternions, a real scalar, or an array of real numbers.

A and B must have compatible sizes. In the simplest cases, they can be the same size or one can be a
scalar. Two inputs have compatible sizes if, for every dimension, the dimension sizes of the inputs are
the same or one of the dimensions is 1.
Data Types: quaternion | single | double

Output Arguments
C — Result
scalar | vector | matrix | multidimensional array

Result of quaternion division, returned as a scalar, vector, matrix, or multidimensional array.
Data Types: quaternion

Algorithms
Quaternion Division

Given a quaternion A = a1 + a2i + a3 j + a4k and a real scalar p,

C = A . /p =
a1
p +

a2
p i +

a3
p j +

a4
p k
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Note For a real scalar p, A./p = A.\p.

Quaternion Division by a Quaternion Scalar

Given two quaternions A and B of compatible sizes,

C = A . /B = A . * B−1 = A . * con j(B)
norm(B)2

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
conj | ldivide, .\ | norm | times, .*

Objects
quaternion

Topics
“Rotations, Orientations, and Quaternions for Automated Driving”

Introduced in R2020a
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randrot
Uniformly distributed random rotations

Syntax
R = randrot
R = randrot(m)
R = randrot(m1,...,mN)
R = randrot([m1,...,mN])

Description
R = randrot returns a unit quaternion drawn from a uniform distribution of random rotations.

R = randrot(m) returns an m-by-m matrix of unit quaternions drawn from a uniform distribution of
random rotations.

R = randrot(m1,...,mN) returns an m1-by-...-by-mN array of random unit quaternions, where m1,
…, mN indicate the size of each dimension. For example, randrot(3,4) returns a 3-by-4 matrix of
random unit quaternions.

R = randrot([m1,...,mN]) returns an m1-by-...-by-mN array of random unit quaternions, where
m1,…, mN indicate the size of each dimension. For example, randrot([3,4]) returns a 3-by-4 matrix
of random unit quaternions.

Examples

Matrix of Random Rotations

Generate a 3-by-3 matrix of uniformly distributed random rotations.

r = randrot(3)

r=3×3 quaternion array
      0.17446 +  0.59506i -  0.73295j +  0.27976k      0.69704 - 0.060589i +  0.68679j -  0.19695k      0.35191 +  0.74478i +  0.52322j -  0.21842k
      0.21908 -  0.89875i -    0.298j +  0.23548k    -0.049744 +  0.59691i +  0.56459j +  0.56786k      0.17527 -  0.46955i +  0.52986j -  0.68414k
       0.6375 +  0.49338i -  0.24049j +  0.54068k       0.2979 -  0.53568i +  0.31819j +  0.72323k     -0.30189 -  0.22864i -  0.83159j +  0.40626k

Create Uniform Distribution of Random Rotations

Create a vector of 500 random quaternions. Use rotatepoint on page 4-1088 to visualize the
distribution of the random rotations applied to point (1, 0, 0).

q = randrot(500,1);

pt = rotatepoint(q, [1 0 0]);
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figure
scatter3(pt(:,1), pt(:,2), pt(:,3))
axis equal

Input Arguments
m — Size of square matrix
integer

Size of square quaternion matrix, specified as an integer value. If m is 0 or negative, then R is
returned as an empty matrix.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

m1,...,mN — Size of each dimension
two or more integer values

Size of each dimension, specified as two or more integer values. If the size of any dimension is 0 or
negative, then R is returned as an empty array.
Example: randrot(2,3) returns a 2-by-3 matrix of random quaternions.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

[m1,...,mN] — Vector of size of each dimension
row vector of integer values

4 Objects

4-1080



Vector of size of each dimension, specified as a row vector of two or more integer values. If the size of
any dimension is 0 or negative, then R is returned as an empty array.
Example: randrot([2,3]) returns a 2-by-3 matrix of random quaternions.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
R — Random quaternions
scalar | vector | matrix | multidimensional array

Random quaternions, returned as a quaternion or array of quaternions.
Data Types: quaternion

References
[1] Shoemake, K. "Uniform Random Rotations." Graphics Gems III (K. David, ed.). New York:

Academic Press, 1992.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
quaternion

Topics
“Rotations, Orientations, and Quaternions for Automated Driving”

Introduced in R2020a
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rotateframe
Quaternion frame rotation

Syntax
rotationResult = rotateframe(quat,cartesianPoints)

Description
rotationResult = rotateframe(quat,cartesianPoints) rotates the frame of reference for
the Cartesian points using the quaternion, quat. The elements of the quaternion are normalized
before use in the rotation.

Examples

Rotate Frame Using Quaternion Vector

Define a point in three dimensions. The coordinates of a point are always specified in the order x, y,
and z. For convenient visualization, define the point on the x-y plane.

x = 0.5;
y = 0.5;
z = 0;
plot(x,y,'ko')
hold on
axis([-1 1 -1 1])
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Create a quaternion vector specifying two separate rotations, one to rotate the frame 45 degrees and
another to rotate the point -90 degrees about the z-axis. Use rotateframe to perform the rotations.

quat = quaternion([0,0,pi/4; ...
                   0,0,-pi/2],'euler','XYZ','frame');
               
rereferencedPoint = rotateframe(quat,[x,y,z])

rereferencedPoint = 2×3

    0.7071   -0.0000         0
   -0.5000    0.5000         0

Plot the rereferenced points.

plot(rereferencedPoint(1,1),rereferencedPoint(1,2),'bo')
plot(rereferencedPoint(2,1),rereferencedPoint(2,2),'go')
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Rereference Group of Points using Quaternion

Define two points in three-dimensional space. Define a quaternion to rereference the points by first
rotating the reference frame about the z-axis 30 degrees and then about the new y-axis 45 degrees.

a = [1,0,0];
b = [0,1,0];
quat = quaternion([30,45,0],'eulerd','ZYX','point');

Use rotateframe to reference both points using the quaternion rotation operator. Display the result.

rP = rotateframe(quat,[a;b])

rP = 2×3

    0.6124   -0.3536    0.7071
    0.5000    0.8660   -0.0000

Visualize the original orientation and the rotated orientation of the points. Draw lines from the origin
to each of the points for visualization purposes.

plot3(a(1),a(2),a(3),'bo');

hold on
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grid on
axis([-1 1 -1 1 -1 1])
xlabel('x')
ylabel('y')
zlabel('z')

plot3(b(1),b(2),b(3),'ro');
plot3(rP(1,1),rP(1,2),rP(1,3),'bd')
plot3(rP(2,1),rP(2,2),rP(2,3),'rd')

plot3([0;rP(1,1)],[0;rP(1,2)],[0;rP(1,3)],'k')
plot3([0;rP(2,1)],[0;rP(2,2)],[0;rP(2,3)],'k')
plot3([0;a(1)],[0;a(2)],[0;a(3)],'k')
plot3([0;b(1)],[0;b(2)],[0;b(3)],'k')

Input Arguments
quat — Quaternion that defines rotation
scalar | vector

Quaternion that defines rotation, specified as a scalar quaternion or vector of quaternions.
Data Types: quaternion

cartesianPoints — Three-dimensional Cartesian points
1-by-3 vector | N-by-3 matrix
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Three-dimensional Cartesian points, specified as a 1-by-3 vector or N-by-3 matrix.
Data Types: single | double

Output Arguments
rotationResult — Re-referenced Cartesian points
vector | matrix

Cartesian points defined in reference to rotated reference frame, returned as a vector or matrix the
same size as cartesianPoints.

The data type of the re-referenced Cartesian points is the same as the underlying data type of quat.
Data Types: single | double

Algorithms
Quaternion frame rotation re-references a point specified in R3 by rotating the original frame of
reference according to a specified quaternion:

Lq u = q*uq

where q is the quaternion, * represents conjugation, and u is the point to rotate, specified as a
quaternion.

For convenience, the rotateframe function takes a point in R3 and returns a point in R3. Given a
function call with some arbitrary quaternion, q = a + bi + cj + dk, and arbitrary coordinate, [x,y,z],

point = [x,y,z];
rereferencedPoint = rotateframe(q,point)

the rotateframe function performs the following operations:

1 Converts point [x,y,z] to a quaternion:

uq = 0 + xi + y j + zk
2 Normalizes the quaternion, q:

qn = q
a2 + b2 + c2 + d2

3 Applies the rotation:

vq = q*uqq
4 Converts the quaternion output, vq, back to R3

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
Functions
rotatepoint

Objects
quaternion

Topics
“Rotations, Orientations, and Quaternions for Automated Driving”

Introduced in R2020a
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rotatepoint
Quaternion point rotation

Syntax
rotationResult = rotatepoint(quat,cartesianPoints)

Description
rotationResult = rotatepoint(quat,cartesianPoints) rotates the Cartesian points using
the quaternion, quat. The elements of the quaternion are normalized before use in the rotation.

Examples

Rotate Point Using Quaternion Vector

Define a point in three dimensions. The coordinates of a point are always specified in order x, y, z. For
convenient visualization, define the point on the x-y plane.

x = 0.5;
y = 0.5;
z = 0;

plot(x,y,'ko')
hold on
axis([-1 1 -1 1])
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Create a quaternion vector specifying two separate rotations, one to rotate the point 45 and another
to rotate the point -90 degrees about the z-axis. Use rotatepoint to perform the rotation.

quat = quaternion([0,0,pi/4; ...
                   0,0,-pi/2],'euler','XYZ','point');
               
rotatedPoint = rotatepoint(quat,[x,y,z])

rotatedPoint = 2×3

   -0.0000    0.7071         0
    0.5000   -0.5000         0

Plot the rotated points.

plot(rotatedPoint(1,1),rotatedPoint(1,2),'bo')
plot(rotatedPoint(2,1),rotatedPoint(2,2),'go')
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Rotate Group of Points Using Quaternion

Define two points in three-dimensional space. Define a quaternion to rotate the point by first rotating
about the z-axis 30 degrees and then about the new y-axis 45 degrees.

a = [1,0,0];
b = [0,1,0];
quat = quaternion([30,45,0],'eulerd','ZYX','point');

Use rotatepoint to rotate both points using the quaternion rotation operator. Display the result.

rP = rotatepoint(quat,[a;b])

rP = 2×3

    0.6124    0.5000   -0.6124
   -0.3536    0.8660    0.3536

Visualize the original orientation and the rotated orientation of the points. Draw lines from the origin
to each of the points for visualization purposes.

plot3(a(1),a(2),a(3),'bo');

hold on
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grid on
axis([-1 1 -1 1 -1 1])
xlabel('x')
ylabel('y')
zlabel('z')

plot3(b(1),b(2),b(3),'ro');
plot3(rP(1,1),rP(1,2),rP(1,3),'bd')
plot3(rP(2,1),rP(2,2),rP(2,3),'rd')

plot3([0;rP(1,1)],[0;rP(1,2)],[0;rP(1,3)],'k')
plot3([0;rP(2,1)],[0;rP(2,2)],[0;rP(2,3)],'k')
plot3([0;a(1)],[0;a(2)],[0;a(3)],'k')
plot3([0;b(1)],[0;b(2)],[0;b(3)],'k')

Input Arguments
quat — Quaternion that defines rotation
scalar | vector

Quaternion that defines rotation, specified as a scalar quaternion, row vector of quaternions, or
column vector of quaternions.
Data Types: quaternion
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cartesianPoints — Three-dimensional Cartesian points
1-by-3 vector | N-by-3 matrix

Three-dimensional Cartesian points, specified as a 1-by-3 vector or N-by-3 matrix.
Data Types: single | double

Output Arguments
rotationResult — Repositioned Cartesian points
vector | matrix

Rotated Cartesian points defined using the quaternion rotation, returned as a vector or matrix the
same size as cartesianPoints.
Data Types: single | double

Algorithms
Quaternion point rotation rotates a point specified in R3 according to a specified quaternion:

Lq(u) = quq*

where q is the quaternion, * represents conjugation, and u is the point to rotate, specified as a
quaternion.

For convenience, the rotatepoint function takes in a point in R3 and returns a point in R3. Given a
function call with some arbitrary quaternion, q = a + bi + cj + dk, and arbitrary coordinate, [x,y,z],
for example,

rereferencedPoint = rotatepoint(q,[x,y,z])

the rotatepoint function performs the following operations:

1 Converts point [x,y,z] to a quaternion:

uq = 0 + xi + y j + zk
2 Normalizes the quaternion, q:

qn = q
a2 + b2 + c2 + d2

3 Applies the rotation:

vq = quqq*
4 Converts the quaternion output, vq, back to R3

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
Functions
rotateframe

Objects
quaternion

Topics
“Rotations, Orientations, and Quaternions for Automated Driving”

Introduced in R2020a

 rotatepoint

4-1093



rotmat
Convert quaternion to rotation matrix

Syntax
rotationMatrix = rotmat(quat,rotationType)

Description
rotationMatrix = rotmat(quat,rotationType) converts the quaternion, quat, to an
equivalent rotation matrix representation.

Examples

Convert Quaternion to Rotation Matrix for Point Rotation

Define a quaternion for use in point rotation.

theta = 45;
gamma = 30;
quat = quaternion([0,theta,gamma],'eulerd','ZYX','point')

quat = quaternion
       0.8924 +  0.23912i +  0.36964j + 0.099046k

Convert the quaternion to a rotation matrix.

rotationMatrix = rotmat(quat,'point')

rotationMatrix = 3×3

    0.7071   -0.0000    0.7071
    0.3536    0.8660   -0.3536
   -0.6124    0.5000    0.6124

To verify the rotation matrix, directly create two rotation matrices corresponding to the rotations
about the y- and x-axes. Multiply the rotation matrices and compare to the output of rotmat.

theta = 45;
gamma = 30;

ry = [cosd(theta)   0           sind(theta) ; ...
      0             1           0           ; ...
     -sind(theta)   0           cosd(theta)];
 
rx = [1             0           0           ;      ...
      0             cosd(gamma) -sind(gamma) ;     ...
      0             sind(gamma) cosd(gamma)];

rotationMatrixVerification = rx*ry
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rotationMatrixVerification = 3×3

    0.7071         0    0.7071
    0.3536    0.8660   -0.3536
   -0.6124    0.5000    0.6124

Convert Quaternion to Rotation Matrix for Frame Rotation

Define a quaternion for use in frame rotation.

theta = 45;
gamma = 30;
quat = quaternion([0,theta,gamma],'eulerd','ZYX','frame')

quat = quaternion
       0.8924 +  0.23912i +  0.36964j - 0.099046k

Convert the quaternion to a rotation matrix.

rotationMatrix = rotmat(quat,'frame')

rotationMatrix = 3×3

    0.7071   -0.0000   -0.7071
    0.3536    0.8660    0.3536
    0.6124   -0.5000    0.6124

To verify the rotation matrix, directly create two rotation matrices corresponding to the rotations
about the y- and x-axes. Multiply the rotation matrices and compare to the output of rotmat.

theta = 45;
gamma = 30;

ry = [cosd(theta)   0           -sind(theta) ; ...
      0             1           0           ; ...
     sind(theta)   0           cosd(theta)];
 
rx = [1             0           0           ;      ...
      0             cosd(gamma) sind(gamma) ;     ...
      0             -sind(gamma) cosd(gamma)];

rotationMatrixVerification = rx*ry

rotationMatrixVerification = 3×3

    0.7071         0   -0.7071
    0.3536    0.8660    0.3536
    0.6124   -0.5000    0.6124
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Convert Quaternion Vector to Rotation Matrices

Create a 3-by-1 normalized quaternion vector.

qVec = normalize(quaternion(randn(3,4)));

Convert the quaternion array to rotation matrices. The pages of rotmatArray correspond to the
linear index of qVec.

rotmatArray = rotmat(qVec,'frame');

Assume qVec and rotmatArray correspond to a sequence of rotations. Combine the quaternion
rotations into a single representation, then apply the quaternion rotation to arbitrarily initialized
Cartesian points.

loc = normalize(randn(1,3));
quat = prod(qVec);
rotateframe(quat,loc)

ans = 1×3

    0.9524    0.5297    0.9013

Combine the rotation matrices into a single representation, then apply the rotation matrix to the
same initial Cartesian points. Verify the quaternion rotation and rotation matrix result in the same
orientation.

totalRotMat = eye(3);
for i = 1:size(rotmatArray,3)
    totalRotMat = rotmatArray(:,:,i)*totalRotMat;
end
totalRotMat*loc'

ans = 3×1

    0.9524
    0.5297
    0.9013

Input Arguments
quat — Quaternion to convert
scalar | vector | matrix | multidimensional array

Quaternion to convert, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: quaternion

rotationType — Type or rotation
'frame' | 'point'

Type of rotation represented by the rotationMatrix output, specified as 'frame' or 'point'.
Data Types: char | string
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Output Arguments
rotationMatrix — Rotation matrix representation
3-by-3 matrix | 3-by-3-by-N multidimensional array

Rotation matrix representation, returned as a 3-by-3 matrix or 3-by-3-by-N multidimensional array.

• If quat is a scalar, rotationMatrix is returned as a 3-by-3 matrix.
• If quat is non-scalar, rotationMatrix is returned as a 3-by-3-by-N multidimensional array,

where rotationMatrix(:,:,i) is the rotation matrix corresponding to quat(i).

The data type of the rotation matrix is the same as the underlying data type of quat.
Data Types: single | double

Algorithms
Given a quaternion of the form

q = a + bi + c j + dk ,

the equivalent rotation matrix for frame rotation is defined as

2a2− 1 + 2b2 2bc + 2ad 2bd− 2ac
2bc− 2ad 2a2− 1 + 2c2 2cd + 2ab

2bd + 2ac 2cd− 2ab 2a2− 1 + 2d2

.

The equivalent rotation matrix for point rotation is the transpose of the frame rotation matrix:

2a2− 1 + 2b2 2bc− 2ad 2bd + 2ac
2bc + 2ad 2a2− 1 + 2c2 2cd− 2ab

2bd− 2ac 2cd + 2ab 2a2− 1 + 2d2

.

References
[1] Kuipers, Jack B. Quaternions and Rotation Sequences: A Primer with Applications to Orbits,

Aerospace, and Virtual Reality. Princeton, NJ: Princeton University Press, 2007.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
euler | eulerd | rotvec | rotvecd

Objects
quaternion
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Topics
“Rotations, Orientations, and Quaternions for Automated Driving”

Introduced in R2020a
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rotvec
Convert quaternion to rotation vector (radians)

Syntax
rotationVector = rotvec(quat)

Description
rotationVector = rotvec(quat) converts the quaternion array, quat, to an N-by-3 matrix of
equivalent rotation vectors in radians. The elements of quat are normalized before conversion.

Examples

Convert Quaternion to Rotation Vector in Radians

Convert a random quaternion scalar to a rotation vector in radians

quat = quaternion(randn(1,4));
rotvec(quat)

ans = 1×3

    1.6866   -2.0774    0.7929

Input Arguments
quat — Quaternion to convert
scalar | vector | matrix | multidimensional array

Quaternion to convert, specified as scalar quaternion, vector, matrix, or multidimensional array of
quaternions.
Data Types: quaternion

Output Arguments
rotationVector — Rotation vector (radians)
N-by-3 matrix

Rotation vector representation, returned as an N-by-3 matrix of rotations vectors, where each row
represents the [X Y Z] angles of the rotation vectors in radians. The ith row of rotationVector
corresponds to the element quat(i).

The data type of the rotation vector is the same as the underlying data type of quat.
Data Types: single | double

 rotvec

4-1099



Algorithms
All rotations in 3-D can be represented by a three-element axis of rotation and a rotation angle, for a
total of four elements. If the rotation axis is constrained to be unit length, the rotation angle can be
distributed over the vector elements to reduce the representation to three elements.

Recall that a quaternion can be represented in axis-angle form

q = cos θ 2 + sin θ 2 xi+y j + zk ,

where θ is the angle of rotation and [x,y,z] represent the axis of rotation.

Given a quaternion of the form

q = a + bi + c j + dk ,

you can solve for the rotation angle using the axis-angle form of quaternions:

θ = 2cos−1 a .

Assuming a normalized axis, you can rewrite the quaternion as a rotation vector without loss of
information by distributing θ over the parts b, c, and d. The rotation vector representation of q is

qrv = θ
sin θ 2

[b, c, d] .
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rotvecd
Convert quaternion to rotation vector (degrees)

Syntax
rotationVector = rotvecd(quat)

Description
rotationVector = rotvecd(quat) converts the quaternion array, quat, to an N-by-3 matrix of
equivalent rotation vectors in degrees. The elements of quat are normalized before conversion.

Examples

Convert Quaternion to Rotation Vector in Degrees

Convert a random quaternion scalar to a rotation vector in degrees.

quat = quaternion(randn(1,4));
rotvecd(quat)

ans = 1×3

   96.6345 -119.0274   45.4312

Input Arguments
quat — Quaternion to convert
scalar | vector | matrix | multidimensional array

Quaternion to convert, specified as scalar, vector, matrix, or multidimensional array of quaternions.
Data Types: quaternion

Output Arguments
rotationVector — Rotation vector (degrees)
N-by-3 matrix

Rotation vector representation, returned as an N-by-3 matrix of rotation vectors, where each row
represents the [x y z] angles of the rotation vectors in degrees. The ith row of rotationVector
corresponds to the element quat(i).

The data type of the rotation vector is the same as the underlying data type of quat.
Data Types: single | double
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Algorithms
All rotations in 3-D can be represented by four elements: a three-element axis of rotation and a
rotation angle. If the rotation axis is constrained to be unit length, the rotation angle can be
distributed over the vector elements to reduce the representation to three elements.

Recall that a quaternion can be represented in axis-angle form

q = cos θ 2 + sin θ 2 xi+y j + zk ,

where θ is the angle of rotation in degrees, and [x,y,z] represent the axis of rotation.

Given a quaternion of the form

q = a + bi + c j + dk ,

you can solve for the rotation angle using the axis-angle form of quaternions:

θ = 2cos−1 a .

Assuming a normalized axis, you can rewrite the quaternion as a rotation vector without loss of
information by distributing θ over the parts b, c, and d. The rotation vector representation of q is

qrv = θ
sin θ 2

[b, c, d] .

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
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euler | eulerd | rotvec

Objects
quaternion
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slerp
Spherical linear interpolation

Syntax
q0 = slerp(q1,q2,T)

Description
q0 = slerp(q1,q2,T) spherically interpolates between q1 and q2 by the interpolation coefficient
T.

Examples

Interpolate Between Two Quaternions

Create two quaternions with the following interpretation:

1 a = 45 degree rotation around the z-axis
2 c = -45 degree rotation around the z-axis

a = quaternion([45,0,0],'eulerd','ZYX','frame');
c = quaternion([-45,0,0],'eulerd','ZYX','frame');

Call slerp with the quaternions a and c and specify an interpolation coefficient of 0.5.

interpolationCoefficient = 0.5;

b = slerp(a,c,interpolationCoefficient);

The output of slerp, b, represents an average rotation of a and c. To verify, convert b to Euler angles
in degrees.

averageRotation = eulerd(b,'ZYX','frame')

averageRotation = 1×3

     0     0     0

The interpolation coefficient is specified as a normalized value between 0 and 1, inclusive. An
interpolation coefficient of 0 corresponds to the a quaternion, and an interpolation coefficient of 1
corresponds to the c quaternion. Call slerp with coefficients 0 and 1 to confirm.

b = slerp(a,c,[0,1]);
eulerd(b,'ZYX','frame')

ans = 2×3

   45.0000         0         0

 slerp
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  -45.0000         0         0

You can create smooth paths between quaternions by specifying arrays of equally spaced
interpolation coefficients.

path = 0:0.1:1;

interpolatedQuaternions = slerp(a,c,path);

For quaternions that represent rotation only about a single axis, specifying interpolation coefficients
as equally spaced results in quaternions equally spaced in Euler angles. Convert
interpolatedQuaternions to Euler angles and verify that the difference between the angles in
the path is constant.

k = eulerd(interpolatedQuaternions,'ZYX','frame');
abc = abs(diff(k))

abc = 10×3

    9.0000         0         0
    9.0000         0         0
    9.0000         0         0
    9.0000         0         0
    9.0000         0         0
    9.0000         0         0
    9.0000         0         0
    9.0000         0         0
    9.0000         0         0
    9.0000         0         0

Alternatively, you can use the dist function to verify that the distance between the interpolated
quaternions is consistent. The dist function returns angular distance in radians; convert to degrees
for easy comparison.

def = rad2deg(dist(interpolatedQuaternions(2:end),interpolatedQuaternions(1:end-1)))

def = 1×10

    9.0000    9.0000    9.0000    9.0000    9.0000    9.0000    9.0000    9.0000    9.0000    9.0000

SLERP Minimizes Great Circle Path

The SLERP algorithm interpolates along a great circle path connecting two quaternions. This
example shows how the SLERP algorithm minimizes the great circle path.

Define three quaternions:

1 q0 - quaternion indicating no rotation from the global frame
2 q179 - quaternion indicating a 179 degree rotation about the z-axis
3 q180 - quaternion indicating a 180 degree rotation about the z-axis
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4 q181 - quaternion indicating a 181 degree rotation about the z-axis

q0 = ones(1,'quaternion');

q179 = quaternion([179,0,0],'eulerd','ZYX','frame');

q180 = quaternion([180,0,0],'eulerd','ZYX','frame');

q181 = quaternion([181,0,0],'eulerd','ZYX','frame');

Use slerp to interpolate between q0 and the three quaternion rotations. Specify that the paths are
traveled in 10 steps.

T = linspace(0,1,10);

q179path = slerp(q0,q179,T);
q180path = slerp(q0,q180,T);
q181path = slerp(q0,q181,T);

Plot each path in terms of Euler angles in degrees.

q179pathEuler = eulerd(q179path,'ZYX','frame');
q180pathEuler = eulerd(q180path,'ZYX','frame');
q181pathEuler = eulerd(q181path,'ZYX','frame');

plot(T,q179pathEuler(:,1),'bo', ...
     T,q180pathEuler(:,1),'r*', ...
     T,q181pathEuler(:,1),'gd');
legend('Path to 179 degrees', ...
       'Path to 180 degrees', ...
       'Path to 181 degrees')
xlabel('Interpolation Coefficient')
ylabel('Z-Axis Rotation (Degrees)')

 slerp

4-1105



The path between q0 and q179 is clockwise to minimize the great circle distance. The path between
q0 and q181 is counterclockwise to minimize the great circle distance. The path between q0 and
q180 can be either clockwise or counterclockwise, depending on numerical rounding.

Input Arguments
q1 — Quaternion
scalar | vector | matrix | multidimensional array

Quaternion to interpolate, specified as a scalar, vector, matrix, or multidimensional array of
quaternions.

q1, q2, and T must have compatible sizes. In the simplest cases, they can be the same size or any one
can be a scalar. Two inputs have compatible sizes if, for every dimension, the dimension sizes of the
inputs are either the same or one of them is 1.
Data Types: quaternion

q2 — Quaternion
scalar | vector | matrix | multidimensional array

Quaternion to interpolate, specified as a scalar, vector, matrix, or multidimensional array of
quaternions.
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q1, q2, and T must have compatible sizes. In the simplest cases, they can be the same size or any one
can be a scalar. Two inputs have compatible sizes if, for every dimension, the dimension sizes of the
inputs are either the same or one of the dimension sizes is 1.
Data Types: quaternion

T — Interpolation coefficient
scalar | vector | matrix | multidimensional array

Interpolation coefficient, specified as a scalar, vector, matrix, or multidimensional array of numbers
with each element in the range [0,1].

q1, q2, and T must have compatible sizes. In the simplest cases, they can be the same size or any one
can be a scalar. Two inputs have compatible sizes if, for every dimension, the dimension sizes of the
inputs are either the same or one of the dimension sizes is 1.
Data Types: single | double

Output Arguments
q0 — Interpolated quaternion
scalar | vector | matrix | multidimensional array

Interpolated quaternion, returned as a scalar, vector, matrix, or multidimensional array.
Data Types: quaternion

Algorithms
Quaternion spherical linear interpolation (SLERP) is an extension of linear interpolation along a
plane to spherical interpolation in three dimensions. The algorithm was first proposed in [1]. Given
two quaternions, q1 and q2, SLERP interpolates a new quaternion, q0, along the great circle that
connects q1 and q2. The interpolation coefficient, T, determines how close the output quaternion is to
either q1 and q2.

The SLERP algorithm can be described in terms of sinusoids:

q0 = sin (1 − T)θ
sin θ q1 + sin Tθ

sin θ q2

where q1 and q2 are normalized quaternions, and θ is half the angular distance between q1 and q2.

References
[1] Shoemake, Ken. "Animating Rotation with Quaternion Curves." ACM SIGGRAPH Computer

Graphics Vol. 19, Issue 3, 1985, pp. 345–354.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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times, .*
Element-wise quaternion multiplication

Syntax
quatC = A.*B

Description
quatC = A.*B returns the element-by-element quaternion multiplication of quaternion arrays.

You can use quaternion multiplication to compose rotation operators:

• To compose a sequence of frame rotations, multiply the quaternions in the same order as the
desired sequence of rotations. For example, to apply a p quaternion followed by a q quaternion,
multiply in the order pq. The rotation operator becomes pq ∗v pq , where v represents the object
to rotate in quaternion form. * represents conjugation.

• To compose a sequence of point rotations, multiply the quaternions in the reverse order of the
desired sequence of rotations. For example, to apply a p quaternion followed by a q quaternion,
multiply in the reverse order, qp. The rotation operator becomes qp v qp ∗.

Examples

Multiply Two Quaternion Vectors

Create two vectors, A and B, and multiply them element by element.

A = quaternion([1:4;5:8]);
B = A;
C = A.*B

C=2×1 quaternion array
     -28 +   4i +   6j +   8k
    -124 +  60i +  70j +  80k

Multiply Two Quaternion Arrays

Create two 3-by-3 arrays, A and B, and multiply them element by element.

A = reshape(quaternion(randn(9,4)),3,3);
B = reshape(quaternion(randn(9,4)),3,3);
C = A.*B

C=3×3 quaternion array
     0.60169 +  2.4332i -  2.5844j + 0.51646k    -0.49513 +  1.1722i +  4.4401j -   1.217k      2.3126 + 0.16856i +  1.0474j -  1.0921k
     -4.2329 +  2.4547i +  3.7768j + 0.77484k    -0.65232 - 0.43112i -  1.4645j - 0.90073k     -1.8897 - 0.99593i +  3.8331j + 0.12013k
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     -4.4159 +  2.1926i +  1.9037j -  4.0303k     -2.0232 +  0.4205i - 0.17288j +  3.8529k     -2.9137 -  5.5239i -  1.3676j +  3.0654k

Note that quaternion multiplication is not commutative:

isequal(C,B.*A)

ans = logical
   0

Multiply Quaternion Row and Column Vectors

Create a row vector a and a column vector b, then multiply them. The 1-by-3 row vector and 4-by-1
column vector combine to produce a 4-by-3 matrix with all combinations of elements multiplied.

a = [zeros('quaternion'),ones('quaternion'),quaternion(randn(1,4))]

a=1×3 quaternion array
           0 +       0i +       0j +       0k           1 +       0i +       0j +       0k     0.53767 +  1.8339i -  2.2588j + 0.86217k

b = quaternion(randn(4,4))

b=4×1 quaternion array
      0.31877 +   3.5784i +   0.7254j -  0.12414k
      -1.3077 +   2.7694i - 0.063055j +   1.4897k
     -0.43359 -   1.3499i +  0.71474j +    1.409k
      0.34262 +   3.0349i -  0.20497j +   1.4172k

a.*b

ans=4×3 quaternion array
            0 +        0i +        0j +        0k      0.31877 +   3.5784i +   0.7254j -  0.12414k      -4.6454 +   2.1636i +   2.9828j +   9.6214k
            0 +        0i +        0j +        0k      -1.3077 +   2.7694i - 0.063055j +   1.4897k      -7.2087 -   4.2197i +   2.5758j +   5.8136k
            0 +        0i +        0j +        0k     -0.43359 -   1.3499i +  0.71474j +    1.409k       2.6421 -     5.32i -   2.3841j -   1.3547k
            0 +        0i +        0j +        0k      0.34262 +   3.0349i -  0.20497j +   1.4172k      -7.0663 -  0.76439i -  0.86648j +   7.5369k

Input Arguments
A — Array to multiply
scalar | vector | matrix | multidimensional array

Array to multiply, specified as a quaternion, an array of quaternions, a real scalar, or an array of real
numbers.

A and B must have compatible sizes. In the simplest cases, they can be the same size or one can be a
scalar. Two inputs have compatible sizes if, for every dimension, the dimension sizes of the inputs are
the same or one of them is 1.
Data Types: quaternion | single | double
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B — Array to multiply
scalar | vector | matrix | multidimensional array

Array to multiply, specified as a quaternion, an array of quaternions, a real scalar, or an array of real
numbers.

A and B must have compatible sizes. In the simplest cases, they can be the same size or one can be a
scalar. Two inputs have compatible sizes if, for every dimension, the dimension sizes of the inputs are
the same or one of them is 1.
Data Types: quaternion | single | double

Output Arguments
quatC — Quaternion product
scalar | vector | matrix | multidimensional array

Quaternion product, returned as a scalar, vector, matrix, or multidimensional array.
Data Types: quaternion

Algorithms
Quaternion Multiplication by a Real Scalar

Given a quaternion,

q = aq + bqi + cq j + dqk,

the product of q and a real scalar β is

βq = βaq + βbqi + βcq j + βdqk

Quaternion Multiplication by a Quaternion Scalar

The definition of the basis elements for quaternions,

i2 = j2 = k2 = ijk = − 1 ,

can be expanded to populate a table summarizing quaternion basis element multiplication:

 1 i j k
1 1 i j k
i i −1 k −j
j j −k −1 i
k k j −i −1

When reading the table, the rows are read first, for example: ij = k and ji = −k.

Given two quaternions, q = aq + bqi + cq j + dqk, and p = ap + bpi + cp j + dpk, the multiplication can be
expanded as:

 times, .*
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z = pq = ap + bpi + cp j + dpk aq + bqi + cq j + dqk
= apaq + apbqi + apcq j + apdqk

+bpaqi + bpbqi2 + bpcqij + bpdqik

+cpaq j + cpbq ji + cpcq j2 + cpdq jk

+dpaqk + dpbqki + dpcqkj + dpdqk2

You can simplify the equation using the quaternion multiplication table.

z = pq = apaq + apbqi + apcq j + apdqk
+bpaqi − bpbq + bpcqk − bpdq j
+cpaq j − cpbqk − cpcq + cpdqi
+dpaqk + dpbq j − dpcqi − dpdq

References
[1] Kuipers, Jack B. Quaternions and Rotation Sequences: A Primer with Applications to Orbits,

Aerospace, and Virtual Reality. Princeton, NJ: Princeton University Press, 2007.
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transpose, .'
Transpose a quaternion array

Syntax
Y = quat.'

Description
Y = quat.' returns the non-conjugate transpose of the quaternion array, quat.

Examples

Vector Transpose

Create a vector of quaternions and compute its nonconjugate transpose.

quat = quaternion(randn(4,4))

quat=4×1 quaternion array
      0.53767 +  0.31877i +   3.5784j +   0.7254k
       1.8339 -   1.3077i +   2.7694j - 0.063055k
      -2.2588 -  0.43359i -   1.3499j +  0.71474k
      0.86217 +  0.34262i +   3.0349j -  0.20497k

quatTransposed = quat.'

quatTransposed=1×4 quaternion array
      0.53767 +  0.31877i +   3.5784j +   0.7254k       1.8339 -   1.3077i +   2.7694j - 0.063055k      -2.2588 -  0.43359i -   1.3499j +  0.71474k      0.86217 +  0.34262i +   3.0349j -  0.20497k

Matrix Transpose

Create a matrix of quaternions and compute its nonconjugate transpose.

quat = [quaternion(randn(2,4)),quaternion(randn(2,4))]

quat=2×2 quaternion array
      0.53767 -   2.2588i +  0.31877j -  0.43359k       3.5784 -   1.3499i +   0.7254j +  0.71474k
       1.8339 +  0.86217i -   1.3077j +  0.34262k       2.7694 +   3.0349i - 0.063055j -  0.20497k

quatTransposed = quat.'

quatTransposed=2×2 quaternion array
      0.53767 -   2.2588i +  0.31877j -  0.43359k       1.8339 +  0.86217i -   1.3077j +  0.34262k
       3.5784 -   1.3499i +   0.7254j +  0.71474k       2.7694 +   3.0349i - 0.063055j -  0.20497k
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Input Arguments
quat — Quaternion array to transpose
vector | matrix

Quaternion array to transpose, specified as a vector or matrix of quaternions. transpose is defined
for 1-D and 2-D arrays. For higher-order arrays, use permute.
Data Types: quaternion

Output Arguments
Y — Transposed quaternion array
vector | matrix

Transposed quaternion array, returned as an N-by-M array, where quat was specified as an M-by-N
array.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
ctranspose, '

Objects
quaternion

Topics
“Rotations, Orientations, and Quaternions for Automated Driving”

Introduced in R2020a
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uminus, -
Quaternion unary minus

Syntax
mQuat = -quat

Description
mQuat = -quat negates the elements of quat and stores the result in mQuat.

Examples

Negate Elements of Quaternion Matrix

Unary minus negates each part of a the quaternion. Create a 2-by-2 matrix, Q.

Q = quaternion(randn(2),randn(2),randn(2),randn(2))

Q=2×2 quaternion array
      0.53767 +  0.31877i +   3.5784j +   0.7254k      -2.2588 -  0.43359i -   1.3499j +  0.71474k
       1.8339 -   1.3077i +   2.7694j - 0.063055k      0.86217 +  0.34262i +   3.0349j -  0.20497k

Negate the parts of each quaternion in Q.

R = -Q

R=2×2 quaternion array
     -0.53767 -  0.31877i -   3.5784j -   0.7254k       2.2588 +  0.43359i +   1.3499j -  0.71474k
      -1.8339 +   1.3077i -   2.7694j + 0.063055k     -0.86217 -  0.34262i -   3.0349j +  0.20497k

Input Arguments
quat — Quaternion array
scalar | vector | matrix | multidimensional array

Quaternion array, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: quaternion

Output Arguments
mQuat — Negated quaternion array
scalar | vector | matrix | multidimensional array

Negated quaternion array, returned as the same size as quat.
Data Types: quaternion
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
minus, -

Objects
quaternion

Topics
“Rotations, Orientations, and Quaternions for Automated Driving”

Introduced in R2020a
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zeros
Create quaternion array with all parts set to zero

Syntax
quatZeros = zeros('quaternion')
quatZeros = zeros(n,'quaternion')
quatZeros = zeros(sz,'quaternion')
quatZeros = zeros(sz1,...,szN,'quaternion')

quatZeros = zeros( ___ ,'like',prototype,'quaternion')

Description
quatZeros = zeros('quaternion') returns a scalar quaternion with all parts set to zero.

quatZeros = zeros(n,'quaternion') returns an n-by-n matrix of quaternions.

quatZeros = zeros(sz,'quaternion') returns an array of quaternions where the size vector,
sz, defines size(quatZeros).

quatZeros = zeros(sz1,...,szN,'quaternion') returns a sz1-by-...-by-szN array of
quaternions where sz1,…,szN indicates the size of each dimension.

quatZeros = zeros( ___ ,'like',prototype,'quaternion') specifies the underlying class of
the returned quaternion array to be the same as the underlying class of the quaternion prototype.

Examples

Quaternion Scalar Zero

Create a quaternion scalar zero.

quatZeros = zeros('quaternion')

quatZeros = quaternion
     0 + 0i + 0j + 0k

Square Matrix of Quaternions

Create an n-by-n array of quaternion zeros.

n = 3;
quatZeros = zeros(n,'quaternion')

quatZeros=3×3 quaternion array
     0 + 0i + 0j + 0k     0 + 0i + 0j + 0k     0 + 0i + 0j + 0k
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     0 + 0i + 0j + 0k     0 + 0i + 0j + 0k     0 + 0i + 0j + 0k
     0 + 0i + 0j + 0k     0 + 0i + 0j + 0k     0 + 0i + 0j + 0k

Multidimensional Array of Quaternion Zeros

Create a multidimensional array of quaternion zeros by defining array dimensions in order. In this
example, you create a 3-by-1-by-2 array. You can specify dimensions using a row vector or comma-
separated integers.

Specify the dimensions using a row vector and display the results:

dims = [3,1,2];
quatZerosSyntax1 = zeros(dims,'quaternion')

quatZerosSyntax1 = 3x1x2 quaternion array
quatZerosSyntax1(:,:,1) = 

     0 + 0i + 0j + 0k
     0 + 0i + 0j + 0k
     0 + 0i + 0j + 0k

quatZerosSyntax1(:,:,2) = 

     0 + 0i + 0j + 0k
     0 + 0i + 0j + 0k
     0 + 0i + 0j + 0k

Specify the dimensions using comma-separated integers, and then verify the equivalence of the two
syntaxes:

quatZerosSyntax2 = zeros(3,1,2,'quaternion');
isequal(quatZerosSyntax1,quatZerosSyntax2)

ans = logical
   1

Underlying Class of Quaternion Zeros

A quaternion is a four-part hyper-complex number used in three-dimensional representations. You can
specify the underlying data type of the parts as single or double. The default is double.

Create a quaternion array of zeros with the underlying data type set to single.

quatZeros = zeros(2,'like',single(1),'quaternion')

quatZeros=2×2 quaternion array
     0 + 0i + 0j + 0k     0 + 0i + 0j + 0k
     0 + 0i + 0j + 0k     0 + 0i + 0j + 0k
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Verify the underlying class using the classUnderlying function.

classUnderlying(quatZeros)

ans = 
'single'

Input Arguments
n — Size of square quaternion matrix
integer value

Size of square quaternion matrix, specified as an integer value. If n is 0 or negative, then quatZeros
is returned as an empty matrix.
Example: zeros(4,'quaternion') returns a 4-by-4 matrix of quaternion zeros.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

sz — Output size
row vector of integer values

Output size, specified as a row vector of integer values. Each element of sz indicates the size of the
corresponding dimension in quatZeros. If the size of any dimension is 0 or negative, then
quatZeros is returned as an empty array.
Example: zeros([1,4,2],'quaternion') returns a 1-by-4-by-2 array of quaternion zeros.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

prototype — Quaternion prototype
variable

Quaternion prototype, specified as a variable.
Example: zeros(2,'like',quat,'quaternion') returns a 2-by-2 matrix of quaternions with the
same underlying class as the prototype quaternion, quat.
Data Types: quaternion

sz1,...,szN — Size of each dimension
two or more integer values

Size of each dimension, specified as two or more integers.

• If the size of any dimension is 0, then quatZeros is returned as an empty array.
• If the size of any dimension is negative, then it is treated as 0.

Example: zeros(2,3,'quaternion') returns a 2-by-3 matrix of quaternion zeros.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
quatZeros — Quaternion zeros
scalar | vector | matrix | multidimensional array
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Quaternion zeros, returned as a quaternion or array of quaternions.

Given a quaternion of the form Q = a + bi + c j + dk, a quaternion zero is defined as
Q = 0 + 0i + 0j + 0k.
Data Types: quaternion

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
ones

Objects
quaternion

Topics
“Rotations, Orientations, and Quaternions for Automated Driving”

Introduced in R2020a
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trackHistoryLogic
Confirm and delete tracks based on recent track history

Description
The trackHistoryLogic object determines if a track should be confirmed or deleted based on the
track history. A track should be confirmed if there are at least Mc hits in the recent Nc updates. A
track should be deleted if there are at least Md misses in the recent Nd updates.

The confirmation and deletion decisions contribute to the track management by a
multiObjectTracker object.

Creation
Syntax
logic = trackHistoryLogic
logic = trackHistoryLogic(Name,Value,...)

Description

logic = trackHistoryLogic creates a trackHistoryLogic object with default confirmation
and deletion thresholds.

logic = trackHistoryLogic(Name,Value,...) specifies the properties of the track history
logic object using one or more Name,Value pair arguments. Any unspecified properties take default
values.

Properties
ConfirmationThreshold — Confirmation threshold
[2 3] (default) | positive integer scalar | 2-element vector of positive integers

Confirmation threshold, specified as a positive integer scalar or 2-element vector of positive integers.
If the logic score is above this threshold, the track is confirmed. ConfirmationThreshold has the
form [Mc Nc], where Mc is the number of hits required for confirmation in the recent Nc updates.
When specified as a scalar, then Mc and Nc have the same value.
Example: [3 5]
Data Types: single | double

DeletionThreshold — Deletion threshold
[6 6] (default) | positive integer scalar | 2-element vector of positive integers

Deletion threshold, specified as a positive integer scalar or 2-element vector of positive integers. If
the logic score is above this threshold, the track is deleted. DeletionThreshold has the form [Md
Nd], where Md is the number of misses required for deletion in the recent Nd updates. When
specified as a scalar, then Md and Nd have the same value.
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Example: [5 5]
Data Types: single | double

History — Track history
logical vector

This property is read-only.

Track history, specified as a logical vector of length N, where N is the larger of the second element in
the ConfirmationThreshold and the second element in the DeletionThreshold. The first
element is the most recent update. A true value indicates a hit and a false value indicates a miss.

Object Functions
init Initialize track logic with first hit
hit Update track logic with subsequent hit
miss Update track logic with miss
checkConfirmation Check if track should be confirmed
checkDeletion Check if track should be deleted
output Get current state of track logic
reset Reset state of track logic
clone Create copy of track logic

Examples

Create and Update History-Based Logic

Create a history-based logic. Specify confirmation threshold values Mc and Nc as the vector [3 5].
Specify deletion threshold values Md and Nd as the vector [6 7].

historyLogic = trackHistoryLogic('ConfirmationThreshold',[3 5], ...
    'DeletionThreshold',[6 7])

historyLogic = 
  trackHistoryLogic with properties:

    ConfirmationThreshold: [3 5]
        DeletionThreshold: [6 7]
                  History: [0 0 0 0 0 0 0]

Initialize the logic, which records a hit as the first update to the logic.

init(historyLogic)
history = historyLogic.History;
disp(['History: [',num2str(history),'].']);

History: [1  0  0  0  0  0  0].

Update the logic four more times, where only the odd updates register a hit. The confirmation flag is
true by the end of the fifth update, because three hits (Mc) are counted in the most recent five
updates (Nc).

for i = 2:5
    isOdd = logical(mod(i,2));
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    if isOdd
        hit(historyLogic)
    else
        miss(historyLogic)
    end
    
    history = historyLogic.History;
    confFlag = checkConfirmation(historyLogic);
    delFlag = checkDeletion(historyLogic,true,i);
    disp(['History: [',num2str(history),']. Confirmation Flag: ',num2str(confFlag), ...
        '. Deletion Flag: ',num2str(delFlag)']);
end

History: [0  1  0  0  0  0  0]. Confirmation Flag: 0. Deletion Flag: 0
History: [1  0  1  0  0  0  0]. Confirmation Flag: 0. Deletion Flag: 0
History: [0  1  0  1  0  0  0]. Confirmation Flag: 0. Deletion Flag: 0
History: [1  0  1  0  1  0  0]. Confirmation Flag: 1. Deletion Flag: 0

Update the logic with a miss six times. The deletion flag is true by the end of the fifth update,
because six misses (Md) are counted in the most recent seven updates (Nd).

for i = 1:6
    miss(historyLogic);
    
    history = historyLogic.History;
    confFlag = checkConfirmation(historyLogic);
    delFlag = checkDeletion(historyLogic);
    disp(['History: [',num2str(history),']. Confirmation Flag: ',num2str(confFlag), ...
        '. Deletion Flag: ',num2str(delFlag)']);
end

History: [0  1  0  1  0  1  0]. Confirmation Flag: 0. Deletion Flag: 0
History: [0  0  1  0  1  0  1]. Confirmation Flag: 0. Deletion Flag: 0
History: [0  0  0  1  0  1  0]. Confirmation Flag: 0. Deletion Flag: 0
History: [0  0  0  0  1  0  1]. Confirmation Flag: 0. Deletion Flag: 0
History: [0  0  0  0  0  1  0]. Confirmation Flag: 0. Deletion Flag: 1
History: [0  0  0  0  0  0  1]. Confirmation Flag: 0. Deletion Flag: 1

References
[1] Blackman, S., and R. Popoli. Design and Analysis of Modern Tracking Systems. Boston, MA:

Artech House, 1999.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
multiObjectTracker

Introduced in R2020a
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checkConfirmation
Check if track should be confirmed

Syntax
tf = checkConfirmation(historyLogic)

Description
tf = checkConfirmation(historyLogic) returns a flag that is true when at least Mc out of Nc
recent updates of the track history logic object historyLogic are true.

Examples

Check Confirmation of History-Based Logic

Create a history-based logic. Specify confirmation threshold values Mc and Nc as the vector [2 3].
Specify deletion threshold values Md and Nd as the vector [3 3].

historyLogic = trackHistoryLogic('ConfirmationThreshold',[2 3], ...
    'DeletionThreshold',[3 3])

historyLogic = 
  trackHistoryLogic with properties:

    ConfirmationThreshold: [2 3]
        DeletionThreshold: [3 3]
                  History: [0 0 0]

Initialize the logic, which records a hit as the first update to the logic. The confirmation flag is false
because the number of hits is less than two (Mc).

init(historyLogic)
history = output(historyLogic);
confFlag = checkConfirmation(historyLogic);
disp(['History: [',num2str(history),']. Confirmation Flag: ',num2str(confFlag)]);

History: [1  0  0]. Confirmation Flag: 0

Update the logic with a hit. The confirmation flag is true because two hits (Mc) are counted in the
most recent three updates (Nc).

hit(historyLogic)
history = output(historyLogic);
confFlag = checkConfirmation(historyLogic);
disp(['History: [',num2str(history),']. Confirmation Flag: ',num2str(confFlag)]);

History: [1  1  0]. Confirmation Flag: 1
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Input Arguments
historyLogic — Track history logic
trackHistoryLogic

Track history logic, specified as a trackHistoryLogic object.

Output Arguments
tf — Track should be confirmed
true | false

Track should be confirmed, returned as true or false.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
trackHistoryLogic

Introduced in R2020a
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checkDeletion
Check if track should be deleted

Syntax
tf = checkDeletion(historyLogic)
tf = checkDeletion(historyLogic,tentativeTrack,age)

Description
tf = checkDeletion(historyLogic) returns a flag that is true when at least Md out of Nd
recent updates of the track history logic object historyLogic are false.

tf = checkDeletion(historyLogic,tentativeTrack,age) returns a flag that is true when
the track is tentative and there are not enough detections to allow it to confirm. Use the logical flag
tentativeTrack to indicate if the track is tentative and provide age as a numeric scalar.

Examples

Check Deletion of History-Based Logic

Create a history-based logic. Specify confirmation threshold values Mc and Nc as the vector [2 3].
Specify deletion threshold values Md and Nd as the vector [4 5].

historyLogic = trackHistoryLogic('ConfirmationThreshold',[2 3], ...
    'DeletionThreshold',[4 5])

historyLogic = 
  trackHistoryLogic with properties:

    ConfirmationThreshold: [2 3]
        DeletionThreshold: [4 5]
                  History: [0 0 0 0 0]

Initialize the logic, which records a hit as the first update to the logic. The confirmation flag is false
because the number of hits is less than two (Mc).

init(historyLogic)
history = output(historyLogic);
checkConfirmation(historyLogic)

ans = logical
   0

delFlag = checkDeletion(historyLogic);
disp(['History: [',num2str(history),']. Deletion Flag: ',num2str(delFlag)]);

History: [1  0  0  0  0]. Deletion Flag: 1
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Update the logic with a hit. The confirmation flag is true because two hits (Mc) are counted in the
most recent three updates (Nc).

hit(historyLogic)
history = output(historyLogic);
checkConfirmation(historyLogic)

ans = logical
   1

delFlag = checkDeletion(historyLogic);
disp(['History: [',num2str(history),']. Deletion Flag: ',num2str(delFlag)]);

History: [1  1  0  0  0]. Deletion Flag: 0

miss(historyLogic)
history = output(historyLogic);
checkConfirmation(historyLogic)

ans = logical
   1

delFlag = checkDeletion(historyLogic);
disp(['History: [',num2str(history),']. Deletion Flag: ',num2str(delFlag)]);

History: [0  1  1  0  0]. Deletion Flag: 0

miss(historyLogic)
history = output(historyLogic);
delFlag = checkDeletion(historyLogic);
checkConfirmation(historyLogic)

ans = logical
   0

disp(['History: [',num2str(history),']. Deletion Flag: ',num2str(delFlag)]);

History: [0  0  1  1  0]. Deletion Flag: 0

Check Deletion of Tentative Track

Create a history-based logic. Specify confirmation threshold values Mc and Nc as the vector [2 3].
Specify deletion threshold values Md and Nd as the vector [4 5].

historyLogic = trackHistoryLogic('ConfirmationThreshold',[2 3], ...
    'DeletionThreshold',5)

historyLogic = 
  trackHistoryLogic with properties:

    ConfirmationThreshold: [2 3]
        DeletionThreshold: [5 5]
                  History: [0 0 0 0 0]
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Initialize the logic, which records a hit as the first update to the logic. Then, record two misses.

init(historyLogic)
miss(historyLogic)
miss(historyLogic)
history = output(historyLogic)

history = 1x5 logical array

   0   0   1   0   0

The confirmation flag is false because the number of hits in the most recent 3 updates (Nc) is less
than 2 (Mc).

confirmationFlag = checkConfirmation(historyLogic)

confirmationFlag = logical
   0

Check the deletion flag as if the track were not tentative. The deletion flag is false because the
number of misses in the most recent 5 updates (Nm) is less than 4 (Mc).

deletionFlag = checkDeletion(historyLogic)

deletionFlag = logical
   0

Recheck the deletion flag, treating the track as tentative with an age of 3. The tentative deletion flag
is true because there are not enough detections to allow the track to confirm.

tentativeDeletionFlag = checkDeletion(historyLogic,true,3)

tentativeDeletionFlag = logical
   1

Input Arguments
historyLogic — Track history logic
trackHistoryLogic

Track history logic, specified as a trackHistoryLogic object.

tentativeTrack — Track is tentative
false | true

Track is tentative, specified as false or true. Use tentativeTrack to indicate if the track is
tentative.

age — Number of updates
numeric scalar

Number of updates since track initialization, specified as a numeric scalar.
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Output Arguments
tf — Track can be deleted
true | false

Track can be deleted, returned as true or false.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
trackHistoryLogic

Introduced in R2020a

 checkDeletion

4-1129



clone
Create copy of track logic

Syntax
clonedLogic = clone(logic)

Description
clonedLogic = clone(logic) returns a copy of the current track logic object, logic.

Examples

Clone Track History Logic

Create a history-based logic. Specify confirmation threshold values Mc and Nc as the vector [3 5].
Specify deletion threshold values Md and Nd as the vector [6 7].

historyLogic = trackHistoryLogic('ConfirmationThreshold',[3 5], ...
    'DeletionThreshold',[6 7])

historyLogic = 
  trackHistoryLogic with properties:

    ConfirmationThreshold: [3 5]
        DeletionThreshold: [6 7]
                  History: [0 0 0 0 0 0 0]

Initialize the logic, which records a hit as the first update to the logic.

init(historyLogic)

Update the logic four more times, where only the odd updates register a hit.

for i = 2:5
    isOdd = logical(mod(i,2));
    if isOdd
        hit(historyLogic)
    else
        miss(historyLogic)
    end
end

Get the current state of the logic.

history = output(historyLogic)

history = 1x7 logical array

   1   0   1   0   1   0   0
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Create a copy of the logic. The clone has the same confirmation threshold, deletion threshold, and
history as the original history logic.

clonedLogic = clone(historyLogic)

clonedLogic = 
  trackHistoryLogic with properties:

    ConfirmationThreshold: [3 5]
        DeletionThreshold: [6 7]
                  History: [1 0 1 0 1 0 0]

Input Arguments
logic — Track history logic
trackHistoryLogic object

Track history logic, specified as a trackHistoryLogic object.

Output Arguments
clonedLogic — Cloned track logic
trackHistoryLogic object

Cloned track logic, returned as a trackHistoryLogic object.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
trackHistoryLogic

Introduced in R2020a
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hit
Update track logic with subsequent hit

Syntax
hit(historyLogic)

Description
hit(historyLogic) updates the track history with a hit.

Examples

Update History Logic with Hit

Create a history-based logic with the default confirmation and deletion thresholds.

historyLogic = trackHistoryLogic;

Initialize the logic, which records a hit as the first update to the logic. The first element of the
'History' property, which indicates the most recent update, is 1.

init(historyLogic)
history = historyLogic.History;
disp(['History: [',num2str(history),'].']);

History: [1  0  0  0  0  0].

Update the logic with a hit. The first two elements of the 'History' property are 1.

hit(historyLogic)
history = historyLogic.History;
disp(['History: [',num2str(history),'].']);

History: [1  1  0  0  0  0].

Input Arguments
historyLogic — Track history logic
trackHistoryLogic

Track history logic, specified as a trackHistoryLogic object.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
trackHistoryLogic

Introduced in R2020a
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init
Initialize track logic with first hit

Syntax
init(historyLogic)

Description
init(historyLogic) initializes the track history logic with the first hit.

Examples

Initialize History-Based Logic

Create a history-based logic with default confirmation and deletion thresholds.

historyLogic = trackHistoryLogic

historyLogic = 
  trackHistoryLogic with properties:

    ConfirmationThreshold: [2 3]
        DeletionThreshold: [6 6]
                  History: [0 0 0 0 0 0]

Initialize the logic, which records a hit as the first update to the logic.

init(historyLogic)
history = historyLogic.History;
disp(['History: [',num2str(history),'].']);

History: [1  0  0  0  0  0].

Input Arguments
historyLogic — Track history logic
trackHistoryLogic object

Track history logic, specified as a trackHistoryLogic object.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
trackHistoryLogic

Introduced in R2020a
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miss
Update track logic with miss

Syntax
miss(historyLogic)

Description
miss(historyLogic) updates the track history with a miss.

Examples

Update History Logic with Miss

Create a history-based logic with the default confirmation and deletion thresholds.

historyLogic = trackHistoryLogic;

Initialize the logic, which records a hit as the first update to the logic. The first element of the
'History' property, which indicates the most recent update, is 1.

init(historyLogic)
history = historyLogic.History;
disp(['History: [',num2str(history),'].']);

History: [1  0  0  0  0  0].

Update the logic with a miss. The first element of the 'History' property is 0.

miss(historyLogic)
history = historyLogic.History;
disp(['History: [',num2str(history),'].']);

History: [0  1  0  0  0  0].

Input Arguments
historyLogic — Track history logic
trackHistoryLogic

Track history logic, specified as a trackHistoryLogic object.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
trackHistoryLogic

Introduced in R2020a
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output
Get current state of track logic

Syntax
history = output(historyLogic)

Description
history = output(historyLogic) returns the recent history updates of the track history logic
object, historyLogic.

Examples

Get Recent History of History-Based Logic

Create a history-based logic. Specify confirmation threshold values Mc and Nc as the vector [3 5].
Specify deletion threshold values Md and Nd as the vector [6 7].

historyLogic = trackHistoryLogic('ConfirmationThreshold',[3 5], ...
    'DeletionThreshold',[6 7]);

Get the recent history of the logic. The history vector has a length of 7, which is the greater of Nc and
Nd. All values are 0 because the logic is not initialized.

h = output(historyLogic)

h = 1x7 logical array

   0   0   0   0   0   0   0

Initialize the logic, then get the recent history of the logic. The first element, which indicates the most
recent update, is 1.

init(historyLogic);
h = output(historyLogic)

h = 1x7 logical array

   1   0   0   0   0   0   0

Update the logic with a hit, then get the recent history of the logic.

hit(historyLogic);
h = output(historyLogic)

h = 1x7 logical array

   1   1   0   0   0   0   0

4 Objects

4-1138



Input Arguments
historyLogic — Track history logic
trackHistoryLogic

Track history logic, specified as a trackHistoryLogic object.

Output Arguments
history — Recent history
logical vector

Recent track history of historyLogic, returned as a logical vector. The length of the vector is the
same as the length of the History property of the historyLogic. The first element is the most
recent update. A true value indicates a hit and a false value indicates a miss.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
trackHistoryLogic

Introduced in R2020a
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reset
Reset state of track logic

Syntax
reset(logic)

Description
reset(logic) resets the track logic object, logic.

Examples

Reset Track History Logic

Create a history-based logic using the default confirmation threshold and deletion threshold. Get the
current state of the logic. The current and maximum score are both 0.

historyLogic = trackHistoryLogic;
history = output(historyLogic)

history = 1x6 logical array

   0   0   0   0   0   0

Initialize the logic, then get the current state of the logic.

volume = 1.3;
beta = 0.1;
init(historyLogic);
history = output(historyLogic)

history = 1x6 logical array

   1   0   0   0   0   0

Reset the logic, then get the current state of the logic.

reset(historyLogic)
history = output(historyLogic)

history = 1x6 logical array

   0   0   0   0   0   0
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Input Arguments
logic — Track history logic
trackHistoryLogic object

Track history logic, specified as a trackHistoryLogic object.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
trackHistoryLogic

Introduced in R2020a

 reset

4-1141



labelDefinitionCreatorMultisignal
Object for storing, modifying, and creating label definitions table for multisignal workflow

Description
The labelDefinitionCreatorMultisignal object stores definitions of labels, sublabels, and
attributes to label ground truth data for a multisignal workflow. Use “Object Functions” on page 4-
1143 to add, remove, modify, or display label definitions. Use the create object function to create a
label definitions table from the labelDefinitionCreatorMultisignal object. You can use this
label definitions table with the Ground Truth Labeler app.

Creation

Syntax
ldc = labelDefinitionCreatorMultisignal
ldc = labelDefinitionCreatorMultisignal(labelDefs)

Description

ldc = labelDefinitionCreatorMultisignal creates an empty label definition creator object
ldc for a multisignal workflow. Add label definitions to this object using “Object Functions” on page
4-1143. Use the info function to inspect details of stored labels, sublabels, and attributes.

ldc = labelDefinitionCreatorMultisignal(labelDefs) creates a label definition creator
object ldc for a multisignal workflow and stores definitions from the label definitions table
labelDefs. Use “Object Functions” on page 4-1143 to add new label definitions or modify the
existing label definitions. Use the info function to inspect details of stored labels, sublabels, and
attributes.

Input Arguments

labelDefs — Label definitions
table

Label definitions, specified as a table with up to eight columns. The possible columns are Name,
SignalType, LabelType, Group, Description, LabelColor, PixelLabelID, and Hierarchy. This table
specifies the definitions of labels, sublabels, and attributes for labeling ground truth data. For more
details, see LabelDefinitions property of groundTruthMultisignal object.

Output Arguments

ldc — Label definition creator for multisignal workflow
labelDefinitionCreatorMultisignal object

Label definition creator for the multisignal workflow, returned as a
labelDefinitionCreatorMultisignal object that contains information about label definitions
associated with ground truth data.
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Object Functions
addLabel Add label to label definition creator object for multisignal workflow
addSublabel Add sublabel to label in label definition creator object for multisignal workflow
addAttribute Add attributes to label or sublabel in label definition creator object for multisignal

workflow
removeLabel Remove label from label definition creator object for multisignal workflow
removeSublabel Remove sublabel from label in label definition creator object for multisignal

workflow
removeAttribute Remove attribute from label or sublabel in label definition creator object for

multisignal workflow
editLabelGroup Modify label group name in label definition creator object for multisignal

workflow
editGroupName Change group name in label definition creator object for multisignal

workflow
editLabelDescription Modify label or sublabel description in label definition creator object for

multisignal workflow
editAttributeDescription Modify attribute description in label definition creator object for

multisignal workflow
create Create label definitions table from label definition creator object for multisignal workflow
info Display label, sublabel, or attribute information stored in label definition creator object for

multisignal workflow

Examples

Create Label Definition Creator Object for Multisignal Workflow and Add Label Definitions

Create an empty labelDefinitionCreatorMultisignal object.

ldc = labelDefinitionCreatorMultisignal

ldc = 
labelDefinitionCreatorMultisignal

Add a label with the name 'Vehicle'. Specify the type as 'Rectangle'. Adding a 'Rectangle'
also adds a 'Cuboid' entry to the label definitions table.

addLabel(ldc,'Vehicle','Rectangle')

Add an attribute with the name 'Color' to the label 'Vehicle'. Specify the attribute type as a
string with the value 'Red'.

addAttribute(ldc,'Vehicle','Color',attributeType.String,'Red')

Add a sublabel with the name 'Wheel' to the label 'Vehicle'. Specify the type of the sublabel as
'Rectangle'.

addSublabel(ldc,'Vehicle','Wheel','Rectangle')

Add an attribute called 'Diameter' to the sublabel 'Wheel'. Specify the attribute value as a
'Numeric' scalar.

addAttribute(ldc,'Vehicle/Wheel','Diameter','Numeric',14)

Display the details of the updated labelDefinitionCreatorMultisignal object.
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ldc

ldc = 
labelDefinitionCreatorMultisignal contains the following labels:

    Vehicle with 1 sublabels and 1 attributes and belongs to None group.    (info)

For more details about attributes and sublabels, use the info method.

Create a label definitions table from the definitions stored in the object.

labelDefs = create(ldc)

labelDefs=2×7 table
       Name        SignalType    LabelType     Group      Description    LabelColor     Hierarchy  
    ___________    __________    _________    ________    ___________    __________    ____________

    {'Vehicle'}    Image         Rectangle    {'None'}       {' '}       {0x0 char}    {1x1 struct}
    {'Vehicle'}    PointCloud    Cuboid       {'None'}       {' '}       {0x0 char}    {1x1 struct}

Create Label Definition Creator Object for Multisignal Workflow from Existing Label
Definitions Table

Load an existing multisignal label definitions table into the workspace.

labelDefFile = fullfile(toolboxdir('driving'),'drivingdata','labelDefsMultiSignal.mat');
ld = load(labelDefFile)

ld = struct with fields:
    labelDefs: [6x6 table]

Create a labelDefinitionCreatorMultisignal object from the label definitions table.

ldc = labelDefinitionCreatorMultisignal(ld.labelDefs)

ldc = 
labelDefinitionCreatorMultisignal contains the following labels:

    Car with 0 sublabels and 0 attributes and belongs to None group.    (info)
    LeftLane with 0 sublabels and 0 attributes and belongs to None group.    (info)
    Road with 0 sublabels and 0 attributes and belongs to None group.    (info)
    Sunny with 0 sublabels and 0 attributes and belongs to None group.    (info)
    Urban with 0 sublabels and 0 attributes and belongs to None group.    (info)

For more details about attributes and sublabels, use the info method.

Add a new attribute to the label 'Car'.

addAttribute(ldc,'Car','Color','List',{'Red','Green','Blue'})

Display the details of the updated labelDefinitionCreatorMultisignal object.

ldc

ldc = 
labelDefinitionCreatorMultisignal contains the following labels:
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    Car with 0 sublabels and 1 attributes and belongs to None group.    (info)
    LeftLane with 0 sublabels and 0 attributes and belongs to None group.    (info)
    Road with 0 sublabels and 0 attributes and belongs to None group.    (info)
    Sunny with 0 sublabels and 0 attributes and belongs to None group.    (info)
    Urban with 0 sublabels and 0 attributes and belongs to None group.    (info)

For more details about attributes and sublabels, use the info method.

See Also
Apps
Ground Truth Labeler

Objects
attributeType | groundTruthMultisignal | labelType

Introduced in R2020a
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addAttribute
Add attributes to label or sublabel in label definition creator object for multisignal workflow

Syntax
addAttribute(ldc,labelName,attributeName,typeOfAttribute,attributeDefault)
addAttribute( ___ ,Name,Value)

Description
addAttribute(ldc,labelName,attributeName,typeOfAttribute,attributeDefault)
adds an attribute with specified name and type to the indicated label or sublabel. The attribute is
added under the hierarchy for the specified label or sublabel in the
labelDefinitionCreatorMultisignal object ldc.

addAttribute( ___ ,Name,Value) specifies options using one or more name-value pair arguments
in addition to the input arguments in the previous syntax.

Examples

Add Attributes to Label and Sublabel in Label Definition Creator Object for Multisignal
Workflow

Create an empty labelDefinitionCreatorMultisignal object.

ldc = labelDefinitionCreatorMultisignal;

Add a label with the name 'Car'. Specify the type of label as 'Rectangle'. Adding a 'Rectangle'
also adds a 'Cuboid' entry to the label definitions table.

addLabel(ldc,'Car','Rectangle');

Add an attribute 'Color' to the label 'Car'. Specify the attribute type as 'String' with the value
'Red'.

addAttribute(ldc,'Car','Color','String','Red')

Add a label with the name 'TrafficLight'. Specify the type of the label as 'Rectangle'. Add a
description to the label.

addLabel(ldc,'TrafficLight','Rectangle','Description','Bounding boxes for stop signs');

Add a sublabel with the name 'RedLight' to the label 'TrafficLight'. Specify the type of the
sublabel as 'Rectangle'.

addSublabel(ldc,'TrafficLight','RedLight','Rectangle');

Add an attribute 'isOn' to the sublabel 'RedLight' in the label 'TrafficLight'. Specify the
attribute type for the sublabel as 'logical' with the value false.

addAttribute(ldc,'TrafficLight/RedLight','isOn','logical',false);
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Display the details of the updated labelDefinitionCreatorMultisignal object.

ldc

ldc = 
labelDefinitionCreatorMultisignal contains the following labels:

    Car with 0 sublabels and 1 attributes and belongs to None group.    (info)
    TrafficLight with 1 sublabels and 0 attributes and belongs to None group.    (info)

For more details about attributes and sublabels, use the info method.

Display information about the attribute under the label 'Car' using the object function info.

info(ldc,'Car')

           Name: "Car"
     SignalType: Image
      LabelType: Rectangle
          Group: "None"
     LabelColor: {''}
     Attributes: "Color"
      Sublabels: []
    Description: ' '

           Name: "Car"
     SignalType: PointCloud
      LabelType: Cuboid
          Group: "None"
     LabelColor: {''}
     Attributes: "Color"
      Sublabels: []
    Description: ' '

Display information about the attribute under the label 'TrafficLight' using the object function
info.

info(ldc,'TrafficLight')

           Name: "TrafficLight"
     SignalType: Image
      LabelType: Rectangle
          Group: "None"
     LabelColor: {''}
     Attributes: []
      Sublabels: "RedLight"
    Description: 'Bounding boxes for stop signs'

           Name: "TrafficLight"
     SignalType: PointCloud
      LabelType: Cuboid
          Group: "None"
     LabelColor: {''}
     Attributes: []
      Sublabels: "RedLight"
    Description: 'Bounding boxes for stop signs'

Display information about the attribute under the sublabel 'RedLight' in the label
'TrafficLight' using the object function info.
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info(ldc,'TrafficLight/RedLight')

           Name: "RedLight"
           Type: Rectangle
     LabelColor: ''
     Attributes: "isOn"
      Sublabels: []
    Description: ' '

Display information about the attribute 'isOn' under the sublabel 'RedLight' in the label
'TrafficLight' using the object function info.

info(ldc,'TrafficLight/RedLight/isOn')

            Name: "isOn"
            Type: Logical
    DefaultValue: 0
     Description: ' '

Input Arguments
ldc — Label definition creator for multisignal workflow
labelDefinitionCreatorMultisignal object

Label definition creator for the multisignal workflow, specified as a
labelDefinitionCreatorMultisignal object.

labelName — Label or sublabel name
character vector | string scalar

Label or sublabel name, specified as a character vector or string scalar that uniquely identifies the
label or sublabel to which the attribute is to be added.

• To specify a label, use the form 'labelName'.

Example: addAttribute(ldc,'Car','Color')

• To specify a sublabel, use the form 'labelName/sublabelName'. In this case, the attribute
associates with the sublabel.

Example: addAttribute(ldc,'TrafficLight/RedLight','isOn')

attributeName — Attribute name
character vector | string scalar

Attribute name, specified as a character vector or string scalar that identifies the attribute to be
added to the label or sublabel.

typeOfAttribute — Type of attribute
attributeType enumeration | character vector | string scalar

Type of attribute, specified as one of these values:

• attributeType enumeration — The type of the attribute must be one of these attributeType
enumerators: Numeric, Logical, String, or List.
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Example: addAttribute(ldc,'Car','Color',attributeType.String,'Red');

• Character vector or string scalar — This value must partially or fully match one of the
enumerators in the attributeType enumeration.

Example: addAttribute(ldc,'Car','Color','Str','Red');

attributeDefault — Default value of attribute
numeric scalar | logical scalar | character vector | string scalar | cell array of character vectors | cell
array of string scalars

Default value of the attribute, specified as one of these:

• Numeric scalar — Specify this value when typeOfAttribute is Numeric.
• Logical scalar — Specify this value when typeOfAttribute is Logical.
• Character vector or string scalar — Specify this value when typeOfAttribute is String.
• Cell array of character vectors or cell array of string scalars — Specify this value when

typeOfAttribute is List. The first entry in the cell array is the default value.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: addAttribute(ldc,'Car/
Wheel','Outsidediameter',attributeType.Numeric,740,'Description','Outside
diameter in mm');

Description — Attribute description
' ' (default) | character vector | string scalar

Attribute description, specified as a comma-separated pair consisting of 'Description' and a
character vector or string scalar. Use this name-value pair to describe the attribute.

See Also
Objects
attributeType | labelDefinitionCreatorMultisignal

Functions
addLabel | addSublabel | editAttributeDescription | removeAttribute

Introduced in R2020a
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addLabel
Add label to label definition creator object for multisignal workflow

Syntax
addLabel(ldc,labelName,typeOfLabel)
addLabel( ___ ,Name,Value)

Description
addLabel(ldc,labelName,typeOfLabel) adds a label with the specified name and type to the
labelDefinitionCreatorMultisignal object ldc.

addLabel( ___ ,Name,Value) specifies options using one or more name-value pair arguments in
addition to the input arguments in the previous syntax.

Examples

Add Label Using Label Definition Creator for Multisignal Workflow

Create an empty labelDefinitionCreatorMultisignal object.

ldc = labelDefinitionCreatorMultisignal;

Add a label named 'Car'. Specify the type of label as 'Cuboid'. Adding a 'Cuboid' also adds a
'Rectangle' entry to the label definitions table.

addLabel(ldc,'Car','Cuboid');

Add another label named 'StopSign' in a group named 'TrafficSign'. Specify the type of label
as a 'Rectangle'. Adding 'Rectangle' also adds a 'Cuboid' entry to the label definitions table.
Add a description to the label.

addLabel(ldc,'StopSign','Rectangle','Group','TrafficSign','Description','Bounding boxes for stop signs');

Display the details of the updated labelDefinitionCreatorMultisignal object.

ldc

ldc = 
labelDefinitionCreatorMultisignal contains the following labels:

    Car with 0 sublabels and 0 attributes and belongs to None group.    (info)
    StopSign with 0 sublabels and 0 attributes and belongs to TrafficSign group.    (info)

For more details about attributes and sublabels, use the info method.

Display information about the label 'Car' using the object function info.

info(ldc,'Car')
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           Name: "Car"
     SignalType: Image
      LabelType: Rectangle
          Group: "None"
     LabelColor: {''}
     Attributes: []
      Sublabels: []
    Description: ' '

           Name: "Car"
     SignalType: PointCloud
      LabelType: Cuboid
          Group: "None"
     LabelColor: {''}
     Attributes: []
      Sublabels: []
    Description: ' '

Display information about the label 'StopSign' using the object function info.

info(ldc,'StopSign')

           Name: "StopSign"
     SignalType: Image
      LabelType: Rectangle
          Group: "TrafficSign"
     LabelColor: {''}
     Attributes: []
      Sublabels: []
    Description: 'Bounding boxes for stop signs'

           Name: "StopSign"
     SignalType: PointCloud
      LabelType: Cuboid
          Group: "TrafficSign"
     LabelColor: {''}
     Attributes: []
      Sublabels: []
    Description: 'Bounding boxes for stop signs'

Input Arguments
ldc — Label definition creator for multisignal workflow
labelDefinitionCreatorMultisignal object

Label definition creator for the multisignal workflow, specified as a
labelDefinitionCreatorMultisignal object.

labelName — Label name
character vector | string scalar

Label name, specified as a character vector or string scalar that uniquely identifies the label to be
added.

typeOfLabel — Type of label
labelType enumeration | character vector | string scalar
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Type of label, specified as one of these values:

• labelType enumeration — You can use any of these labelType enumerators to specify the type
of label: Cuboid, Rectangle, Line, PixelLabel, Scene, or Custom.

Note Adding a Cuboid or Rectangle also adds a Rectangle or Cuboid entry, respectively, to
the label definitions table.

Example: addLabel(ldc,'Car',labelType.Cuboid);

• Character vector or string scalar — This value must partially or fully match one of the labelType
enumerators.

Example: addLabel(ldc,'Car','Cub');

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example:
addLabel(ldc,'StopSign','Rectangle','Group','TrafficSign','Description','Boun
ding boxes for stop signs');

Group — Group name
'None' (default) | character vector | string scalar

Group name, specified as a comma-separated pair consisting of 'Group' and a character vector or
string scalar. Use this name-value pair to specify a name for a group of labels.

Description — Label description
' ' (default) | character vector | string scalar

Label description, specified as a comma-separated pair consisting of 'Description' and a
character vector or string scalar. Use this name-value pair to describe the label.

See Also
Objects
labelDefinitionCreatorMultisignal | labelType

Functions
addAttribute | addSublabel | editLabelDescription | removeLabel

Introduced in R2020a
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addSublabel
Add sublabel to label in label definition creator object for multisignal workflow

Syntax
addSublabel(ldc,labelName,sublabelName,typeOfSublabel)
addSublabel( ___ ,Name,Value)

Description
addSublabel(ldc,labelName,sublabelName,typeOfSublabel) adds a sublabel with the
specified name and type to the indicated label. The sublabel is added under the hierarchy for the
specified label in the labelDefinitionCreatorMultisignal object ldc.

addSublabel( ___ ,Name,Value) specifies options using one or more name-value pair arguments
in addition to the input arguments in the previous syntax.

Examples

Add Sublabels to Labels in Label Definition Creator Object for Multisignal Workflow

Create an empty labelDefinitionCreatorMultisignal object.

ldc = labelDefinitionCreatorMultisignal;

Add a label with the name 'Vehicle'. Specify the type as 'Rectangle'. Adding a 'Rectangle'
also adds a 'Cuboid' entry to the label definitions table.

addLabel(ldc,'Vehicle','Rectangle');

Add a sublabel with the name 'Wheel' to the label 'Vehicle'. Specify the type of the sublabel as
'Rectangle'. Add a description to the sublabel.

addSublabel(ldc,'Vehicle','Wheel','rect','Description','Bounding boxes for wheel');

Display the details of the updated labelDefinitionCreatorMultisignal object.

ldc

ldc = 
labelDefinitionCreatorMultisignal contains the following labels:

    Vehicle with 1 sublabels and 0 attributes and belongs to None group.    (info)

For more details about attributes and sublabels, use the info method.

Display information about the label 'Vehicle' using the object function info.

info(ldc,'Vehicle')

           Name: "Vehicle"
     SignalType: Image
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      LabelType: Rectangle
          Group: "None"
     LabelColor: {''}
     Attributes: []
      Sublabels: "Wheel"
    Description: ' '

           Name: "Vehicle"
     SignalType: PointCloud
      LabelType: Cuboid
          Group: "None"
     LabelColor: {''}
     Attributes: []
      Sublabels: "Wheel"
    Description: ' '

Display information about the sublabel 'Wheel' in the label 'Vehicle' using the object function
info.

info(ldc,'Vehicle/Wheel')

           Name: "Wheel"
           Type: Rectangle
     LabelColor: ''
     Attributes: []
      Sublabels: []
    Description: 'Bounding boxes for wheel'

Add another label with the name 'TrafficLight'. Specify the type as 'Rectangle'. Add a
description to the label.

addLabel(ldc,'TrafficLight','Rectangle','Description','Bounding boxes for traffic light');

Add sublabels called 'RedLight' and 'GreenLight' to the label 'TrafficLight'. Specify the
type of the sublabels as 'Rectangle'.

addSublabel(ldc,'TrafficLight','RedLight','Rectangle');
addSublabel(ldc,'TrafficLight','GreenLight','Rectangle');

Display the details of the updated labelDefinitionCreatorMultisignal object.

ldc

ldc = 
labelDefinitionCreatorMultisignal contains the following labels:

    Vehicle with 1 sublabels and 0 attributes and belongs to None group.    (info)
    TrafficLight with 2 sublabels and 0 attributes and belongs to None group.    (info)

For more details about attributes and sublabels, use the info method.

Display information about the label 'TrafficLight' using the object function info.

info(ldc,'TrafficLight')

           Name: "TrafficLight"
     SignalType: Image
      LabelType: Rectangle
          Group: "None"
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     LabelColor: {''}
     Attributes: []
      Sublabels: ["RedLight"    "GreenLight"]
    Description: 'Bounding boxes for traffic light'

           Name: "TrafficLight"
     SignalType: PointCloud
      LabelType: Cuboid
          Group: "None"
     LabelColor: {''}
     Attributes: []
      Sublabels: ["RedLight"    "GreenLight"]
    Description: 'Bounding boxes for traffic light'

Input Arguments
ldc — Label definition creator for multisignal workflow
labelDefinitionCreatorMultisignal object

Label definition creator for the multisignal workflow, specified as a
labelDefinitionCreatorMultisignal object.

labelName — Label name
character vector | string scalar

Label name, specified as a character vector or string scalar that uniquely identifies the label with
which the sublabel is associated.

sublabelName — Sublabel name
character vector | string scalar

Sublabel name, specified as a character vector or string scalar that identifies the sublabel to be
added.

typeOfSublabel — Type of sublabel
labelType enumeration | character vector | string scalar

Type of sublabel, specified as one of these values:

• labelType enumeration — The type of the sublabel must be one of these labelType
enumerators: Rectangle or Line.

Example: addSublabel(ldc,'Car','Wheel',labelType.Rectangle);

• Character vector or string scalar — This value must partially or fully match one of these
labelType enumerators: Rectangle or Line.

Example: addSublabel(ldc,'Car','Wheel','Rec');

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
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Example: addSublabel(ldc,'Car','Wheel','Rec','Description','Bounding box for
Wheel');

Description — Sublabel description
' ' (default) | character vector | string scalar

Sublabel description, specified as a comma-separated pair consisting of 'Description' and a
character vector or string scalar. Use this name-value pair to describe the sublabel.

See Also
Objects
labelDefinitionCreatorMultisignal | labelType

Functions
addAttribute | addLabel | removeSublabel

Introduced in R2020a
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create
Create label definitions table from label definition creator object for multisignal workflow

Syntax
labelDefs = create(ldc)

Description
labelDefs = create(ldc) creates a label definitions table, labelDefs, from the
labelDefinitionCreatorMultisignal object ldc. You can import the labelDefs table into the
Ground Truth Labeler app to label ground truth data.

Examples

Create Label Definitions Table from Label Definition Creator Object for Multisignal Workflow

Create an empty labelDefinitionCreatorMultisignal object.

ldc = labelDefinitionCreatorMultisignal;

Add a label called 'Vehicle'. Specify the label type as 'Rectangle' and add a description to the
label.

addLabel(ldc,'Vehicle','Rectangle','Description','Bounding box for the vehicle. Use this label for cars and buses.')

Add an attribute 'IsCar' to the label 'Vehicle'. Specify the attribute type as 'logical' with
value the true and add a description for the attribute.

addAttribute(ldc,'Vehicle','IsCar','logical',true,'Description','Type of vehicle')

Add an attribute 'IsBus' to the label 'Vehicle'. Specify the attribute type as 'logical' with
value the false and add a description for the attribute.

addAttribute(ldc,'Vehicle','IsBus','logical',false,'Description','Type of vehicle')

Create a label definitions table from the definitions stored in the object.

labelDefs = create(ldc)

labelDefs=2×7 table
       Name        SignalType    LabelType     Group                                  Description                                 LabelColor     Hierarchy  
    ___________    __________    _________    ________    ____________________________________________________________________    __________    ____________

    {'Vehicle'}    Image         Rectangle    {'None'}    {'Bounding box for the vehicle. Use this label for cars and buses.'}    {0x0 char}    {1x1 struct}
    {'Vehicle'}    PointCloud    Cuboid       {'None'}    {'Bounding box for the vehicle. Use this label for cars and buses.'}    {0x0 char}    {1x1 struct}
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Input Arguments
ldc — Label definition creator for multisignal workflow
labelDefinitionCreatorMultisignal object

Label definition creator for the multisignal workflow, specified as a
labelDefinitionCreatorMultisignal object. The object defines the labels, sublabels, and
attributes used for generating the label definitions table labelDefs.

Output Arguments
labelDefs — Label definitions
table

Label definitions, returned as a table with up to eight columns. The possible columns are Name,
SignalType, LabelType, Group, Description, LabelColor, PixelLabelID, and Hierarchy. This table
specifies the definitions of labels, sublabels, and attributes for labeling ground truth data. For more
details, see LabelDefinitions property of groundTruthMultisignal object.

See Also
Objects
labelDefinitionCreatorMultisignal

Functions
addAttribute | addLabel | addSublabel | info

Introduced in R2020a
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editAttributeDescription
Modify attribute description in label definition creator object for multisignal workflow

Syntax
editAttributeDescription(ldc,labelName,attributeName,description)

Description
editAttributeDescription(ldc,labelName,attributeName,description) modifies the
description of an attribute under the label or sublabel identified by labelName. The label or sublabel
must be associated with the labelDefinitionCreatorMultisignal object ldc.

Examples

Modify Attribute Description in Label Definition Creator Object for Multisignal Workflow

Create an empty labelDefinitionCreatorMultisignal object.

ldc = labelDefinitionCreatorMultisignal;

Add a label called 'TrafficLight'.

addLabel(ldc,'TrafficLight',labelType.Rectangle);

Add a sublabel named 'RedLight' for label 'TrafficLight'.

addSublabel(ldc,'TrafficLight','RedLight',labelType.Rectangle);

Add an attribute named 'Active' to the label 'TrafficLight'. Set the attribute type as
'Logical' with the default value true.

addAttribute(ldc,'TrafficLight','Active',attributeType.Logical,true);

Add an attribute called 'isOn' to the sublabel 'RedLight'. Set the attribute type as 'Logical'
with the default value false.

addAttribute(ldc,'TrafficLight/RedLight','isOn',attributeType.Logical,false);

Modify the Attribute Description Under a Label

Display information about the label 'TrafficLight'.

info(ldc,'TrafficLight')

           Name: "TrafficLight"
     SignalType: Image
      LabelType: Rectangle
          Group: "None"
     LabelColor: {''}
     Attributes: "Active"
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      Sublabels: "RedLight"
    Description: ' '

           Name: "TrafficLight"
     SignalType: PointCloud
      LabelType: Cuboid
          Group: "None"
     LabelColor: {''}
     Attributes: "Active"
      Sublabels: "RedLight"
    Description: ' '

Modify the description of the attribute 'Active' under the label 'TrafficLight'.

editAttributeDescription(ldc,'TrafficLight','Active','Is Active: true (DefaultValue: 1), false (DefaultValue: 0)')

Display information about the label 'TrafficLight' to verify the modified attribute description.

info(ldc,'TrafficLight/Active')

            Name: "Active"
            Type: Logical
    DefaultValue: 1
     Description: 'Is Active: true (DefaultValue: 1), false (DefaultValue: 0)'

Modify the Attribute Description Under a Sublabel

Display information about the sublabel 'RedLight'.

info(ldc,'TrafficLight/RedLight')

           Name: "RedLight"
           Type: Rectangle
     LabelColor: ''
     Attributes: "isOn"
      Sublabels: []
    Description: ' '

Modify the description of the attribute 'isOn' under the sublabel 'RedLight'.

editAttributeDescription(ldc,'TrafficLight/RedLight','isOn','Is On: true (DefaultValue: 1), false (DefaultValue: 0)')

Display information about the sublabel 'RedLight' to verify the modified attribute description.

info(ldc,'TrafficLight/RedLight/isOn')

            Name: "isOn"
            Type: Logical
    DefaultValue: 0
     Description: 'Is On: true (DefaultValue: 1), false (DefaultValue: 0)'

Input Arguments
ldc — Label definition creator for multisignal workflow
labelDefinitionCreatorMultisignal object

Label definition creator for the multisignal workflow, specified as a
labelDefinitionCreatorMultisignal object.
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labelName — Label or sublabel name
character vector | string scalar

Label or sublabel name, specified as a character vector or string scalar that uniquely identifies the
label or sublabel to which the attribute is associated.

• To specify a label, use the form 'labelName'.

Example: editAttributeDescription(ldc,'TrafficLight','Active','Is Active: true
(DefaultValue: 1), false (DefaultValue: 0)')

• To specify a sublabel, use the form 'labelName/sublabelName'. In this case, the attribute is
associated with the sublabel.

Example: editAttributeDescription(ldc,'TrafficLight/RedLight','isOn','Is On:
true (DefaultValue: 1), false (DefaultValue: 0)')

attributeName — Attribute name
character vector | string scalar

Attribute name, specified as a character vector or string scalar that identifies the attribute for which
the description is to be modified.

description — Description
character vector | string scalar

Description, specified as a character vector or string scalar that contains a new description for the
attribute identified by attributeName.

See Also
Objects
labelDefinitionCreatorMultisignal

Functions
editLabelDescription

Introduced in R2020a
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editGroupName
Change group name in label definition creator object for multisignal workflow

Syntax
editGroupName(ldc,oldname,newname)

Description
editGroupName(ldc,oldname,newname) changes the group name from oldname to newname.
This function changes the group name in all the label definitions that have the oldname.

Examples

Rename Label Group in Label Definition Creator Object for Multisignal Workflow

Create an empty labelDefinitionCreatorMultisignal object.

ldc = labelDefinitionCreatorMultisignal;

Add labels named 'Car' and 'Truck' in a group named 'Vehicle'.

addLabel(ldc,'Car',labelType.Rectangle,'Group','Vehicle');
addLabel(ldc,'Truck',labelType.Rectangle,'Group','Vehicle');

Change the 'Vehicle' group name 'FourWheeler'.

editGroupName(ldc,'Vehicle','FourWheeler');

Display the details of the updated labelDefinitionCreatorMultisignal object.

ldc

ldc = 
labelDefinitionCreatorMultisignal contains the following labels:

    Car with 0 sublabels and 0 attributes and belongs to FourWheeler group.    (info)
    Truck with 0 sublabels and 0 attributes and belongs to FourWheeler group.    (info)

For more details about attributes and sublabels, use the info method.

Input Arguments
ldc — Label definition creator for multisignal workflow
labelDefinitionCreatorMultisignal object

Label definition creator for the multisignal workflow, specified as a
labelDefinitionCreatorMultisignal object.
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oldname — Old group name
character vector | string scalar

Old group name, specified as a character vector or string scalar that uniquely identifies group name
you want to modify.

newname — New group name
character vector | string scalar

New group name, specified as a character vector or string scalar that uniquely identifies the new
group name.

See Also
Objects
labelDefinitionCreatorMultisignal

Functions
editLabelDescription | editLabelGroup

Introduced in R2020a
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editLabelDescription
Modify label or sublabel description in label definition creator object for multisignal workflow

Syntax
editLabelDescription(ldc,labelName,description)

Description
editLabelDescription(ldc,labelName,description) modifies the description of a label or
sublabel identified by labelName. The label or sublabel must be associated with the
labelDefinitionCreatorMultisignal object ldc.

Examples

Modify Description of Label and Sublabel in Label Definition Creator Object for Multisignal
Workflow

Create an empty labelDefinitionCreatorMultisignal object.

ldc = labelDefinitionCreatorMultisignal;

Add a label with the name 'TrafficLight'. Specify the type of label as 'Rectangle'.

addLabel(ldc,'TrafficLight','Rectangle')

Add a sublabel called 'Light' to the label 'TrafficLight'. Specify the type of the sublabel as 'Rectangle'.

addSublabel(ldc,'TrafficLight','Light','Rectangle')

Modify Label Description

Display information about the label 'TrafficLight'.

info(ldc,'TrafficLight')

           Name: "TrafficLight"
     SignalType: Image
      LabelType: Rectangle
          Group: "None"
     LabelColor: {''}
     Attributes: []
      Sublabels: "Light"
    Description: ' '

           Name: "TrafficLight"
     SignalType: PointCloud
      LabelType: Cuboid
          Group: "None"
     LabelColor: {''}
     Attributes: []
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      Sublabels: "Light"
    Description: ' '

Modify the description for the label 'TrafficLight'.

editLabelDescription(ldc,'TrafficLight','Bounding box for the traffic light')

Display information about the label 'TrafficLight' to verify the modified label description.

info(ldc,'TrafficLight')

           Name: "TrafficLight"
     SignalType: Image
      LabelType: Rectangle
          Group: "None"
     LabelColor: {''}
     Attributes: []
      Sublabels: "Light"
    Description: 'Bounding box for the traffic light'

           Name: "TrafficLight"
     SignalType: PointCloud
      LabelType: Cuboid
          Group: "None"
     LabelColor: {''}
     Attributes: []
      Sublabels: "Light"
    Description: 'Bounding box for the traffic light'

Modify Sublabel Description

Display information about the sublabel 'Light' under the label 'TrafficLight'.

info(ldc,'TrafficLight/Light')

           Name: "Light"
           Type: Rectangle
     LabelColor: ''
     Attributes: []
      Sublabels: []
    Description: ' '

Modify the description for the sublabel 'Light'.

editLabelDescription(ldc,'TrafficLight/Light','Bounding box around each light of the Traffic light')

Display information about the sublabel 'Light' under the label 'TrafficLight' to verify the modified
sublabel description.

info(ldc,'TrafficLight/Light')

           Name: "Light"
           Type: Rectangle
     LabelColor: ''
     Attributes: []
      Sublabels: []
    Description: 'Bounding box around each light of the Traffic light'
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Input Arguments
ldc — Label definition creator for multisignal workflow
labelDefinitionCreatorMultisignal object

Label definition creator for the multisignal workflow, specified as a
labelDefinitionCreatorMultisignal object.

labelName — Label or sublabel name
character vector | string scalar

Label or sublabel name, specified as a character vector or string scalar that uniquely identifies the
label or sublabel for which the description is to be modified.

• To specify a label, use the form 'labelName'.

Example: editLabelDescription(ldc,'TrafficLight','Bounding box for the traffic
light')

• To specify a sublabel, use the form 'labelName/sublabelName'.

Example: editLabelDescription(ldc,'TrafficLight/Light','Bounding box around
each light of the Traffic light')

description — Description
character vector | string scalar

Description, specified as a character vector or string scalar that contains the new description for the
label or sublabel identified by labelName.

See Also
Objects
groundTruthMultisignal | labelDefinitionCreatorMultisignal

Functions
editAttributeDescription

Introduced in R2020a
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editLabelGroup
Modify label group name in label definition creator object for multisignal workflow

Syntax
editLabelGroup(ldc,labelName,groupName)

Description
editLabelGroup(ldc,labelName,groupName) modifies the group name that corresponds to the
label identified by labelName. The label must be associated with the
labelDefinitionCreatorMultisignal object ldc.

Examples

Modify Group Name for Labels in Label Definition Creator Object for Multisignal Workflow

Create an empty labelDefinitionCreatorMultisignal object.

ldc = labelDefinitionCreatorMultisignal;

Add a label named 'Car' in a group named 'Vehicle'. Set the type of the label as 'Rectangle'.
Adding a 'Rectangle' also adds a 'Cuboid' entry to the label definitions table.

addLabel(ldc,'Car','Rectangle','Group','Vehicle')

Display information about the group name of the label 'Car' using the object function info.

info(ldc,'Car')

           Name: "Car"
     SignalType: Image
      LabelType: Rectangle
          Group: "Vehicle"
     LabelColor: {''}
     Attributes: []
      Sublabels: []
    Description: ' '

           Name: "Car"
     SignalType: PointCloud
      LabelType: Cuboid
          Group: "Vehicle"
     LabelColor: {''}
     Attributes: []
      Sublabels: []
    Description: ' '

Add a label named 'Truck' to group named 'FourWheeler'. Set the type of the label as
'Rectangle'.

addLabel(ldc,'Truck',labelType.Rectangle,'Group','FourWheeler')
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Move the 'Car' label into the 'FourWheeler' group.

editLabelGroup(ldc,'Car','FourWheeler')

Display information about the label 'Car' to confirm the group name of the label is changed from
'Vehicle' to 'FourWheeler' using the object function info.

info(ldc,'Car')

           Name: "Car"
     SignalType: Image
      LabelType: Rectangle
          Group: "FourWheeler"
     LabelColor: {''}
     Attributes: []
      Sublabels: []
    Description: ' '

           Name: "Car"
     SignalType: PointCloud
      LabelType: Cuboid
          Group: "FourWheeler"
     LabelColor: {''}
     Attributes: []
      Sublabels: []
    Description: ' '

Input Arguments
ldc — Label definition creator for multisignal workflow
labelDefinitionCreatorMultisignal object

Label definition creator for the multisignal workflow, specified as a
labelDefinitionCreatorMultisignal object.

labelName — Label name
character vector | string scalar

Label name, specified as a character vector or string scalar that uniquely identifies the label that
corresponds to the groupName you want to modify.

groupName — Group name
character vector | string scalar

Group name, specified as a character vector or string scalar that identifies the group you want to
modify, which corresponds to the label specified by labelName.

See Also
Objects
labelDefinitionCreatorMultisignal

Functions
editGroupName | editLabelDescription
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Introduced in R2020a
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info
Display label, sublabel, or attribute information stored in label definition creator object for
multisignal workflow

Syntax
info(ldc,name)
infoStruct = info(ldc,name)

Description
info(ldc,name) displays information about the specified label, sublabel, or attribute stored in the
labelDefinitionCreatorMultisignal object ldc.

infoStruct = info(ldc,name) returns the information as a structure.

Examples

Display Information On Definitions Stored in Label Definition Creator Object for Multisignal
Workflow

Load an existing label definition table.

labelDefFile = fullfile(toolboxdir('driving'), 'drivingdata', 'labelDefsMultiSignal.mat');
ld = load(labelDefFile)

ld = struct with fields:
    labelDefs: [6x6 table]

Create a labelDefinitionCreatorMultisignal object from the label definitions table.

ldc = labelDefinitionCreatorMultisignal(ld.labelDefs)

ldc = 
labelDefinitionCreatorMultisignal contains the following labels:

    Car with 0 sublabels and 0 attributes and belongs to None group.    (info)
    LeftLane with 0 sublabels and 0 attributes and belongs to None group.    (info)
    Road with 0 sublabels and 0 attributes and belongs to None group.    (info)
    Sunny with 0 sublabels and 0 attributes and belongs to None group.    (info)
    Urban with 0 sublabels and 0 attributes and belongs to None group.    (info)

For more details about attributes and sublabels, use the info method.

Add an attribute 'Color' to the label 'Car'. Specify the attribute type as 'List' and add items to
the list.

addAttribute(ldc,'Car','Color','List',{'Red','Green','Blue'});

Display the details of the updated labelDefinitionCreatorMultisignal object.
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ldc

ldc = 
labelDefinitionCreatorMultisignal contains the following labels:

    Car with 0 sublabels and 1 attributes and belongs to None group.    (info)
    LeftLane with 0 sublabels and 0 attributes and belongs to None group.    (info)
    Road with 0 sublabels and 0 attributes and belongs to None group.    (info)
    Sunny with 0 sublabels and 0 attributes and belongs to None group.    (info)
    Urban with 0 sublabels and 0 attributes and belongs to None group.    (info)

For more details about attributes and sublabels, use the info method.

Display information about the attribute 'Color' under the label 'Car'.

colorStruct = info(ldc,'Car/Color')

colorStruct = struct with fields:
           Name: "Color"
           Type: List
      ListItems: {'Red'  'Green'  'Blue'}
    Description: ' '

Display the field ListItems in the 'Color' attribute of the label 'Car'.

colorStruct.ListItems

ans = 1x3 cell
    {'Red'}    {'Green'}    {'Blue'}

Input Arguments
ldc — Label definition creator for multisignal workflow
labelDefinitionCreatorMultisignal object

Label definition creator for the multisignal workflow, specified as a
labelDefinitionCreatorMultisignal object.

name — Name of label, sublabel, or attribute
character vector | string scalar

Name of label, sublabel, or attribute in the ldc object, specified as a character vector or string scalar
whose form depends on the type of name you specify.

• To specify a label, use the form 'labelName'.

Example: info(ldc,'TrafficLight')

• To specify a sublabel, use the form 'labelName/sublabelName'.

Example: info(ldc,'TrafficLight/RedLight')

• To specify an attribute, use the form 'labelName/attributeName' or 'labelName/sublabelName/
attributeName'.
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Example: info(ldc,'TrafficLight/Active')
Example: info(ldc,'TrafficLight/RedLight/isOn')

Output Arguments
infoStruct — Information structure
structure

Information structure, returned as a structure that contains the fields Name, SignalType (for labels),
LabelType (for labels), Type (for sublabels and attributes), Description, Attributes (when
pertinent), Sublabels (when pertinent), DefaultValue (for attributes), and ListItems (for List
attributes).

See Also
Objects
labelDefinitionCreatorMultisignal

Functions
addLabel | create

Introduced in R2020a
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removeAttribute
Remove attribute from label or sublabel in label definition creator object for multisignal workflow

Syntax
removeAttribute(ldc,labelName,attributeName)

Description
removeAttribute(ldc,labelName,attributeName) removes the specified attribute from the
indicated label or sublabel in the labelDefinitionCreatorMultisignal object ldc.

Examples

Remove Attributes from Label and Sublabel in Label Definition Creator Object for
Multisignal Workflow

Create an empty labelDefinitionCreatorMultisignal object.

ldc = labelDefinitionCreatorMultisignal;

Add a label with the name 'TrafficLight'. Specify the type of label as 'Rectangle'. Adding a
'Rectangle' also adds a 'Cuboid' entry to the label definitions table.

addLabel(ldc,'TrafficLight','Rectangle')

Add attribute 'Active' to the label. Specify the attribute type as 'Logical' with the value true.

addAttribute(ldc,'TrafficLight','Active','Logical',true)

Display information about the attributes under the label 'TrafficLight' using the object function
info.

info(ldc,'TrafficLight')

           Name: "TrafficLight"
     SignalType: Image
      LabelType: Rectangle
          Group: "None"
     LabelColor: {''}
     Attributes: "Active"
      Sublabels: []
    Description: ' '

           Name: "TrafficLight"
     SignalType: PointCloud
      LabelType: Cuboid
          Group: "None"
     LabelColor: {''}
     Attributes: "Active"
      Sublabels: []
    Description: ' '
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Remove the attribute 'Active' from the label 'TrafficLight'.

removeAttribute(ldc,'TrafficLight','Active')

Add a sublabel called 'RedLight' to the label 'TrafficLight'. Specify the type of the sublabel as
'Rectangle'.

addSublabel(ldc,'TrafficLight','RedLight','Rectangle')

Add an attribute 'isOn' to the sublabel 'RedLight'. Specify the type for the attribute 'isOn' as
'Logical' with the value false.

addAttribute(ldc,'TrafficLight/RedLight','isOn','Logical',false)

Display information about the attributes under the sublabel 'RedLight' in the label
'TrafficLight' using the object function info.

info(ldc,'TrafficLight/RedLight')

           Name: "RedLight"
           Type: Rectangle
     LabelColor: ''
     Attributes: "isOn"
      Sublabels: []
    Description: ' '

Remove the attribute 'isOn' from the sublabel 'RedLight'.

removeAttribute(ldc,'TrafficLight/RedLight','isOn')

Display information about the label 'TrafficLight' using the object function info, to confirm that
the attribute 'Active' has been removed from the label definitions.

info(ldc,'TrafficLight')

           Name: "TrafficLight"
     SignalType: Image
      LabelType: Rectangle
          Group: "None"
     LabelColor: {''}
     Attributes: []
      Sublabels: "RedLight"
    Description: ' '

           Name: "TrafficLight"
     SignalType: PointCloud
      LabelType: Cuboid
          Group: "None"
     LabelColor: {''}
     Attributes: []
      Sublabels: "RedLight"
    Description: ' '

Display information about the sublabel 'RedLight' in the label 'TrafficLight' using the object
function info, to confirm that the attribute 'isOn' has been removed from the label definitions.

info(ldc,'TrafficLight/RedLight')

           Name: "RedLight"
           Type: Rectangle
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     LabelColor: ''
     Attributes: []
      Sublabels: []
    Description: ' '

Input Arguments
ldc — Label definition creator for multisignal workflow
labelDefinitionCreatorMultisignal object

Label definition creator for the multisignal workflow, specified as a
labelDefinitionCreatorMultisignal object.

labelName — Label or sublabel name
character vector | string scalar

Label or sublabel name, specified as a character vector or string scalar that uniquely identifies the
label or sublabel from which the attribute is to be removed.

• To specify a label, use the form 'labelName'.

Example: removeAttribute(ldc,'TrafficLight','Active')

• To specify a sublabel, use the form 'labelName/sublabelName'. In this case, the attribute
associates with the sublabel.

Example: removeAttribute(ldc,'TrafficLight/RedLight','isOn')

attributeName — Attribute name
character vector | string scalar

Attribute name, specified as a character vector or string scalar that identifies the attribute to be
removed from the label or sublabel indicated by labelName.

See Also
Objects
labelDefinitionCreatorMultisignal

Functions
addAttribute | addLabel | removeLabel

Introduced in R2020a
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removeLabel
Remove label from label definition creator object for multisignal workflow

Syntax
removeLabel(ldc,labelName)

Description
removeLabel(ldc,labelName) removes the specified label from the
labelDefinitionCreatorMultisignal object ldc.

Note Removing a label also removes any sublabels or attributes associated with that label.

Examples

Remove Label from Label Definition Creator Object for Multisignal Workflow

Load an existing label definitions table into the workspace.

labelDefFile = fullfile(toolboxdir('driving'),'drivingdata','labelDefsMultiSignal.mat');
ld = load(labelDefFile)

ld = struct with fields:
    labelDefs: [6x6 table]

Create a labelDefinitionCreatorMultisignal object from the label definitions table.

ldc = labelDefinitionCreatorMultisignal(ld.labelDefs)

ldc = 
labelDefinitionCreatorMultisignal contains the following labels:

    Car with 0 sublabels and 0 attributes and belongs to None group.    (info)
    LeftLane with 0 sublabels and 0 attributes and belongs to None group.    (info)
    Road with 0 sublabels and 0 attributes and belongs to None group.    (info)
    Sunny with 0 sublabels and 0 attributes and belongs to None group.    (info)
    Urban with 0 sublabels and 0 attributes and belongs to None group.    (info)

For more details about attributes and sublabels, use the info method.

Remove the label called 'Car'.

removeLabel(ldc,'Car');

Display the details of the updated labelDefinitionCreatorMultisignal object to confirm that
the label has been removed.

ldc
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ldc = 
labelDefinitionCreatorMultisignal contains the following labels:

    LeftLane with 0 sublabels and 0 attributes and belongs to None group.    (info)
    Road with 0 sublabels and 0 attributes and belongs to None group.    (info)
    Sunny with 0 sublabels and 0 attributes and belongs to None group.    (info)
    Urban with 0 sublabels and 0 attributes and belongs to None group.    (info)

For more details about attributes and sublabels, use the info method.

Input Arguments
ldc — Label definition creator for multisignal workflow
labelDefinitionCreatorMultisignal object

Label definition creator for the multisignal workflow, specified as a
labelDefinitionCreatorMultisignal object.

labelName — Label name
character vector | string scalar

Label name, specified as a character vector or string scalar that uniquely identifies the label to be
removed from the ldc object.

See Also
Objects
labelDefinitionCreatorMultisignal

Functions
addLabel | removeAttribute | removeSublabel

Introduced in R2020a
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removeSublabel
Remove sublabel from label in label definition creator object for multisignal workflow

Syntax
removeSublabel(ldc,labelName,sublabelName)

Description
removeSublabel(ldc,labelName,sublabelName) removes the specified sublabel from the
indicated label. This label must be associated with the labelDefinitionCreatorMultisignal
object ldc.

Note Removing a sublabel also removes any attributes associated with that sublabel.

Examples

Remove Sublabel from Label in Label Definition Creator Object for Multisignal Workflow

Create an empty labelDefinitionCreatorMultisignal object.

ldc = labelDefinitionCreatorMultisignal;

Add a label with the name 'TrafficLight'. Specify the type of label as 'Rectangle' and add a
description. Adding a 'Rectangle' also adds a 'Cuboid' entry to the label definitions table.

addLabel(ldc,'TrafficLight',labelType.Rectangle,'Description','Bounding boxes for traffic light')

Add sublabels called 'RedLight', 'GreenLight' and 'YellowLight' to the label
'TrafficLight'. Specify the type of the sublabels as 'Rectangle'.

addSublabel(ldc,'TrafficLight','RedLight','Rectangle')
addSublabel(ldc,'TrafficLight','GreenLight','rect')
addSublabel(ldc,'TrafficLight','YellowLight',labelType.Rectangle)

Display information about the label 'TrafficLight' using the object function info, to confirm that the
sublabels have been added to the label definitions.

info(ldc,'TrafficLight')

           Name: "TrafficLight"
     SignalType: Image
      LabelType: Rectangle
          Group: "None"
     LabelColor: {''}
     Attributes: []
      Sublabels: ["RedLight"    "GreenLight"    "YellowLight"]
    Description: 'Bounding boxes for traffic light'

           Name: "TrafficLight"
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     SignalType: PointCloud
      LabelType: Cuboid
          Group: "None"
     LabelColor: {''}
     Attributes: []
      Sublabels: ["RedLight"    "GreenLight"    "YellowLight"]
    Description: 'Bounding boxes for traffic light'

Remove the sublabel 'YellowLight' from the label 'TrafficLight'.

removeSublabel(ldc,'TrafficLight','YellowLight')

Display information about the label 'TrafficLight' using the object function info, to confirm that the
sublabel 'YellowLight' has been removed from the label definitions.

info(ldc,'TrafficLight')

           Name: "TrafficLight"
     SignalType: Image
      LabelType: Rectangle
          Group: "None"
     LabelColor: {''}
     Attributes: []
      Sublabels: ["RedLight"    "GreenLight"]
    Description: 'Bounding boxes for traffic light'

           Name: "TrafficLight"
     SignalType: PointCloud
      LabelType: Cuboid
          Group: "None"
     LabelColor: {''}
     Attributes: []
      Sublabels: ["RedLight"    "GreenLight"]
    Description: 'Bounding boxes for traffic light'

Input Arguments
ldc — Label definition creator for multisignal workflow
labelDefinitionCreatorMultisignal object

Label definition creator for the multisignal workflow, specified as a
labelDefinitionCreatorMultisignal object.

labelName — Label name
character vector | string scalar

Label name, specified as a character vector or string scalar that uniquely identifies the label with
which the sublabel is associated.

sublabelName — Sublabel name
character vector | string scalar

Sublabel name, specified as a character vector or string scalar that identifies the sublabel to be
removed from the indicated label labelName.
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See Also
Objects
labelDefinitionCreatorMultisignal

Functions
addLabel | addSublabel | removeAttribute | removeLabel

Introduced in R2020a
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ROILabelData
Ground truth data for ROI labels

Description
The ROILabelData object stores ground truth data for region of interest (ROI) label definitions for
each signal in a groundTruthMultisignal object.

Creation
When you export a groundTruthMultisignal object from a Ground Truth Labeler app session,
the ROILabelData property of the exported object stores the ROI labels as an ROILabelData
object. To create an ROILabelData object programmatically, use the
vision.labeler.labeldata.ROILabelData function (described here).

Syntax
roiLabelData = vision.labeler.labeldata.ROILabelData(signalNames,labelData)

Description

roiLabelData = vision.labeler.labeldata.ROILabelData(signalNames,labelData)
creates an object containing ROI label data for multiple signals. The created object, roiLabelData,
contains properties with the signal names listed in signalNames. These properties store the
corresponding ROI label data specified by labelData.

Input Arguments

signalNames — Signal names
string array

Signal names, specified as a string array. Specify the names of all signals present in the
groundTruthMultisignal object you are creating. You can get the signal names from an existing
groundTruthMultisignal object by accessing the DataSource property of that object. Use this
command and replace gTruth with the name of your groundTruthMultisignal object variable.

gTruth.DataSource.SignalName

In an exported groundTruthMultisignal object, the ROILabelData object contains a label data
property for each signal, even if some signals do not have ROI label data.

The properties of the created ROILabelData object have the names specified by signalNames.
Example: ["video_01_city_c2s_fcw_10s" "lidarSequence"]

labelData — ROI label data for each signal
cell array of timetables
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ROI label data for each signal, specified as a cell array of timetables. Each timetable in the cell array
contains data for the signal in the corresponding position of the signalNames input. The
ROILabelData object stores each timetable in a property that has the same name as that signal.

The timetable format for each signal depends on data from the groundTruthMultisignal object
that you exported or are creating.

Each timetable contains one column per label definition stored in the LabelDefinitions property
of the groundTruthMultisignal object. Label definitions that the signal type does not support are
excluded. For example, suppose you define a Line ROI label named 'lane'. The timetable for a lidar
point cloud signal does not include a lane column, because these signals do not support Line ROI
labels. In the DataSource property of the groundTruthMultisignal object, the SignalType
property of each data source lists the valid signal types.

The height of the timetable is defined by the number of timestamps in the signal. In the DataSource
property of the groundTruthMultisignal object, the Timestamp property of each data source
lists the signal timestamps.

For each label definition, all ROI labels marked at that timestamps are combined into a single cell in
the table. Consider the ROI label data for a video signal stored in a groundTruthMultisignal
object, gTruth. At each timestamp, car contains three labels, truck contains one label, and lane
contains two labels.

gTruth.ROILabelData.video_01_city_c2s_fcw_10s

ans =

  5×4 timetable

      Time           car            truck            lane    
    _________    ____________    ____________    ____________
    0 sec        {3×4 double}    {1×4 double}    {2×1 cell  }
    0.05 sec     {3×4 double}    {1×4 double}    {2×1 cell  }
    0.1 sec      {3×4 double}    {1×4 double}    {2×1 cell  }
    0.15 sec     {3×4 double}    {1×4 double}    {2×1 cell  }
    0.2 sec      {3×4 double}    {1×4 double}    {2×1 cell  }

The storage format for ROI label data depends on the label type.

Label Type Storage Format for Labels at Each
Timestamp

labelType.Rectangle M-by-4 numeric matrix of the form [x, y, w,
h], where:

• M is the number of labels in the frame.
• x and y specify the upper-left corner of the

rectangle.
• w specifies the width of the rectangle, which is

its length along the x-axis.
• h specifies the height of the rectangle, which

is its length along the y-axis.
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Label Type Storage Format for Labels at Each
Timestamp

labelType.Cuboid

labelType.ProjectedCuboid

M-by-9 numeric matrix with rows of the form
[xctr, yctr, zctr, xlen, ylen, zlen,
xrot, yrot, zrot], where:

• M is the number of labels in the frame.
• xctr, yctr, and zctr specify the center of

the cuboid.
• xlen, ylen, and zlen specify the length of

the cuboid along the x-axis, y-axis, and z-axis,
respectively, before rotation has been applied.

• xrot, yrot, and zrot specify the rotation
angles for the cuboid along the x-axis, y-axis,
and z-axis, respectively. These angles are
clockwise-positive when looking in the
forward direction of their corresponding axes.

The figure shows how these values determine the
position of a cuboid.

labelType.Line M-by-1 vector of cell arrays, where M is the
number of labels in the frame. Each cell array
contains an N-by-2 numeric matrix of the form
[x1 y1; x2 y2; ... ; xN yN] for N points
in the polyline.
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Label Type Storage Format for Labels at Each
Timestamp

labelType.PixelLabel Label data for all pixel label definitions is stored
in a single PixelLabelData column as a
categorical label matrix. The label matrix must be
stored on disk as a uint8 image. When creating
an ROILabelData object with pixel label data,
the image file name must be specified as a
character vector in the labelData input. The
label matrix must contain 1 or 3 channels. For a
3-channel matrix, the RGB pixel values represent
label IDs.

labelType.Custom Labels are stored exactly as they are specified in
the timetable. If you import a
groundTruthMultisignal object containing
custom label data into the Ground Truth
Labeler app, this data is not imported into the
app. Use custom data when gathering label data
for training and combining it with data labeled in
the app.

If the ROI label data includes sublabels or attributes, then the labels at each timestamp must be
specified as structures instead. The structure includes these fields.

Label Structure Field Description
Position Positions of the parent labels at the given

timestamp

The format of Position depends on the label
type. These formats are described in the previous
table.

AttributeName1,...,AttributeNameN Attributes of the parent labels

Each defined sublabel has its own field, where
the name of the field corresponds to the attribute
name. The attribute value is a character vector
for a List or String attribute, a numeric scalar
for a Numeric attribute, or a logical scalar for a
Logical attribute. If the attribute is unspecified,
then the attribute value is an empty vector.
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Label Structure Field Description
SublabelName1,...,SublabelNameN Sublabels of the parent labels

Each defined sublabel has its own field, where
the name of the field corresponds to the sublabel
name. The value of each sublabel field is a
structure containing the data for all marked
sublabels with that name at the given timestamp.

This table describes the format of this sublabel
structure.

Sublabel Structure
Field

Description

Position Positions of the
sublabels at the given
timestamp

The format of
Position depends on
the label type. These
formats are described
in the previous table.

AttributeName1,...
,AttributeNameN

Attributes of the
sublabels

Each defined sublabel
has its own field, where
the name of the field
corresponds to the
attribute name. The
attribute value is a
character vector for a
List or String
attribute, a numeric
scalar for a Numeric
attribute, or a logical
scalar for a Logical
attribute. If you leave
an attribute
unspecified, then the
attribute value is an
empty vector.

Properties
SignalName1,...,SignalNameN — ROI label data for each signal (as separate properties)
timetables

ROI label data, specified as timetables. The ROILabelData object contains one property per signal,
where each property contains a timetable of ROI label data corresponding to that signal.
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When exporting an ROILabelData object from a Ground Truth Labeler app session, the property
names correspond to the signal names stored in the DataSource property of the exported
groundTruthMultisignal object.

When creating an ROILabelData object programmatically, the signalNames and labelData input
arguments define the property names and values of the created object.

Suppose you want to create a groundTruthMultisignal object containing a video signal and a
lidar point cloud sequence signal. Specify the signals in a string array, signalNames.

signalNames = ["video_01_city_c2s_fcw_10s" "lidarSequence"];

Store the video ROI labels, videoData, and lidar point cloud sequence ROI labels, lidarData, in a
cell array of timetables, labelData. Each timetable contains the data for the corresponding signal in
signalNames.

labelData = {videoData,lidarData}

  1×2 cell array

    {204×2 timetable}    {34×1 timetable}

The ROILabelData object, roiData, stores this data in the property with the corresponding signal
name. You can specify roiData in the ROILabelData property of a groundTruthMultisignal
object.

roiData = vision.labeler.labeldata.ROILabelData(signalNames,labelData)

roiData = 

  ROILabelData with properties:

    video_01_city_c2s_fcw_10s: [204×2 timetable]
                lidarSequence: [34×1 timetable]

Examples

Create Ground Truth from Multiple Signals

Create ground truth data for a video signal and a lidar point cloud sequence signal that captures the
same driving scene. Specify the signal sources, label definitions, and ROI and scene label data.

Create the video data source from an MP4 file.

sourceName = '01_city_c2s_fcw_10s.mp4';
sourceParams = [];
vidSource = vision.labeler.loading.VideoSource;
vidSource.loadSource(sourceName,sourceParams);

Create the point cloud sequence source from a folder of point cloud data (PCD) files.

pcSeqFolder = fullfile(toolboxdir('driving'),'drivingdata','lidarSequence');
addpath(pcSeqFolder)
load timestamps.mat
rmpath(pcSeqFolder)
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lidarSourceData = load(fullfile(pcSeqFolder,'timestamps.mat'));

sourceName = pcSeqFolder;
sourceParams = struct;
sourceParams.Timestamps = timestamps;

pcseqSource = vision.labeler.loading.PointCloudSequenceSource;
pcseqSource.loadSource(sourceName,sourceParams);

Combine the signal sources into an array.

dataSource = [vidSource pcseqSource]

dataSource = 

  1x2 heterogeneous MultiSignalSource (VideoSource, PointCloudSequenceSource) array with properties:

    SourceName
    SourceParams
    SignalName
    SignalType
    Timestamp
    NumSignals

Create a table of label definitions for the ground truth data by using a
labelDefinitionCreatorMultisignal object.

• The Car label definition appears twice. Even though Car is defined as a rectangle, you can draw
rectangles only for image signals, such as videos. The labelDefinitionCreatorMultisignal
object creates an additional row for lidar point cloud signals. In these signal types, you can draw
Car labels as cuboids only.

• The label definitions have no descriptions and no assigned colors, so the Description and
LabelColor columns are empty.

• The label definitions have no assigned groups, so for all label definitions, the corresponding cell in
the Group column is set to 'None'.

• Road is a pixel label definition, so the table includes a PixelLabelID column.
• No label definitions have sublabels or attributes, so the table does not include a Hierarchy

column for storing such information.

ldc = labelDefinitionCreatorMultisignal;
addLabel(ldc,'Car','Rectangle');
addLabel(ldc,'Truck','ProjectedCuboid');
addLabel(ldc,'Lane','Line');
addLabel(ldc,'Road','PixelLabel');
addLabel(ldc,'Sunny','Scene');
labelDefs = create(ldc)

labelDefs =

  6x7 table

      Name       SignalType       LabelType        Group      Description    LabelColor    PixelLabelID
    _________    __________    _______________    ________    ___________    __________    ____________
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    {'Car'  }    Image         Rectangle          {'None'}       {' '}       {0x0 char}    {0x0 double}
    {'Car'  }    PointCloud    Cuboid             {'None'}       {' '}       {0x0 char}    {0x0 double}
    {'Truck'}    Image         ProjectedCuboid    {'None'}       {' '}       {0x0 char}    {0x0 double}
    {'Lane' }    Image         Line               {'None'}       {' '}       {0x0 char}    {0x0 double}
    {'Road' }    Image         PixelLabel         {'None'}       {' '}       {0x0 char}    {[       1]}
    {'Sunny'}    Time          Scene              {'None'}       {' '}       {0x0 char}    {0x0 double}

Create ROI label data for the first frame of the video.

numVideoFrames = numel(vidSource.Timestamp{1});
carData = cell(numVideoFrames,1);
laneData = cell(numVideoFrames,1);
truckData = cell(numVideoFrames,1);
carData{1} = [304 212 37 33];
laneData{1} = [70 458; 311 261];
truckData{1} = [309,215,33,24,330,211,33,24];
videoData = timetable(vidSource.Timestamp{1},carData,laneData, ...
                      'VariableNames',{'Car','Lane'});

Create ROI label data for the first point cloud in the sequence.

numPCFrames = numel(pcseqSource.Timestamp{1});
carData = cell(numPCFrames, 1);
carData{1} = [27.35 18.32 -0.11 4.25 4.75 3.45 0 0 0];
lidarData = timetable(pcseqSource.Timestamp{1},carData,'VariableNames',{'Car'});

Combine the ROI label data for both sources.

signalNames = [dataSource.SignalName];
roiData = vision.labeler.labeldata.ROILabelData(signalNames,{videoData,lidarData})

roiData = 

  ROILabelData with properties:

    video_01_city_c2s_fcw_10s: [204x2 timetable]
                lidarSequence: [34x1 timetable]

Create scene label data for the first 10 seconds of the driving scene.

sunnyData = seconds([0 10]);
labelNames = ["Sunny"];
sceneData = vision.labeler.labeldata.SceneLabelData(labelNames,{sunnyData})

sceneData = 

  SceneLabelData with properties:

    Sunny: [0 sec    10 sec]

Create a ground truth object from the signal sources, label definitions, and ROI and scene label data.
You can import this object into the Ground Truth Labeler app for manual labeling or to run a
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labeling automation algorithm on it. You can also extract training data from this object for deep
learning models by using the gatherLabelData function.

gTruth = groundTruthMultisignal(dataSource,labelDefs,roiData,sceneData)

gTruth = 

  groundTruthMultisignal with properties:

          DataSource: [1x2 vision.labeler.loading.MultiSignalSource]
    LabelDefinitions: [6x7 table]
        ROILabelData: [1x1 vision.labeler.labeldata.ROILabelData]
      SceneLabelData: [1x1 vision.labeler.labeldata.SceneLabelData]

See Also
Apps
Ground Truth Labeler

Objects
SceneLabelData | groundTruthMultisignal

Introduced in R2020a
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SceneLabelData
Ground truth data for scene labels

Description
The SceneLabelData object stores ground truth data for scene label definitions defined in a
groundTruthMultisignal object.

Creation
When you export a groundTruthMultisignal object from a Ground Truth Labeler app session,
the SceneLabelData property of the exported object stores the scene labels as a SceneLabelData
object. To create a SceneLabelData object programmatically, use the
vision.labeler.labeldata.SceneLabelData function (described here).

Syntax
sceneLabelData = vision.labeler.labeldata.SceneLabelData(labelNames,
labelData)

Description

sceneLabelData = vision.labeler.labeldata.SceneLabelData(labelNames,
labelData) creates an object containing scene label data for multiple signals. The created object,
sceneLabelData, contains properties with the scene label names listed in labelNames. These
properties store the corresponding scene label data specified by labelData.

Input Arguments

labelNames — Scene label names
string array

Scene label names, specified as a string array. Specify the names of all scene labels present in the
groundTruthMultisignal object you are creating. You can get the scene label names from an
existing groundTruthMultisignal object by accessing the LabelDefinitions property of that
object. Use this code and replace gTruth with the name of a groundTruthMultisignal object
variable.

isSceneLabel = gTruth.LabelDefinitions.LabelType == 'Scene';
gTruth.LabelDefinitions.Name(isSceneLabel)

In an exported groundTruthMultisignal object, the SceneLabelData object contains a label
data property for every scene label, even if some scene labels do not have label data.

The properties of the created SceneLabelData object have the names specified by labelNames.
Example: ["sunny" "rainy" "urban" "rural"]
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labelData — Scene label data for each label
cell array of duration matrices

Scene label data for each label, specified as a cell array of duration matrices. Each matrix in the
cell array contains data for the scene label in the corresponding position of the labelNames input.
The SceneLabelData object stores each matrix in a property that has the same name as that signal.

Each scene label matrix is of size N-by-2. Each row in this matrix corresponds to a time range for
which that scene label has been applied. N is the number of time ranges. Rows in the matrix are of
the form [rangeStart, rangeEnd], where rangeStart and rangeEnd specify the start and end
of a time range for an applied scene label.

Row elements are of type duration and must be within the range of the minimum and maximum of
all the timestamps in the groundTruthMultisignal object. If a scene label is not applied, then
specify an empty matrix.
Example: seconds([0 5; 10 20]) specifies a duration matrix corresponding to one scene label
in a groundTruthMultisignal object. Units are in seconds. The scene label has been applied from
0 to 5 seconds and again from 10 to 20 seconds, across all signals in the object. Specify this matrix as
part of a cell array containing matrices for additional scene labels.

Properties
SceneLabelName1,...,SceneLabelNameN — Scene label data for each label (as separate
properties)
duration matrices

Scene label data, specified as duration matrices. The SceneLabelData object contains one
property per scene label definition, where each property contains a duration matrix of scene label
data corresponding to that scene label.

When exporting a SceneLabelData object from a Ground Truth Labeler app session, the property
names correspond to the scene label names stored in the LabelDefinitions property of the
exported groundTruthMultisignal object.

When creating a SceneLabelData object programmatically, the labelNames and labelData input
arguments define the property names and values of the created object.

Suppose you want to create a groundTruthMultisignal object containing scene labels that
describe whether the scene is sunny, rainy, urban, or rural. Specify the scene labels in a string array,
labelNames.

labelNames = ["sunny" "rainy" "urban" "rural"];

Store the label data for each scene label in a cell array of matrices, labelData. Each matrix contains
the data for the corresponding scene label in labelNames.

labelData = {sunnyData,rainyData,urbanData,ruralData}

  1×4 cell array

    {1×2 duration}    {2×2 duration}    {0×0 duration}    {4×2 duration}

The SceneLabelData object, sceneData, stores this data in the property with the corresponding
signal name. You can specify sceneData in the SceneLabelData property of a
groundTruthMultisignal object.
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sceneData = vision.labeler.labeldata.SceneLabelData(labelNames,labelData)

sceneData = 

  SceneLabelData with properties:

    rainy: [2×2 duration]
    sunny: [0 sec    10.15 sec]
    rural: [4×2 duration]
    urban: [0×0 duration]

Object Functions
labelDefinitionsAtTime Get scene label definition names at specified timestamp
labelDataAtTime Get scene label data at specified timestamps

Examples

Create Ground Truth from Multiple Signals

Create ground truth data for a video signal and a lidar point cloud sequence signal that captures the
same driving scene. Specify the signal sources, label definitions, and ROI and scene label data.

Create the video data source from an MP4 file.

sourceName = '01_city_c2s_fcw_10s.mp4';
sourceParams = [];
vidSource = vision.labeler.loading.VideoSource;
vidSource.loadSource(sourceName,sourceParams);

Create the point cloud sequence source from a folder of point cloud data (PCD) files.

pcSeqFolder = fullfile(toolboxdir('driving'),'drivingdata','lidarSequence');
addpath(pcSeqFolder)
load timestamps.mat
rmpath(pcSeqFolder)

lidarSourceData = load(fullfile(pcSeqFolder,'timestamps.mat'));

sourceName = pcSeqFolder;
sourceParams = struct;
sourceParams.Timestamps = timestamps;

pcseqSource = vision.labeler.loading.PointCloudSequenceSource;
pcseqSource.loadSource(sourceName,sourceParams);

Combine the signal sources into an array.

dataSource = [vidSource pcseqSource]

dataSource = 

  1x2 heterogeneous MultiSignalSource (VideoSource, PointCloudSequenceSource) array with properties:

    SourceName
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    SourceParams
    SignalName
    SignalType
    Timestamp
    NumSignals

Create a table of label definitions for the ground truth data by using a
labelDefinitionCreatorMultisignal object.

• The Car label definition appears twice. Even though Car is defined as a rectangle, you can draw
rectangles only for image signals, such as videos. The labelDefinitionCreatorMultisignal
object creates an additional row for lidar point cloud signals. In these signal types, you can draw
Car labels as cuboids only.

• The label definitions have no descriptions and no assigned colors, so the Description and
LabelColor columns are empty.

• The label definitions have no assigned groups, so for all label definitions, the corresponding cell in
the Group column is set to 'None'.

• Road is a pixel label definition, so the table includes a PixelLabelID column.
• No label definitions have sublabels or attributes, so the table does not include a Hierarchy

column for storing such information.

ldc = labelDefinitionCreatorMultisignal;
addLabel(ldc,'Car','Rectangle');
addLabel(ldc,'Truck','ProjectedCuboid');
addLabel(ldc,'Lane','Line');
addLabel(ldc,'Road','PixelLabel');
addLabel(ldc,'Sunny','Scene');
labelDefs = create(ldc)

labelDefs =

  6x7 table

      Name       SignalType       LabelType        Group      Description    LabelColor    PixelLabelID
    _________    __________    _______________    ________    ___________    __________    ____________

    {'Car'  }    Image         Rectangle          {'None'}       {' '}       {0x0 char}    {0x0 double}
    {'Car'  }    PointCloud    Cuboid             {'None'}       {' '}       {0x0 char}    {0x0 double}
    {'Truck'}    Image         ProjectedCuboid    {'None'}       {' '}       {0x0 char}    {0x0 double}
    {'Lane' }    Image         Line               {'None'}       {' '}       {0x0 char}    {0x0 double}
    {'Road' }    Image         PixelLabel         {'None'}       {' '}       {0x0 char}    {[       1]}
    {'Sunny'}    Time          Scene              {'None'}       {' '}       {0x0 char}    {0x0 double}

Create ROI label data for the first frame of the video.

numVideoFrames = numel(vidSource.Timestamp{1});
carData = cell(numVideoFrames,1);
laneData = cell(numVideoFrames,1);
truckData = cell(numVideoFrames,1);
carData{1} = [304 212 37 33];
laneData{1} = [70 458; 311 261];
truckData{1} = [309,215,33,24,330,211,33,24];
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videoData = timetable(vidSource.Timestamp{1},carData,laneData, ...
                      'VariableNames',{'Car','Lane'});

Create ROI label data for the first point cloud in the sequence.

numPCFrames = numel(pcseqSource.Timestamp{1});
carData = cell(numPCFrames, 1);
carData{1} = [27.35 18.32 -0.11 4.25 4.75 3.45 0 0 0];
lidarData = timetable(pcseqSource.Timestamp{1},carData,'VariableNames',{'Car'});

Combine the ROI label data for both sources.

signalNames = [dataSource.SignalName];
roiData = vision.labeler.labeldata.ROILabelData(signalNames,{videoData,lidarData})

roiData = 

  ROILabelData with properties:

    video_01_city_c2s_fcw_10s: [204x2 timetable]
                lidarSequence: [34x1 timetable]

Create scene label data for the first 10 seconds of the driving scene.

sunnyData = seconds([0 10]);
labelNames = ["Sunny"];
sceneData = vision.labeler.labeldata.SceneLabelData(labelNames,{sunnyData})

sceneData = 

  SceneLabelData with properties:

    Sunny: [0 sec    10 sec]

Create a ground truth object from the signal sources, label definitions, and ROI and scene label data.
You can import this object into the Ground Truth Labeler app for manual labeling or to run a
labeling automation algorithm on it. You can also extract training data from this object for deep
learning models by using the gatherLabelData function.

gTruth = groundTruthMultisignal(dataSource,labelDefs,roiData,sceneData)

gTruth = 

  groundTruthMultisignal with properties:

          DataSource: [1x2 vision.labeler.loading.MultiSignalSource]
    LabelDefinitions: [6x7 table]
        ROILabelData: [1x1 vision.labeler.labeldata.ROILabelData]
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      SceneLabelData: [1x1 vision.labeler.labeldata.SceneLabelData]

Tips
• To create a groundTruthMultisignal object containing ROI label data but no scene label data,

specify the SceneLabelData property as an empty array. To create this array, at the MATLAB
command prompt, enter this code.

sceneData = vision.labeler.labeldata.SceneLabelData.empty

See Also
Apps
Ground Truth Labeler

Objects
ROILabelData | groundTruthMultisignal

Introduced in R2020a
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labelDefinitionsAtTime
Get scene label definition names at specified timestamp

Syntax
labelNames = labelDefinitionsAtTime(sceneData,timestamp)

Description
labelNames = labelDefinitionsAtTime(sceneData,timestamp) returns the scene label
definition names that are applied at the specified timestamp in a SceneLabelData object,
sceneData.

Examples

Get Scene Label Definition Names at Timestamp

Get the scene label definition names that are applied at the first timestamp of a SceneLabelData
object.

Create a SceneLabelData object. The object has labels for specifying whether a scene is sunny,
rainy, urban, or rural. The scene labels are applied at these time ranges.

• "sunny" — 0 to 5 seconds
• "rainy" — 6 to 10 seconds
• "urban" — 0 to 8 seconds
• "rural" — 9 to 10 seconds

labelNames = ["sunny" "rainy" "urban" "rural"];

sunnyData = seconds([0 5]);
rainyData = seconds([6 10]);
urbanData = seconds([0 8]);
ruralData = seconds([9 10]);

labelData = {sunnyData rainyData urbanData ruralData};
sceneData = vision.labeler.labeldata.SceneLabelData(labelNames,labelData);

Get the scene labels that are applied at the start of the time range, that is, the first timestamp.

tsStart = 0;
labelNamesAtStart = labelDefinitionsAtTime(sceneData,tsStart)

labelNamesAtStart = 1x2 string
    "sunny"    "urban"
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Input Arguments
sceneData — Scene label data
SceneLabelData object

Scene label data, specified as a SceneLabelData object.

timestamp — Timestamp
duration scalar

Timestamp, specified as a duration scalar.
Example: seconds(9.5) specifies a duration scalar of 9.5 seconds.

Output Arguments
labelNames — Scene label definition names
string vector

Scene label definition names, returned as a string vector. The vector contains the names of scene
label definitions at the input timestamp in the input sceneData.

See Also
SceneLabelData | labelDataAtTime

Introduced in R2020a
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labelDataAtTime
Get scene label data at specified timestamps

Syntax
labelData = labelDataAtTime(sceneData,labelNames,timestamps)

Description
labelData = labelDataAtTime(sceneData,labelNames,timestamps) returns the scene
label data at the specified timestamps and for the specified label names present in a
SceneLabelData object, sceneData.

Examples

Get Scene Label Data at Timestamps

Get the scene label data present at a specific time range in a SceneLabelData object.

Create a SceneLabelData object. The object has labels for specifying whether a scene is sunny,
rainy, urban, or rural. The scene labels are applied at these time ranges.

• "sunny" — 0 to 5 seconds
• "rainy" — 6 to 10 seconds
• "urban" — 0 to 8 seconds
• "rural" — 9 to 10 seconds

labelNames = ["sunny" "rainy" "urban" "rural"];

sunnyData = seconds([0 5]);
rainyData = seconds([6 10]);
urbanData = seconds([0 8]);
ruralData = seconds([9 10]);

labelData = {sunnyData rainyData urbanData ruralData};
sceneData = vision.labeler.labeldata.SceneLabelData(labelNames,labelData);

Get the label data for the weather-related scene labels ("sunny" and "rainy") over the time range
that the "urban" scene label is applied.

weatherLabelNames = ["sunny" "rainy"];
urbanTimestamps = seconds(0:8);
weatherLabelData = labelDataAtTime(sceneData,weatherLabelNames,urbanTimestamps)

weatherLabelData=9×2 timetable
    timeStamps    sunny    rainy
    __________    _____    _____

    0 sec         true     false
    1 sec         true     false
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    2 sec         true     false
    3 sec         true     false
    4 sec         true     false
    5 sec         true     false
    6 sec         false    true 
    7 sec         false    true 
    8 sec         false    true 

Input Arguments
sceneData — Scene label data
SceneLabelData object

Scene label data, specified as a SceneLabelData object.

labelNames — Scene label names
string vector

Scene label names, specified as a string vector. The scene label names must be present in the
sceneData input.
Example: ["sunny" "rainy"]

timestamps — Timestamps
duration vector

Timestamps, specified as a duration vector.
Example: seconds(5:10) specifies a duration vector from 5 to 10 seconds.

Output Arguments
labelData — Scene label data at specified timestamps
timetable

Scene label data at specified timestamps, returned as a timetable. The first column contains the
timestamps specified by the timestamps input. The remaining columns correspond to the scene
labels specified by the labelNames input. These columns contain logical 1 (true) and logical 0
(false) values that specify the scene labels present at each timestamp in the input sceneData.

See Also
SceneLabelData | labelDefinitionsAtTime

Introduced in R2020a
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extendedObjectMesh
Mesh representation of extended object

Description
The extendedObjectMesh represents the 3-D geometry of an object. The 3-D geometry is
represented by faces and vertices. Use these object meshes to specify the geometry of an actor for
simulating lidar sensor data using lidarPointCloudGenerator.

Creation

Syntax
mesh = extendedObjectMesh('cuboid')
mesh = extendedObjectMesh('cylinder')
mesh = extendedObjectMesh('cylinder',n)
mesh = extendedObjectMesh('sphere')
mesh = extendedObjectMesh('sphere',n)
mesh = extendedObjectMesh(vertices,faces)

Description

mesh = extendedObjectMesh('cuboid') returns an extendedObjectMesh object, that defines
a cuboid with unit dimensions. The origin of the cuboid is located at its geometric center.

mesh = extendedObjectMesh('cylinder') returns a hollow cylinder mesh with unit
dimensions. The cylinder mesh has 20 equally spaced vertices around its circumference. The origin of
the cylinder is located at its geometric center. The height is aligned with the z-axis.

mesh = extendedObjectMesh('cylinder',n) returns a cylinder mesh with n equally spaced
vertices around its circumference.

mesh = extendedObjectMesh('sphere') returns a sphere mesh with unit dimensions. The
sphere mesh has 119 vertices and 180 faces. The origin of the sphere is located at its center.

mesh = extendedObjectMesh('sphere',n) additionally allows you to specify the resolution, n,
of the spherical mesh. The sphere mesh has (n + 1)2 - 2 vertices and 2n(n - 1) faces.

mesh = extendedObjectMesh(vertices,faces) returns a mesh from faces and vertices.
vertices and faces set the Vertices and Faces properties respectively.

Properties
Vertices — Vertices of defined object
N-by-3 matrix of real scalar
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Vertices of the defined object, specified as an N-by-3 matrix of real scalars. N is the number of
vertices. The first, second, and third element of each row represents the x-, y-, and z-position of each
vertex, respectively.

Faces — Faces of defined object
M-by-3 matrix of positive integer

Faces of the defined object, specified as a M-by-3 array of positive integers. M is the number of faces.
The three elements in each row are the vertex IDs of the three vertices forming the triangle face. The
ID of the vertex is its corresponding row number specified in the Vertices property.

Object Functions
Use the object functions to develop new meshes.
translate Translate mesh along coordinate axes
rotate Rotate mesh about coordinate axes
scale Scale mesh in each dimension
applyTransform Apply forward transformation to mesh vertices
join Join two object meshes
scaleToFit Auto-scale object mesh to match specified cuboid dimensions
show Display the mesh as a patch on the current axes

Examples

Create and Translate Cuboid Mesh

This example shows how to create an extendedObjectMesh object and translate the object.

Construct a cuboid mesh.

mesh = extendedObjectMesh('cuboid');

Translate the mesh by 5 units along the negative y axis.

mesh = translate(mesh,[0 -5 0]);

Visualize the mesh.

ax = show(mesh);
ax.YLim = [-6 0];
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Create and Visualize Cylinder Mesh

This example shows how to create an extendedObjectMesh object and visualize the object.

Construct a cylinder mesh.

mesh = extendedObjectMesh('cylinder');

Visualize the mesh.

ax = show(mesh);
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Create and Auto-scale Sphere Mesh

This example shows how to create an extendedObjectMesh object and auto-scale the object to the
required dimensions.

Construct a sphere mesh of unit dimensions.

sph = extendedObjectMesh('sphere');

Auto-scale the mesh to the dimensions in dims.

dims = struct('Length',5,'Width',10,'Height',3,'OriginOffset',[0 0 -3]);
sph = scaleToFit(sph,dims);

Visualize the mesh.

show(sph);
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Pre-built Meshes
You can use the prebuilt meshes as a starting point to develop your own meshes. The table lists the
details of the meshes.

driving.scenario.bicycleMesh Mesh representation of bicycle in driving
scenario

driving.scenario.carMesh Mesh representation of car in driving scenario.
driving.scenario.pedestrianMesh Mesh representation of pedestrian in driving

scenario.
driving.scenario.truckMesh Mesh representation of truck in driving scenario.

You can view the source files of the meshes to understand how to develop new meshes. At the
MATLAB command line, enter:

edit driving.scenario.XXXXMesh

Replace XXXXMesh with the name of the mesh.

See Also
Objects
drivingScenario | lidarPointCloudGenerator
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Functions
actor | driving.scenario.bicycleMesh | driving.scenario.carMesh |
driving.scenario.pedestrianMesh | driving.scenario.truckMesh | roadMesh | vehicle

Introduced in R2020a
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applyTransform
Apply forward transformation to mesh vertices

Syntax
transformedMesh = applyTransform(mesh,T)

Description
transformedMesh = applyTransform(mesh,T) applies the forward transformation matrix T to
the vertices of the object mesh.

Examples

Create and Transform Cuboid Mesh

This example shows how to create an extendedObjectMesh object and transform the object in a
way defined by a given transformation matrix.

Create a cuboid mesh of unit dimensions.

cuboid = extendedObjectMesh('cuboid');

Create a transformation matrix that is a combination of a translation, a scaling, and a rotation.

T = makehgtform('translate',[0.2 -0.5 0.5],'scale',[0.5 0.6 0.7],'xrotate',pi/4);

Transform the mesh.

transformedCuboid = applyTransform(cuboid,T);

Visualize the mesh.

subplot(1,2,1);
show(cuboid);
title('Initial Mesh');
subplot(1,2,2);
show(transformedCuboid);
title('Transformed Mesh');
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Input Arguments
mesh — Extended object mesh
extendedObjectMesh object

Extended object mesh, specified as an extendedObjectMesh object.

T — Transformation matrix
4-by-4 matrix

Transformation matrix applied on the object mesh, specified as a 4-by-4 matrix. The 3-D coordinates
of each point in the object mesh is transformed according to this formula:

[xT; yT; zT; 1] = T*[x; y; z; 1]

xT, yT, and zT are the transformed 3-D coordinates of the point.
Data Types: single | double

Output Arguments
transformedMesh — Transformed object mesh
extendedObjectMesh object

Transformed object mesh, returned as an extendedObjectMesh object.
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See Also
Objects
extendedObjectMesh

Functions
join | rotate | scale | scaleToFit | show | translate

Introduced in R2020a
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join
Join two object meshes

Syntax
joinedMesh = join(mesh1,mesh2)

Description
joinedMesh = join(mesh1,mesh2) joins the object meshes mesh1 and mesh2 and returns
joinedMesh with the combined objects.

Examples

Create and Join Two Object Meshes

This example shows how to create extendedObjectMesh objects and join them together.

Construct two meshes of unit dimensions.

sph = extendedObjectMesh('sphere');
cub = extendedObjectMesh('cuboid');

Join the two meshes.

cub = translate(cub,[0 0 1]);
sphCub = join(sph,cub);

Visualize the final mesh.

show(sphCub);
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Input Arguments
mesh1 — Extended object mesh
extendedObjectMesh object

Extended object mesh, specified as an extendedObjectMesh object.

mesh2 — Extended object mesh
extendedObjectMesh object

Extended object mesh, specified as an extendedObjectMesh object.

Output Arguments
joinedMesh — Joined object mesh
extendedObjectMesh object

Joined object mesh, specified as an extendedObjectMesh object.

See Also
Objects
extendedObjectMesh
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Functions
applyTransform | rotate | scale | scaleToFit | show | translate

Introduced in R2020a
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rotate
Rotate mesh about coordinate axes

Syntax
rotatedMesh = rotate(mesh,orient)

Description
rotatedMesh = rotate(mesh,orient) rotate the mesh object by an orientation, orient.

Examples

Create and Rotate Cuboid Mesh

This example shows how to create an extendedObjectMesh object and rotate the object.

Construct a cuboid mesh.

mesh = extendedObjectMesh('cuboid');

Rotate the mesh by 30 degrees around the z axis.

mesh = rotate(mesh,[30 0 0]);

Visualize the mesh.

ax = show(mesh);
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Input Arguments
mesh — Extended object mesh
extendedObjectMesh object

Extended object mesh, specified as an extendedObjectMesh object.

orient — Description of rotation
3-by-3 orthonormal matrix | quaternion | 1-by-3 vector

Description of rotation for an object mesh, specified as:

• 3-by-3 orthonormal rotation matrix
• quaternion
• 1-by-3 vector, where the elements are positive rotations in degrees about the z, y, and x axes, in

that order.

Output Arguments
rotatedMesh — Rotated object mesh
extendedObjectMesh object

Rotated object mesh, returned as an extendedObjectMesh object.
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See Also
Objects
extendedObjectMesh

Functions
applyTransform | join | scale | scaleToFit | show | translate

Introduced in R2020a
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scale
Scale mesh in each dimension

Syntax
scaledMesh = scale(mesh,scaleFactor)
scaledMesh = scale(mesh,[sx sy sz])

Description
scaledMesh = scale(mesh,scaleFactor) scales the object mesh by scaleFactor.
scaleFactor can be the same for all dimensions or defined separately as elements of a 1-by-3 vector
in the order x, y, and z.

scaledMesh = scale(mesh,[sx sy sz]) scales the object mesh along the dimensions x, y, and z
by the scaling factors sx, sy, and sz.

Examples

Create and Scale Cuboid Mesh

This example shows how to create an extendedObjectMesh object and scale the object.

Construct a cuboid mesh of unit dimensions.

 cuboid = extendedObjectMesh('cuboid');

Scale the mesh by different factors along each of the three axes.

scaledCuboid = scale(cuboid,[100 30 20]);

Visualize the mesh.

show(scaledCuboid);

 scale
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Input Arguments
mesh — Extended object mesh
extendedObjectMesh object

Extended object mesh, specified as an extendedObjectMesh object.

scaleFactor — Scaling factor
positive real scalar | 1-by-3 vector

Scaling factor for the object mesh, specified as a single positive real value or as a 1-by-3 vector in the
order x, y, and z.
Data Types: single | double

sx — Scaling factor for x-axis
positive real scalar

Scaling factor for x-axis, specified as a positive real scalar.
Data Types: single | double

sy — Scaling factor for y-axis
positive real scalar

Scaling factor for y-axis, specified as a positive real scalar.
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Data Types: single | double

sz — Scaling factor for z-axis
positive real scalar

Scaling factor for z-axis, specified as a positive real scalar.
Data Types: single | double

Output Arguments
scaledMesh — Scaled object mesh
extendedObjectMesh object

Scaled object mesh, returned as an extendedObjectMesh object.

See Also
Objects
extendedObjectMesh

Functions
applyTransform | join | rotate | scaleToFit | show | translate

Introduced in R2020a
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scaleToFit
Auto-scale object mesh to match specified cuboid dimensions

Syntax
scaledMesh = scaleToFit(mesh,dims)

Description
scaledMesh = scaleToFit(mesh,dims) auto-scales the object mesh to match the dimensions of
a cuboid specified in the structure dims.

Examples

Create and Auto-scale Sphere Mesh

This example shows how to create an extendedObjectMesh object and auto-scale the object to the
required dimensions.

Construct a sphere mesh of unit dimensions.

sph = extendedObjectMesh('sphere');

Auto-scale the mesh to the dimensions in dims.

dims = struct('Length',5,'Width',10,'Height',3,'OriginOffset',[0 0 -3]);
sph = scaleToFit(sph,dims);

Visualize the mesh.

show(sph);
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Input Arguments
mesh — Extended object mesh
extendedObjectMesh object

Extended object mesh, specified as an extendedObjectMesh

dims — Cuboid dimensions
struct

Dimensions of the cuboid to scale an object mesh, specified as a struct with these fields:

• Length – Length of the cuboid
• Width – Width of the cuboid
• Height – Height of the cuboid
• OriginOffset – Origin offset in 3-D coordinates

All the dimensions are in meters.
Data Types: struct
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Output Arguments
scaledMesh — Scaled object mesh
extendedObjectMesh object

Scaled object mesh, returned as an extendedObjectMesh object.

See Also
Objects
extendedObjectMesh

Functions
applyTransform | join | rotate | scale | show | translate

Introduced in R2020a
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show
Display the mesh as a patch on the current axes

Syntax
show(mesh)
show(mesh,ax)
ax = show(mesh)

Description
show(mesh) displays the extendedObjectMesh as a patch on the current axes. If there are no
active axes, the function creates new axes.

show(mesh,ax) displays the object mesh as a patch on the axes ax.

ax = show(mesh) optionally outputs the handle to the axes where the mesh was plotted.

Examples

Create and Translate Cuboid Mesh

This example shows how to create an extendedObjectMesh object and translate the object.

Construct a cuboid mesh.

mesh = extendedObjectMesh('cuboid');

Translate the mesh by 5 units along the negative y axis.

mesh = translate(mesh,[0 -5 0]);

Visualize the mesh.

ax = show(mesh);
ax.YLim = [-6 0];

 show
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Input Arguments
mesh — Extended object mesh
extendedObjectMesh object

Extended object mesh, specified as an extendedObjectMesh object.

ax — Current axes
axes

Current axes, specified as an axes object.

See Also
Objects
extendedObjectMesh

Functions
applyTransform | join | rotate | scale | scaleToFit | translate

Introduced in R2020a
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translate
Translate mesh along coordinate axes

Syntax
translatedMesh = translate(mesh,deltaPos)

Description
translatedMesh = translate(mesh,deltaPos) translates the object mesh by the distances
specified by deltaPos along the coordinate axes.

Examples

Create and Translate Cuboid Mesh

This example shows how to create an extendedObjectMesh object and translate the object.

Construct a cuboid mesh.

mesh = extendedObjectMesh('cuboid');

Translate the mesh by 5 units along the negative y axis.

mesh = translate(mesh,[0 -5 0]);

Visualize the mesh.

ax = show(mesh);
ax.YLim = [-6 0];

 translate
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Input Arguments
mesh — Extended object mesh
extendedObjectMesh object

Extended object mesh, specified as an extendedObjectMesh object.

deltaPos — Translation vector
three-element, real-valued vector

Translation vector for an object mesh, specified as a three-element, real-valued vector. The three
elements in the vector define the translation along the x, y, and z axes.
Data Types: single | double

Output Arguments
translatedMesh — Translated object mesh
extendedObjectMesh object

Translated object mesh, returned as an extendedObjectMesh object.
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See Also
Objects
extendedObjectMesh

Functions
applyTransform | join | rotate | scale | scaleToFit | show

Introduced in R2020a
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Curved Road
Curved road 3D environment

Description
The Curved Road scene is a 3D environment of a curved highway loop. The scene is rendered using
the Unreal Engine from Epic Games.

To simulate a driving algorithm in this scene:

1 Add a Simulation 3D Scene Configuration block to your Simulink model.
2 In this block, set the Scene source parameter to Default Scenes.
3 Set the enabled Scene name parameter to Curved road.

Explore Curved Road Scene
Explore the 3D Curved Road scene and inspect its dimensions by using a corresponding 2D top-view
image of the scene.

You can use this image to inspect the scene before simulation and choose starting coordinates for
vehicles. For details on using these images to select waypoints for path-following applications, see the
“Select Waypoints for Unreal Engine Simulation” example.

Load the 2D spatial referencing object that corresponds to the scene. This imref2d (Image
Processing Toolbox) object describes the relationship between the pixels in the image and the world
coordinates of the scene.

data = load('sim3d_SpatialReferences.mat');
spatialRef = data.spatialReference.CurvedRoad

spatialRef = 
  imref2d with properties:
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           XWorldLimits: [-1.4918e+03 367.9000]
           YWorldLimits: [-191.4200 1.6683e+03]
              ImageSize: [4845 4845]
    PixelExtentInWorldX: 0.3838
    PixelExtentInWorldY: 0.3838
    ImageExtentInWorldX: 1.8597e+03
    ImageExtentInWorldY: 1.8597e+03
       XIntrinsicLimits: [0.5000 4.8455e+03]
       YIntrinsicLimits: [0.5000 4.8455e+03]

Display the image corresponding to the scene. Use the spatial referencing object to display the axes
in the world coordinates of the scene. Units are in meters.

By default, the imshow function displays Y-axis values that increase from top to bottom. To align with
the Automated Driving Toolbox™ world coordinate system, set the Y-direction to 'normal' so that Y-
axis values increase from bottom to top.

figure
fileName = 'sim3d_CurvedRoad.jpg';
I = imshow(fileName,spatialRef);
set(gca,'YDir','normal')
xlabel('X (m)')
ylabel('Y (m)')
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Zoom in on the origin of the scene. Place a marker at the origin.

xlim([-100 250])
ylim([-200 150])

hold on
plot(0,0,'o','MarkerFaceColor','r','MarkerEdgeColor','k','MarkerSize',8)
offset = 5; % px
text(offset,offset,'(0,0)','Color','k','FontWeight','bold','FontSize',12)
hold off
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Tips
• If you have the Automated Driving Toolbox Interface for Unreal Engine 4 Projects support

package, then you can modify this scene. In the Unreal Engine project file that comes with the
support package, this scene is named HwCurve.

For more details on customizing scenes, see “Customize Unreal Engine Scenes for Automated
Driving”.

 Curved Road
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See Also
Double Lane Change | Large Parking Lot | Open Surface | Parking Lot | Straight Road | US
City Block | US Highway | Virtual Mcity

Topics
“Unreal Engine Simulation for Automated Driving”
“Unreal Engine Simulation Environment Requirements and Limitations”
“Coordinate Systems for Unreal Engine Simulation in Automated Driving Toolbox”
“Cuboid Versions of 3D Simulation Scenes in Driving Scenario Designer”
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Double Lane Change
Double lane change 3D environment

Description
The Double Lane Change scene is a 3D environment of a straight road containing cones, traffic
signs, and barrels. The cones are set up for a vehicle to perform a double lane change maneuver. The
scene is rendered using the Unreal Engine from Epic Games.

To simulate a driving algorithm in this scene:

1 Add a Simulation 3D Scene Configuration block to your Simulink model.
2 In this block, set the Scene source parameter to Default Scenes.
3 Set the enabled Scene name parameter to Double lane change.

Explore Double Lane Change Scene
Explore the 3D Double Lane Change scene and inspect its dimensions by using a corresponding 2D
top-view image of the scene.

You can use this image to inspect the scene before simulation and choose starting coordinates for
vehicles. For details on using these images to select waypoints for path-following applications, see the
“Select Waypoints for Unreal Engine Simulation” example.

Load the 2D spatial referencing object that corresponds to the scene. This imref2d (Image
Processing Toolbox) object describes the relationship between the pixels in the image and the world
coordinates of the scene.

 Double Lane Change
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data = load('sim3d_SpatialReferences.mat');
spatialRef = data.spatialReference.DoubleLaneChange

spatialRef = 
  imref2d with properties:

           XWorldLimits: [-130.5500 783.3500]
           YWorldLimits: [-456.1500 457.7500]
              ImageSize: [4845 4845]
    PixelExtentInWorldX: 0.1886
    PixelExtentInWorldY: 0.1886
    ImageExtentInWorldX: 913.9000
    ImageExtentInWorldY: 913.9000
       XIntrinsicLimits: [0.5000 4.8455e+03]
       YIntrinsicLimits: [0.5000 4.8455e+03]

Display the image corresponding to the scene. Use the spatial referencing object to display the axes
in the world coordinates of the scene. Units are in meters.

By default, the imshow function displays Y-axis values that increase from top to bottom. To align with
the Automated Driving Toolbox™ world coordinate system, set the Y-direction to 'normal' so that Y-
axis values increase from bottom to top.

The image displays only the area of the scene containing the parking lot. The full scene has a length
and width of 2016 meters.

figure
fileName = 'sim3d_DoubleLaneChange.jpg';
I = imshow(fileName,spatialRef);
set(gca,'YDir','normal')
xlabel('X (m)')
ylabel('Y (m)')
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Zoom in on the origin of the scene. Place a marker at the origin. If you place a vehicle at the scene
origin and set the vehicle's yaw angle to 0, the traffic cones for performing the double lane change
maneuver are directly in front of the vehicle.

xlim([-100 100])
ylim([-100 100])

hold on
plot(0,0,'o','MarkerFaceColor','r','MarkerEdgeColor','k','MarkerSize',8)
offset = 3; % px
text(offset,offset,'(0,0)','Color','w','FontWeight','bold','FontSize',12)
hold off

 Double Lane Change
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Tips
• If you have the Automated Driving Toolbox Interface for Unreal Engine 4 Projects support

package, then you can modify this scene. In the Unreal Engine project file that comes with the
support package, this scene is named DblLnChng.

For more details on customizing scenes, see “Customize Unreal Engine Scenes for Automated
Driving”.
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See Also
Curved Road | Large Parking Lot | Open Surface | Parking Lot | Straight Road | US City Block
| US Highway | Virtual Mcity

Topics
“Unreal Engine Simulation for Automated Driving”
“Unreal Engine Simulation Environment Requirements and Limitations”
“Coordinate Systems for Unreal Engine Simulation in Automated Driving Toolbox”
“Cuboid Versions of 3D Simulation Scenes in Driving Scenario Designer”
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Large Parking Lot
Large parking lot 3D environment

Description
The Large Parking Lot scene is a 3D environment of a large parking lot that contains cones, curbs,
traffic signs, and parked vehicles. The scene is rendered using the Unreal Engine from Epic Games.

To simulate a driving algorithm in this scene:

1 Add a Simulation 3D Scene Configuration block to your Simulink model.
2 In this block, set the Scene source parameter to Default Scenes.
3 Set the enabled Scene name parameter to Large parking lot.

Explore Large Parking Lot Scene
Explore the 3D Large Parking Lot scene and inspect its dimensions by using a corresponding 2D top-
view image of the scene.

You can use this image to inspect the scene before simulation and choose starting coordinates for
vehicles. For details on using these images to select waypoints for path-following applications, see the
“Select Waypoints for Unreal Engine Simulation” example.
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Load the 2D spatial referencing object that corresponds to the scene. This imref2d (Image
Processing Toolbox) object describes the relationship between the pixels in the image and the world
coordinates of the scene.

data = load('sim3d_SpatialReferences.mat');
spatialRef = data.spatialReference.LargeParkingLot

spatialRef = 
  imref2d with properties:

           XWorldLimits: [-78.5000 61.5000]
           YWorldLimits: [-75 65]
              ImageSize: [4845 4845]
    PixelExtentInWorldX: 0.0289
    PixelExtentInWorldY: 0.0289
    ImageExtentInWorldX: 140
    ImageExtentInWorldY: 140
       XIntrinsicLimits: [0.5000 4.8455e+03]
       YIntrinsicLimits: [0.5000 4.8455e+03]

Display the image corresponding to the scene. Use the spatial referencing object to display the axes
in the world coordinates of the scene. Units are in meters.

By default, the imshow function displays Y-axis values that increase from top to bottom. To align with
the Automated Driving Toolbox™ world coordinate system, set the Y-direction to 'normal' so that Y-
axis values increase from bottom to top.

Place a marker at the origin of the scene.

figure
fileName = 'sim3d_LargeParkingLot.jpg';
I = imshow(fileName,spatialRef);
set(gca,'YDir','normal')
xlabel('X (m)')
ylabel('Y (m)')

hold on
plot(0,0,'o','MarkerFaceColor','r','MarkerEdgeColor','k','MarkerSize',8)
offset = 3; % px
text(offset,offset,'(0,0)','Color','w','FontWeight','bold','FontSize',12)
hold off

 Large Parking Lot
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Tips
• If you have the Automated Driving Toolbox Interface for Unreal Engine 4 Projects support

package, then you can modify this scene. In the Unreal Engine project file that comes with the
support package, this scene is named LargeParkingLot.

For more details on customizing scenes, see “Customize Unreal Engine Scenes for Automated
Driving”.
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See Also
Curved Road | Double Lane Change | Open Surface | Parking Lot | Straight Road | US City
Block | US Highway | Virtual Mcity

Topics
“Unreal Engine Simulation for Automated Driving”
“Unreal Engine Simulation Environment Requirements and Limitations”
“Coordinate Systems for Unreal Engine Simulation in Automated Driving Toolbox”
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Open Surface
Open surface 3D environment

Description
The Open Surface scene contains a 3D environment of an open, black road surface. The scene is
rendered using the Unreal Engine from Epic Games.

To simulate a driving algorithm in this scene:

1 Add a Simulation 3D Scene Configuration block to your Simulink model.
2 In this block, set the Scene source parameter to Default Scenes.
3 Set the enabled Scene name parameter to Open surface.

Explore Open Surface Scene
Explore the 3D Open Surface scene and inspect its dimensions by using a corresponding 2D top-view
image of the scene.

You can use this image to inspect the scene before simulation and choose starting coordinates for
vehicles. For details on using these images to select waypoints for path-following applications, see the
“Select Waypoints for Unreal Engine Simulation” example.

Load the 2D spatial referencing object that corresponds to the scene. This imref2d (Image
Processing Toolbox) object describes the relationship between the pixels in the image and the world
coordinates of the scene.
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data = load('sim3d_SpatialReferences.mat');
spatialRef = data.spatialReference.OpenSurface

spatialRef = 
  imref2d with properties:

           XWorldLimits: [-130.5500 894.4500]
           YWorldLimits: [-567.2500 457.7500]
              ImageSize: [4845 4845]
    PixelExtentInWorldX: 0.2116
    PixelExtentInWorldY: 0.2116
    ImageExtentInWorldX: 1025
    ImageExtentInWorldY: 1025
       XIntrinsicLimits: [0.5000 4.8455e+03]
       YIntrinsicLimits: [0.5000 4.8455e+03]

Display the image corresponding to the scene. Use the spatial referencing object to display the axes
in the world coordinates of the scene. Units are in meters.

By default, the imshow function displays Y-axis values that increase from top to bottom. To align with
the Automated Driving Toolbox™ world coordinate system, set the Y-direction to 'normal' so that Y-
axis values increase from bottom to top.

Place a marker at the origin of the scene.

figure
fileName = 'sim3d_OpenSurface.jpg';
I = imshow(fileName,spatialRef);
set(gca,'YDir','normal')
xlabel('X (m)')
ylabel('Y (m)')

hold on
plot(0,0,'o','MarkerFaceColor','r','MarkerEdgeColor','k','MarkerSize',8)
offset = 10; % px
text(offset,offset,'(0,0)','Color','w','FontWeight','bold','FontSize',12)
hold off

 Open Surface
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Tips
• If you have the Automated Driving Toolbox Interface for Unreal Engine 4 Projects support

package, then you can modify this scene. In the Unreal Engine project file that comes with the
support package, this scene is named BlackLake.

For more details on customizing scenes, see “Customize Unreal Engine Scenes for Automated
Driving”.
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See Also
Curved Road | Double Lane Change | Large Parking Lot | Parking Lot | Straight Road | US
City Block | US Highway | Virtual Mcity

Topics
“Unreal Engine Simulation for Automated Driving”
“Unreal Engine Simulation Environment Requirements and Limitations”
“Coordinate Systems for Unreal Engine Simulation in Automated Driving Toolbox”
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Parking Lot
Parking lot 3D environment

Description
The Parking Lot scene is a 3D environment of a parking lot. The scene is rendered using the Unreal
Engine from Epic Games.

To simulate a driving algorithm in this scene:

1 Add a Simulation 3D Scene Configuration block to your Simulink model.
2 In this block, set the Scene source parameter to Default Scenes.
3 Set the enabled Scene name parameter to Parking lot.

Explore Parking Lot Scene
Explore the 3D Parking Lot scene and inspect its dimensions by using a corresponding 2D top-view
image of the scene.

You can use this image to inspect the scene before simulation and choose starting coordinates for
vehicles. For details on using these images to select waypoints for path-following applications, see the
“Select Waypoints for Unreal Engine Simulation” example.

Load the 2D spatial referencing object that corresponds to the scene. This imref2d (Image
Processing Toolbox) object describes the relationship between the pixels in the image and the world
coordinates of the scene.

data = load('sim3d_SpatialReferences.mat');
spatialRef = data.spatialReference.ParkingLot

spatialRef = 
  imref2d with properties:
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           XWorldLimits: [-195.5000 8.9000]
           YWorldLimits: [-27.1000 177.3000]
              ImageSize: [4845 4845]
    PixelExtentInWorldX: 0.0422
    PixelExtentInWorldY: 0.0422
    ImageExtentInWorldX: 204.4000
    ImageExtentInWorldY: 204.4000
       XIntrinsicLimits: [0.5000 4.8455e+03]
       YIntrinsicLimits: [0.5000 4.8455e+03]

Display the image corresponding to the scene. Use the spatial referencing object to display the axes
in the world coordinates of the scene. Units are in meters.

By default, the imshow function displays Y-axis values that increase from top to bottom. To align with
the Automated Driving Toolbox™ world coordinate system, set the Y-direction to 'normal' so that Y-
axis values increase from bottom to top.

The image displays only the area of the scene containing the parking lot. The full scene has a length
and width of 705.6 meters.

figure
fileName = 'sim3d_ParkingLot.jpg';
I = imshow(fileName,spatialRef);
set(gca,'YDir','normal')
xlabel('X (m)')
ylabel('Y (m)')

 Parking Lot
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Zoom in on the origin of the scene. Place a marker at the origin.

xlim([-40 10])
ylim([-30 20])

hold on
plot(0,0,'o','MarkerFaceColor','r','MarkerEdgeColor','k','MarkerSize',8)
offset = 1; % px
text(offset,offset,'(0,0)','Color','w','FontWeight','bold','FontSize',12)
hold off
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Tips
• If you have the Automated Driving Toolbox Interface for Unreal Engine 4 Projects support

package, then you can modify this scene. In the Unreal Engine project file that comes with the
support package, this scene is named SimpleLot.

For more details on customizing scenes, see “Customize Unreal Engine Scenes for Automated
Driving”.
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See Also
Curved Road | Double Lane Change | Large Parking Lot | Open Surface | Straight Road | US
City Block | US Highway | Virtual Mcity

Topics
“Unreal Engine Simulation for Automated Driving”
“Unreal Engine Simulation Environment Requirements and Limitations”
“Coordinate Systems in Automated Driving Toolbox”
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Straight Road
Straight road 3D environment

Description
The Straight Road scene is a 3D environment of a straight four-lane divided highway. The scene is
rendered using the Unreal Engine from Epic Games.

To simulate a driving algorithm in this scene:

1 Add a Simulation 3D Scene Configuration block to your Simulink model.
2 In this block, set the Scene source parameter to Default Scenes.
3 Set the enabled Scene name parameter to Straight road.

Explore Straight Road Scene
Explore the 3D Straight Road scene and inspect its dimensions by using a corresponding 2D top-view
image of the scene.

You can use this image to inspect the scene before simulation and choose starting coordinates for
vehicles. For details on using these images to select waypoints for path-following applications, see the
“Select Waypoints for Unreal Engine Simulation” example.

Load the 2D spatial referencing object that corresponds to the scene. This imref2d (Image
Processing Toolbox) object describes the relationship between the pixels in the image and the world
coordinates of the scene.

data = load('sim3d_SpatialReferences.mat');
spatialRef = data.spatialReference.StraightRoad

spatialRef = 
  imref2d with properties:

 Straight Road
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           XWorldLimits: [-130.5500 783.3500]
           YWorldLimits: [-456.1500 457.7500]
              ImageSize: [4845 4845]
    PixelExtentInWorldX: 0.1886
    PixelExtentInWorldY: 0.1886
    ImageExtentInWorldX: 913.9000
    ImageExtentInWorldY: 913.9000
       XIntrinsicLimits: [0.5000 4.8455e+03]
       YIntrinsicLimits: [0.5000 4.8455e+03]

Display the image corresponding to the scene. Use the spatial referencing object to display the axes
in the world coordinates of the scene. Units are in meters.

By default, the imshow function displays Y-axis values that increase from top to bottom. To align with
the Automated Driving Toolbox™ world coordinate system, set the Y-direction to 'normal' so that Y-
axis values increase from bottom to top.

The image displays only the area of the scene containing the straight road. The full scene has a
length and width of 2016 meters.

figure
fileName = 'sim3d_StraightRoad.jpg';
I = imshow(fileName,spatialRef);
set(gca,'YDir','normal')
xlabel('X (m)')
ylabel('Y (m)')
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Zoom in on the origin of the scene. Place a marker at the origin.

xlim([-100 100])
ylim([-100 100])

hold on
plot(0,0,'o','MarkerFaceColor','r','MarkerEdgeColor','k','MarkerSize',8)
offset = 3; % px
text(offset,offset,'(0,0)','Color','w','FontWeight','bold','FontSize',12)
hold off

 Straight Road
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Tips
• If you have the Automated Driving Toolbox Interface for Unreal Engine 4 Projects support

package, then you can modify this scene. In the Unreal Engine project file that comes with the
support package, this scene is named HwStrght.

For more details on customizing scenes, see “Customize Unreal Engine Scenes for Automated
Driving”.
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See Also
Curved Road | Double Lane Change | Large Parking Lot | Open Surface | Parking Lot | US
City Block | US Highway | Virtual Mcity

Topics
“Unreal Engine Simulation for Automated Driving”
“Unreal Engine Simulation Environment Requirements and Limitations”
“Coordinate Systems for Unreal Engine Simulation in Automated Driving Toolbox”
“Cuboid Versions of 3D Simulation Scenes in Driving Scenario Designer”

 Straight Road
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US City Block
US city block 3D environment

Description
The US City Block scene is a 3D environment of a US city block that contains 15 intersections and
30 traffic lights. The scene is rendered using the Unreal Engine from Epic Games.

To simulate a driving algorithm in this scene:

1 Add a Simulation 3D Scene Configuration block to your Simulink model.
2 In this block, set the Scene source parameter to Default Scenes.
3 Set the enabled Scene name parameter to US city block.
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Traffic Lights

The US City Scene contains 30 traffic lights, two at each of the 15 intersections. Each intersection
has a traffic light group. If you use the “Traffic Light Negotiation with Unreal Engine Visualization”
example, you can control the timing of the traffic lights.

This table provides the traffic light names and locations in the world coordinate system. Dimensions
are in m. Only one of the traffic lights in the group can be green at a time. The traffic lights are green
for 10 s and yellow for 3 s. At the start of the simulation, the first traffic lights in the group are green
(for example, SM_TrafficLights1_3 and SM_TrafficLights2_3). The second lights in the group
are red (for example, SM_TrafficLights1_4 and SM_TrafficLights2_4).

Intersect
ion

Unreal Engine
Editor Name

Location

Traffic Light
Group

Traffic
Light

X Y Z Roll Pitch Yaw

1 TrafficLig
htGroup

SM_Tr
affic
Light
s1_3

-196.55 100.65 0 0 0 -90°

SM_Tr
affic
Light
s1_4

-210.20 113.40 0 0 0 0

2 TrafficLig
htGroup2

SM_Tr
affic
Light
s2_3

-106.35 -98.35 0 0 0 90°

SM_Tr
affic
Light
s2_4

-120.40 113.50 0 0 0 0

3 TrafficLig
htGroup3

SM_Tr
affic
Light
s3_1

-13.10 116.20 0.2 0 0 -90°
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Intersect
ion

Unreal Engine
Editor Name

Location

Traffic Light
Group

Traffic
Light

X Y Z Roll Pitch Yaw

SM_Tr
affic
Light
s3_4

-30.60 113.80 0 0 0 0

4 TrafficLig
htGroup4

SM_Tr
affic
Light
s4_3

71.40 100.30 0 0 0 100°

SM_Tr
affic
Light
s4_4

64.80 113.0 0 0 0 0

5 TrafficLig
htGroup5

SM_Tr
affic
Light
s5_1

171.50 115.70 0 0 0 -90°

SM_Tr
affic
Light
s5_4

157.40 113.50 0 0 0 0

6 TrafficLig
htGroup6

SM_Tr
affic
Light
s6_2

-177.30 -5.70 0 0 0 -180°

SM_Tr
affic
Light
s6_3

-189.60 -7.40 0 0 0 90°

7 TrafficLig
htGroup7

SM_Tr
affic
Light
s7_2

-105.20 -5.50 0 0 0 -180°

SM_Tr
affic
Light
s7_3

-117.80 -7.70 0.2 0 0 90°

8 TrafficLig
htGroup8

SM_Tr
affic
Light
s8_1

-13.10 7.60 0.1 0 0 -90°
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Intersect
ion

Unreal Engine
Editor Name

Location

Traffic Light
Group

Traffic
Light

X Y Z Roll Pitch Yaw

SM_Tr
affic
Light
s8_2

-10.90 -5.60 0 0 0 -180°

9 TrafficLig
htGroup9

SM_Tr
affic
Light
s9_2

85.90 -7.60 0.2 0 0 -180°

SM_Tr
affic
Light
s9_3

70.90 -9.20 0 0 0 90°

10 TrafficLig
htGroup10

SM_Tr
affic
Light
s10_1

172.10 7.70 0 0 0 -90°

SM_Tr
affic
Light
s10_2

173.70 -7.50 0 0 0 -180°

11 TrafficLig
htGroup11

SM_Tr
affic
Light
s11_3

-189.80 -118.45 0 0 0 90°

SM_Tr
affic
Light
s11_4

-191.05 -104.55 0 0 0 0

12 TrafficLig
htGroup12

SM_Tr
affic
Light
s12_3

-117.60 -117.60 0 0 0 90°

SM_Tr
affic
Light
s12_4

-120.50 -105.40 0 0 0 0

13 TrafficLig
htGroup13

SM_Tr
affic
Light
s13_1

-12.80 -102.50 0 0 0 -90°
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Intersect
ion

Unreal Engine
Editor Name

Location

Traffic Light
Group

Traffic
Light

X Y Z Roll Pitch Yaw

SM_Tr
affic
Light
s13_4

-30.50 -105.30 0 0 0 0

14 TrafficLig
htGroup14

SM_Tr
affic
Light
s14_3

70.90 -118.70 0 0 0 90°

SM_Tr
affic
Light
s14_4

69.30 -105.30 0 0 0 0

15 TrafficLig
htGroup15

SM_Tr
affic
Light
s15_1

171.40 -105.20 0 0 0 -90°

SM_Tr
affic
Light
s15_4

158.40 -107.20 0 0 0 0

Explore US City Block Scene
Explore the 3D US City Block scene and inspect its dimensions by using a corresponding 2D top-view
image of the scene.

You can use this image to inspect the scene before simulation and choose starting coordinates for
vehicles. For details on using these images to select waypoints for path-following applications, see the
“Select Waypoints for Unreal Engine Simulation” example.

Load the 2D spatial referencing object that corresponds to the scene. This imref2d (Image
Processing Toolbox) object describes the relationship between the pixels in the image and the world
coordinates of the scene.

data = load('sim3d_SpatialReferences.mat');
spatialRef = data.spatialReference.USCityBlock

spatialRef = 
  imref2d with properties:

           XWorldLimits: [-243.0500 200.2500]
           YWorldLimits: [-215.6500 227.6500]
              ImageSize: [4275 4275]
    PixelExtentInWorldX: 0.1037
    PixelExtentInWorldY: 0.1037
    ImageExtentInWorldX: 443.3000
    ImageExtentInWorldY: 443.3000
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       XIntrinsicLimits: [0.5000 4.2755e+03]
       YIntrinsicLimits: [0.5000 4.2755e+03]

Display the image corresponding to the scene. Use the spatial referencing object to display the axes
in the world coordinates of the scene. Units are in meters.

By default, the imshow function displays Y-axis values that increase from top to bottom. To align with
the Automated Driving Toolbox™ world coordinate system, set the Y-direction to 'normal' so that Y-
axis values increase from bottom to top.

The image displays only the area of the scene containing the city block. The full scene has a length
and width of 2040 meters.

figure
fileName = 'sim3d_USCityBlock.jpg';
I = imshow(fileName,spatialRef);
set(gca,'YDir','normal')
xlabel('X (m)')
ylabel('Y (m)')

 US City Block
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Zoom in on the origin of the scene. Place a marker at the origin.

xlim([-35 35])
ylim([-35 35])

hold on
plot(0,0,'o','MarkerFaceColor','r','MarkerEdgeColor','k','MarkerSize',8)
offset = 1; % px
text(offset,offset,'(0,0)','Color','w','FontWeight','bold','FontSize',12)
hold off
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Each intersection in the scene contains two traffic light groups. These traffic lights change color
based on common US traffic light patterns. All roads in the scene are one-way and follow the
direction of traffic shown here.

 US City Block
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Tips
• If you have the Automated Driving Toolbox Interface for Unreal Engine 4 Projects support

package, then you can modify this scene. In the Unreal Engine project file that comes with the
support package, this scene is named USCityBlock.

For more details on customizing scenes, see “Customize Unreal Engine Scenes for Automated
Driving”.

See Also
Curved Road | Double Lane Change | Large Parking Lot | Open Surface | Parking Lot |
Straight Road | US Highway | Virtual Mcity

Topics
“Unreal Engine Simulation for Automated Driving”
“Unreal Engine Simulation Environment Requirements and Limitations”
“Coordinate Systems for Unreal Engine Simulation in Automated Driving Toolbox”
“Cuboid Versions of 3D Simulation Scenes in Driving Scenario Designer”
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US Highway
US highway 3D environment

Description
The US Highway scene is a 3D environment of a US highway that contains barriers, cones, and
traffic signs. The scene is rendered using the Unreal Engine from Epic Games.

To simulate a driving algorithm in this scene:

1 Add a Simulation 3D Scene Configuration block to your Simulink model.
2 In this block, set the Scene source parameter to Default Scenes.
3 Set the enabled Scene name parameter to US highway.

Explore US Highway Scene
Explore the 3D US Highway scene and inspect its dimensions by using a corresponding 2D top-view
image of the scene.

You can use this image to inspect the scene before simulation and choose starting coordinates for
vehicles. For details on using these images to select waypoints for path-following applications, see the
“Select Waypoints for Unreal Engine Simulation” example.

Load the 2D spatial referencing object that corresponds to the scene. This imref2d (Image
Processing Toolbox) object describes the relationship between the pixels in the image and the world
coordinates of the scene.

 US Highway
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data = load('sim3d_SpatialReferences.mat');
spatialRef = data.spatialReference.USHighway

spatialRef = 
  imref2d with properties:

           XWorldLimits: [2.8218e+03 5.0868e+03]
           YWorldLimits: [-3.7469e+03 -1.4820e+03]
              ImageSize: [5585 5585]
    PixelExtentInWorldX: 0.4055
    PixelExtentInWorldY: 0.4055
    ImageExtentInWorldX: 2.2649e+03
    ImageExtentInWorldY: 2.2649e+03
       XIntrinsicLimits: [0.5000 5.5855e+03]
       YIntrinsicLimits: [0.5000 5.5855e+03]

Display the image corresponding to the scene. Use the spatial referencing object to display the axes
in the world coordinates of the scene. Units are in meters.

By default, the imshow function displays Y-axis values that increase from top to bottom. To align with
the Automated Driving Toolbox™ world coordinate system, set the Y-direction to 'normal' so that Y-
axis values increase from bottom to top.

The image displays only the area of the scene containing the highway. The full scene has a length and
width of 10,160 meters. The origin of the scene is outside the range of the displayed image.

figure
fileName = 'sim3d_USHighway.jpg';
I = imshow(fileName,spatialRef);
set(gca,'YDir','normal')
xlabel('X (m)')
ylabel('Y (m)')
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Tips
• If you have the Automated Driving Toolbox Interface for Unreal Engine 4 Projects support

package, then you can modify this scene. In the Unreal Engine project file that comes with the
support package, this scene is named USHighway.

For more details on customizing scenes, see “Customize Unreal Engine Scenes for Automated
Driving”.

 US Highway
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See Also
Curved Road | Double Lane Change | Large Parking Lot | Open Surface | Parking Lot |
Straight Road | US City Block | Virtual Mcity

Topics
“Unreal Engine Simulation for Automated Driving”
“Unreal Engine Simulation Environment Requirements and Limitations”
“Coordinate Systems for Unreal Engine Simulation in Automated Driving Toolbox”
“Cuboid Versions of 3D Simulation Scenes in Driving Scenario Designer”
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Virtual Mcity
Virtual Mcity 3D environment

Description
The Virtual Mcity scene is a 3D environment containing a virtual representation of Mcity®, which is
a testing ground belonging to the University of Michigan. For more details, see Mcity Test Facility.

The scene is rendered using the Unreal Engine from Epic Games.

To simulate a driving algorithm in this scene:

1 Add a Simulation 3D Scene Configuration block to your Simulink model.
2 In this block, set the Scene source parameter to Default Scenes.
3 Set the enabled Scene name parameter to Virtual Mcity.

Explore Virtual Mcity Scene
Explore the 3D Virtual Mcity scene and inspect its dimensions by using a corresponding 2D top-view
image of the scene.

 Virtual Mcity
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You can use this image to inspect the scene before simulation and choose starting coordinates for
vehicles. For details on using these images to select waypoints for path-following applications, see the
“Select Waypoints for Unreal Engine Simulation” example.

Load the 2D spatial referencing object that corresponds to the scene. This imref2d (Image
Processing Toolbox) object describes the relationship between the pixels in the image and the world
coordinates of the scene.

data = load('sim3d_SpatialReferences.mat');
spatialRef = data.spatialReference.VirtualMCity

spatialRef = 
  imref2d with properties:

           XWorldLimits: [-159.3500 253.3500]
           YWorldLimits: [-94.4500 318.2500]
              ImageSize: [4845 4845]
    PixelExtentInWorldX: 0.0852
    PixelExtentInWorldY: 0.0852
    ImageExtentInWorldX: 412.7000
    ImageExtentInWorldY: 412.7000
       XIntrinsicLimits: [0.5000 4.8455e+03]
       YIntrinsicLimits: [0.5000 4.8455e+03]

Display the image corresponding to the scene. Use the spatial referencing object to display the axes
in the world coordinates of the scene. Units are in meters.

By default, the imshow function displays Y-axis values that increase from top to bottom. To align with
the Automated Driving Toolbox™ world coordinate system, set the Y-direction to 'normal' so that Y-
axis values increase from bottom to top.

The image displays only the area of the scene containing the city. The full scene has a length of
541.44 meters and a width of 342.98 meters.

figure
fileName = 'sim3d_VirtualMCity.jpg';
I = imshow(fileName,spatialRef);
set(gca,'YDir','normal')
xlabel('X (m)')
ylabel('Y (m)')
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Zoom in on the origin of the scene. Place a marker at the origin.

xlim([-20 50])
ylim([-40 30])

hold on
plot(0,0,'o','MarkerFaceColor','r','MarkerEdgeColor','k','MarkerSize',8)
offset = 1; % px
text(offset,offset,'(0,0)','Color','k','FontWeight','bold','FontSize',12)
hold off

 Virtual Mcity
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Limitations
• In the Automated Driving Toolbox Interface for Unreal Engine 4 Projects support package, this

scene is not available for customization.

For details on which scenes you can customize, see “Customize Unreal Engine Scenes for
Automated Driving”.
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See Also
Curved Road | Double Lane Change | Large Parking Lot | Open Surface | Parking Lot |
Straight Road | US City Block | US Highway

Topics
“Unreal Engine Simulation for Automated Driving”
“Unreal Engine Simulation Environment Requirements and Limitations”
“Coordinate Systems for Unreal Engine Simulation in Automated Driving Toolbox”

External Websites
Mcity Test Facility

 Virtual Mcity
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Hatchback
Hatchback vehicle dimensions

Description
Hatchback is one of the vehicles that you can use within the 3D simulation environment. This
environment is rendered using the Unreal Engine from Epic Games. The diagram provides the
dimensions of this vehicle. The height dimensions are with respect to the vertical ground plane. The
length and width dimensions are with respect to the origin of the vehicle in the vehicle coordinate
system. The origin is on the ground, at the geometric center of the vehicle. For more detailed views of
these diagrams, see the Dimensions section.

To add this type of vehicle to the 3D simulation environment:

1 Add a Simulation 3D Vehicle with Ground Following block to your Simulink model.
2 In the block, set the Type parameter to Hatchback.

Dimensions
Top-down view — Vehicle width dimensions
diagram
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Side view — Vehicle length, front overhang, and rear overhang dimensions
diagram

Front view — Tire width and front axle dimensions
diagram

 Hatchback
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Rear view — Vehicle height and rear axle dimensions
diagram

6 Vehicle Dimensions

6-4



Sensor Mounting Locations
In the 3D simulation sensor blocks, use the Mounting location parameter to mount sensors at
predefined locations on the vehicle. The table shows the X, Y, and Z positions of the mounting
locations relative to the vehicle origin. These locations are in the vehicle coordinate system, where:

• The X-axis points forward from the vehicle.
• The Y-axis points to the left of the vehicle, as viewed when facing forward.
• The Z-axis points up from the ground.

 Hatchback
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Hatchback — Sensor Locations Relative to Vehicle Origin

Mounting Location X (m) Y (m) Z (m)
Front bumper 1.93 0 0.51
Rear bumper –1.93 0 0.51
Right mirror 0.43 –0.84 1.01
Left mirror 0.43 0.84 1.01
Rearview mirror 0.32 0 1.27
Hood center 1.44 0 1.01
Roof center 0 0 1.57

Specify Hatchback Vehicle Dimensions
When simulating a path planner in the 3D environment, the path planner must use a vehicle whose
dimensions are consistent with one used in the 3D environment. To make these dimensions
consistent, you can use a vehicleDimensions object.

Specify the dimensions of a Hatchback vehicle in a vehicleDimensions object. Units are in meters.
For an example that uses this object in a path planner, see “Visualize Automated Parking Valet Using
Unreal Engine Simulation”.

centerToFront = 1.104;
centerToRear  = 1.343;
frontOverhang = 0.828;
rearOverhang  = 0.589;
vehicleWidth  = 1.653;
vehicleHeight = 1.513;
vehicleLength = centerToFront + centerToRear + frontOverhang + rearOverhang;

hatchbackDims = vehicleDimensions(vehicleLength,vehicleWidth,vehicleHeight, ...
    'FrontOverhang',frontOverhang,'RearOverhang',rearOverhang)

hatchbackDims = 
  vehicleDimensions with properties:

           Length: 3.8640
            Width: 1.6530
           Height: 1.5130
        Wheelbase: 2.4470
     RearOverhang: 0.5890
    FrontOverhang: 0.8280
       WorldUnits: 'meters'

See Also
Box Truck | Muscle Car | Sedan | Small Pickup Truck | Sport Utility Vehicle

Topics
“Unreal Engine Simulation for Automated Driving”
“Coordinate Systems in Automated Driving Toolbox”
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Muscle Car
Muscle car vehicle dimensions

Description
Muscle Car is one of the vehicles that you can use within the 3D simulation environment. This
environment is rendered using the Unreal Engine from Epic Games. The following diagram provides
the dimensions of this vehicle. The height dimensions are with respect to the vertical ground plane.
The length and width dimensions are with respect to the origin of the vehicle in the vehicle
coordinate system. The origin is on the ground, at the geometric center of the vehicle. For more
detailed views of these diagrams, see the Dimensions section.

To add this type of vehicle to the 3D simulation environment:

1 Add a Simulation 3D Vehicle with Ground Following block to your Simulink model.
2 In the block, set the Type parameter to Muscle car.

Dimensions
Top-down view — Vehicle width dimensions
diagram

 Muscle Car
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Side view — Vehicle length, front overhang, and rear overhang dimensions
diagram

Front view — Tire width and front axle dimensions
diagram
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Rear view — Vehicle height and rear axle dimensions
diagram

 Muscle Car
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Sensor Mounting Locations
In the 3D simulation sensor blocks, use the Mounting location parameter to mount sensors at
predefined locations on the vehicle. The table shows the X, Y, and Z positions of the mounting
locations relative to the vehicle origin. These locations are in the vehicle coordinate system, where:

• The X-axis points forward from the vehicle.
• The Y-axis points to the left of the vehicle, as viewed when facing forward.
• The Z-axis points up from the ground.

6 Vehicle Dimensions

6-10



Muscle Car — Sensor Locations Relative to Vehicle Origin

Mounting Location X (m) Y (m) Z (m)
Front bumper 2.47 0 0.45
Rear bumper –2.47 0 0.45
Right mirror 0.43 –1.08 1.01
Left mirror 0.43 1.08 1.01
Rearview mirror 0.32 0 1.20
Hood center 1.28 0 1.14
Roof center –0.25 0 1.58

Specify Muscle Car Vehicle Dimensions
When simulating a path planner in the 3D environment, the path planner must use a vehicle whose
dimensions are consistent with one used in the 3D environment. To make these dimensions
consistent, you can use a vehicleDimensions object.

Specify the dimensions of a Muscle Car vehicle in a vehicleDimensions object. Units are in
meters. For an example that uses this object in a path planner, see “Visualize Automated Parking
Valet Using Unreal Engine Simulation”.

centerToFront = 1.491;
centerToRear  = 1.529;
frontOverhang = 0.983;
rearOverhang  = 0.945;
vehicleWidth  = 2.009;
vehicleHeight = 1.370;
vehicleLength = centerToFront + centerToRear + frontOverhang + rearOverhang;

muscleCarDims = vehicleDimensions(vehicleLength,vehicleWidth,vehicleHeight, ...
    'FrontOverhang',frontOverhang,'RearOverhang',rearOverhang)

muscleCarDims = 
  vehicleDimensions with properties:

           Length: 4.9480
            Width: 2.0090
           Height: 1.3700
        Wheelbase: 3.0200
     RearOverhang: 0.9450
    FrontOverhang: 0.9830
       WorldUnits: 'meters'

See Also
Box Truck | Hatchback | Sedan | Small Pickup Truck | Sport Utility Vehicle

Topics
“Unreal Engine Simulation for Automated Driving”
“Coordinate Systems for Unreal Engine Simulation in Automated Driving Toolbox”

 Muscle Car
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Sedan
Sedan vehicle dimensions

Description
Sedan is one of the vehicles that you can use within the 3D simulation environment. This
environment is rendered using the Unreal Engine from Epic Games. The diagram provides the
dimensions of this vehicle. The height dimensions are with respect to the vertical ground plane. The
length and width dimensions are with respect to the origin of the vehicle in the vehicle coordinate
system. The origin is on the ground, at the geometric center of the vehicle. For more detailed views of
these diagrams, see the Dimensions section.

To add this type of vehicle to the 3D simulation environment:

1 Add a Simulation 3D Vehicle with Ground Following block to your Simulink model.
2 In the block, set the Type parameter to Sedan.

Dimensions
Top-down view — Vehicle width dimensions
diagram

6 Vehicle Dimensions

6-12



Side view — Vehicle length, front overhang, and rear overhang dimensions
diagram

Front view — Tire width and front axle dimensions
diagram

 Sedan
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Rear view — Vehicle height and rear axle dimensions
diagram
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Sensor Mounting Locations
In the 3D simulation sensor blocks, use the Mounting location parameter to mount sensors at
predefined locations on the vehicle. The table shows the X, Y, and Z positions of the mounting
locations relative to the vehicle origin. These locations are in the vehicle coordinate system, where:

• The X-axis points forward from the vehicle.
• The Y-axis points to the left of the vehicle, as viewed when facing forward.
• The Z-axis points up from the ground.

 Sedan
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Sedan — Sensor Locations Relative to Vehicle Origin

Mounting Location X (m) Y (m) Z (m)
Front bumper 2.42 0 0.51
Rear bumper –2.42 0 0.51
Right mirror 0.59 –0.94 1.09
Left mirror 0.59 0.94 1.09
Rearview mirror 0.43 0 1.31
Hood center 1.46 0 1.11
Roof center –0.45 0 1.69

Specify Sedan Vehicle Dimensions
When simulating a path planner in the 3D environment, the path planner must use a vehicle whose
dimensions are consistent with one used in the 3D environment. To make these dimensions
consistent, you can use a vehicleDimensions object.

Specify the dimensions of a Sedan vehicle in a vehicleDimensions object. Units are in meters. For
an example that uses this object in a path planner, see “Visualize Automated Parking Valet Using
Unreal Engine Simulation”.

centerToFront = 1.513;
centerToRear  = 1.305;
frontOverhang = 0.911;
rearOverhang  = 1.119;
vehicleWidth  = 1.842;
vehicleHeight = 1.517;
vehicleLength = centerToFront + centerToRear + frontOverhang + rearOverhang;

sedanDims = vehicleDimensions(vehicleLength,vehicleWidth,vehicleHeight, ...
    'FrontOverhang',frontOverhang,'RearOverhang',rearOverhang)

sedanDims = 
  vehicleDimensions with properties:

           Length: 4.8480
            Width: 1.8420
           Height: 1.5170
        Wheelbase: 2.8180
     RearOverhang: 1.1190
    FrontOverhang: 0.9110
       WorldUnits: 'meters'

See Also
Box Truck | Hatchback | Muscle Car | Small Pickup Truck | Sport Utility Vehicle

Topics
“Unreal Engine Simulation for Automated Driving”
“Coordinate Systems in Automated Driving Toolbox”
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Sport Utility Vehicle
Sport utility vehicle dimensions

Description
Sport Utility Vehicle is one of the vehicles that you can use within the 3D simulation environment.
This environment is rendered using the Unreal Engine from Epic Games. The following diagram
provides the dimensions of this vehicle. The height dimensions are with respect to the vertical ground
plane. The length and width dimensions are with respect to the origin of the vehicle in the vehicle
coordinate system. The origin is on the ground, at the geometric center of the vehicle. For more
detailed views of these diagrams, see the Dimensions section.

To add this type of vehicle to the 3D simulation environment:

1 Add a Simulation 3D Vehicle with Ground Following block to your Simulink model.
2 In the block, set the Type parameter to Sport utility vehicle.

Dimensions
Top-down view — Vehicle width dimensions
diagram

 Sport Utility Vehicle
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Side view — Vehicle length, front overhang, and rear overhang dimensions
diagram

Front view — Tire width and front axle dimensions
diagram
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Rear view — Vehicle height and rear axle dimensions
diagram

 Sport Utility Vehicle

6-19



Sensor Mounting Locations
In the 3D simulation sensor blocks, use the Mounting location parameter to mount sensors at
predefined locations on the vehicle. The table shows the X, Y, and Z positions of the mounting
locations relative to the vehicle origin. These locations are in the vehicle coordinate system, where:

• The X-axis points forward from the vehicle.
• The Y-axis points to the left of the vehicle, as viewed when facing forward.
• The Z-axis points up from the ground.
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Sport Utility Vehicle — Sensor Locations Relative to Vehicle Origin

Mounting Location X (m) Y (m) Z (m)
Front bumper 2.42 0 0.51
Rear bumper –2.42 0 0.51
Right mirror 0.60 –1 1.35
Left mirror 0.60 1 1.35
Rearview mirror 0.39 0 1.55
Hood center 1.58 0 1.39
Roof center –0.56 0 2

Specify Sport Utility Vehicle Dimensions
When simulating a path planner in the 3D environment, the path planner must use a vehicle whose
dimensions are consistent with one used in the 3D environment. To make these dimensions
consistent, you can use a vehicleDimensions object.

Specify the dimensions of a Sport Utility Vehicle in a vehicleDimensions object. Units are in
meters. For an example that uses this object in a path planner, see “Visualize Automated Parking
Valet Using Unreal Engine Simulation”.

centerToFront = 1.422;
centerToRear  = 1.474;
frontOverhang = 0.991;
rearOverhang  = 0.939;
vehicleWidth  = 1.935;
vehicleHeight = 1.774;
vehicleLength = centerToFront + centerToRear + frontOverhang + rearOverhang;

suvDims = vehicleDimensions(vehicleLength,vehicleWidth,vehicleHeight, ...
    'FrontOverhang',frontOverhang,'RearOverhang',rearOverhang)

suvDims = 
  vehicleDimensions with properties:

           Length: 4.8260
            Width: 1.9350
           Height: 1.7740
        Wheelbase: 2.8960
     RearOverhang: 0.9390
    FrontOverhang: 0.9910
       WorldUnits: 'meters'

See Also
Box Truck | Hatchback | Muscle Car | Sedan | Small Pickup Truck

Topics
“Unreal Engine Simulation for Automated Driving”
“Coordinate Systems in Automated Driving Toolbox”

 Sport Utility Vehicle
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Small Pickup Truck
Small pickup truck vehicle dimensions

Description
Small Pickup Truck is one of the vehicles that you can use within the 3D simulation environment.
This environment is rendered using the Unreal Engine from Epic Games. The following diagram
provides the dimensions of this vehicle. The height dimensions are with respect to the vertical ground
plane. The length and width dimensions are with respect to the origin of the vehicle in the vehicle
coordinate system. The origin is on the ground, at the geometric center of the vehicle. For more
detailed views of these diagrams, see the Dimensions section.

To add this type of vehicle to the 3D simulation environment:

1 Add a Simulation 3D Vehicle with Ground Following block to your Simulink model.
2 In the block, set the Type parameter to Small pickup truck.

Dimensions
Top-down view — Vehicle width dimensions
diagram
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Side view — Vehicle length, front overhang, and rear overhang dimensions
diagram

Front view — Tire width and front axle dimensions
diagram

 Small Pickup Truck
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Rear view — Vehicle height and rear axle dimensions
diagram
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Sensor Mounting Locations
In the 3D simulation sensor blocks, use the Mounting location parameter to mount sensors at
predefined locations on the vehicle. The table shows the X, Y, and Z positions of the mounting
locations relative to the vehicle origin. These locations are in the vehicle coordinate system, where:

• The X-axis points forward from the vehicle.
• The Y-axis points to the left of the vehicle, as viewed when facing forward.
• The Z-axis points up from the ground.

 Small Pickup Truck
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Small Pickup Truck — Sensor Locations Relative to Vehicle Origin

Mounting Location X (m) Y (m) Z (m)
Front bumper 3.07 0 0.51
Rear bumper –3.07 0 0.51
Right mirror 1.10 –1.13 1.52
Left mirror 1.10 1.13 1.52
Rearview mirror 0.85 0 1.77
Hood center 2.22 0 1.59
Roof center 0 0 2.27

Specify Small Pickup Truck Vehicle Dimensions
When simulating a path planner in the 3D environment, the path planner must use a vehicle whose
dimensions are consistent with one used in the 3D environment. To make these dimensions
consistent, you can use a vehicleDimensions object.

Specify the dimensions of a Small Pickup Truck vehicle in a vehicleDimensions object. Units are in
meters. For an example that uses this object in a path planner, see “Visualize Automated Parking
Valet Using Unreal Engine Simulation”.

centerToFront = 1.947;
centerToRear  = 1.750;
frontOverhang = 1.124;
rearOverhang  = 1.321;
vehicleWidth  = 2.073;
vehicleHeight = 1.990;
vehicleLength = centerToFront + centerToRear + frontOverhang + rearOverhang;

smallPickupTruckDims = vehicleDimensions(vehicleLength,vehicleWidth,vehicleHeight, ...
    'FrontOverhang',frontOverhang,'RearOverhang',rearOverhang)

smallPickupTruckDims = 
  vehicleDimensions with properties:

           Length: 6.1420
            Width: 2.0730
           Height: 1.9900
        Wheelbase: 3.6970
     RearOverhang: 1.3210
    FrontOverhang: 1.1240
       WorldUnits: 'meters'

See Also
Box Truck | Hatchback | Muscle Car | Sedan | Sport Utility Vehicle

Topics
“Unreal Engine Simulation for Automated Driving”
“Coordinate Systems in Automated Driving Toolbox”
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6-26



Box Truck
Box truck vehicle dimensions

Description
Box truck is one of the vehicles that you can use within the 3D simulation environment. This
environment is rendered using the Unreal Engine from Epic Games. The following diagram provides
the dimensions of this vehicle. The height dimensions are with respect to the vertical ground plane.
The length and width dimensions are with respect to the origin of the vehicle in the vehicle
coordinate system. The origin is on the ground, at the geometric center of the vehicle. For more
detailed views of these diagrams, see the Dimensions section.

To add this type of vehicle to the 3D simulation environment:

1 Add a Simulation 3D Vehicle with Ground Following block to your Simulink model.
2 In this block, set the Type parameter to Box truck.

Dimensions
Top-down view — Vehicle width dimensions
diagram

Side view — Vehicle length, front overhang, and rear overhang dimensions
diagram

 Box Truck
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Front view — Tire width and front axle dimensions
diagram
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Rear view — Vehicle height and rear axle dimensions
diagram

 Box Truck
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Sensor Mounting Locations
In the 3D simulation sensor blocks, use the Mounting location parameter to mount sensors at
predefined locations on the vehicle. The table shows the X, Y, and Z positions of the mounting
locations relative to the vehicle origin. These locations are in the vehicle coordinate system, where:
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• The X-axis points forward from the vehicle.
• The Y-axis points to the left of the vehicle, as viewed when facing forward.
• The Z-axis points up from the ground.

Box Truck — Sensor Locations Relative to Vehicle Origin

Mounting Location X (m) Y (m) Z (m)
Front bumper 5.10 0 0.60
Rear bumper –5 0 0.60
Right mirror 2.90 1.60 2.10
Left mirror 2.90 –1.60 2.10
Rearview mirror 2.60 0.20 2.60
Hood center 3.80 0 2.10
Roof center 1.30 0 4.20

Specify Box Truck Vehicle Dimensions
When simulating a path planner in the 3D environment, the path planner must use a vehicle whose
dimensions are consistent with the one used in the environment. To make these dimensions
consistent, you can use a vehicleDimensions object.

Specify the dimensions of a Box Truck vehicle in a vehicleDimensions object. Units are in meters.
For an example that uses this object in a path planner, see “Visualize Automated Parking Valet Using
Unreal Engine Simulation”.

centerToFront = 3.35;
centerToRear  = 2.19;
frontOverhang = 1.25;
rearOverhang  = 2.41;
vehicleWidth  = 2.72;
vehicleHeight = 4.01;
vehicleLength = centerToFront + centerToRear + frontOverhang + rearOverhang;

boxTruckDims = vehicleDimensions(vehicleLength,vehicleWidth,vehicleHeight, ...
    'FrontOverhang',frontOverhang,'RearOverhang',rearOverhang)

boxTruckDims = 
  vehicleDimensions with properties:

           Length: 9.2000
            Width: 2.7200
           Height: 4.0100
        Wheelbase: 5.5400
     RearOverhang: 2.4100
    FrontOverhang: 1.2500
       WorldUnits: 'meters'

See Also
Hatchback | Muscle Car | Sedan | Small Pickup Truck | Sport Utility Vehicle
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