Automated Driving Toolbox™
NS EE)E

<

MATLAB&SIMULINK

R2020b ¢ } MathWorkse

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Automated Driving Toolbox™ Reference
© COPYRIGHT 2017-2020 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

Revision History

March 2017 Online only New for Version 1.0 (Release 2017a)

September 2017 Online only Revised for Version 1.1 (Release 2017b)
March 2018 Online only Revised for Version 1.2 (Release 2018a)
September 2018 Online only Revised for Version 1.3 (Release 2018b)
March 2019 Online only Revised for Version 2.0 (Release 2019a)
September 2019 Online only Revised for Version 3.0 (Release 2019b)
March 2020 Online only Revised for Version 3.1 (Release 2020a)

September 2020 Online only Revised for Version 3.2 (Release 2020b)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Apps

1]

Blocks

2|

Functions

3|

Objects

4

Scene Dimensions

S|

Vehicle Dimensions

6/

iii

Apps

1 Apps

1-2

Bird's-Eye Scope

Visualize sensor coverages, detections, and tracks

Description

The Bird's-Eye Scope visualizes aspects of a driving scenario found in your Simulink® model.

Using the scope, you can:

» Inspect the coverage areas of radar, vision, and lidar sensors.

* Analyze the sensor detections of actors, road boundaries, and lane boundaries.

* Analyze the tracking results of moving actors within the scenario.

To get started, open the scope and click Find Signals. The scope updates the block diagram, finds
signals representing aspects of the driving scenario, organizes the signals into groups, and displays

the signals. You can then analyze the signals as you simulate, organize the signals into new groups,
and modify the graphical display of the signals.

For more details about using the scope, see “Visualize Sensor Data and Tracks in Bird's-Eye Scope”.

Bird's-Eye Scope

Road Boundaries [|Vision Coverage [|Radar Coverage @ Vision Detections @ Radar Detections O Tracks

Longitudinal Distance (m)

Lateral Distance (m)

Open the Bird's-Eye Scope App

Simulink Toolstrip:

* On the Simulation tab, under Review Results, click Bird's-Eye Scope.

* On the Apps tab, under Signal Processing and Wireless Communications, click Bird's-Eye
Scope.

1-3

1 Apps

1-4

Examples

. “Visualize Sensor Data and Tracks in Bird's-Eye Scope”

. “Visualize Sensor Data from Unreal Engine Simulation Environment”
. “Sensor Fusion Using Synthetic Radar and Vision Data in Simulink”
. “Lane Following Control with Sensor Fusion and Lane Detection”

. “Autonomous Emergency Braking with Sensor Fusion”

. “Test Open-Loop ADAS Algorithm Using Driving Scenario”
. “Test Closed-Loop ADAS Algorithm Using Driving Scenario”

Parameters

Settings
To access the settings of the Bird's-Eye Scope, on the scope toolstrip, click Settings.
Vehicle Coordinates View Settings

Longitudinal axis limits — Longitudinal axis limits
[-60,60] (default) | [min, max] vector

Longitudinal axis limits, specified as a [min, max] vector.
Tunable: Yes

Lateral axis limits — Lateral axis limits
[-30,30] (default) | [min, max] vector

Lateral axis limits, specified as a [min, max] vector.
Tunable: Yes

Track position selector — Selection matrix used to extract positions of tracked objects
[1,0,0,0,0,0; 0,0,1,0,0,0] (default) | 2-by-n matrix of zeros and ones

Selection matrix used to extract the positions of tracked objects, specified as a 2-by-n matrix of zeros
and ones. n is the size of the state vector for each tracked object in the scenario. The scope multiplies
the selection matrix by the state vector of a tracked object to return the (x, y) position of the object.

» The first row of the matrix corresponds to the x-coordinate stored within the state vector.

* The second row of the matrix corresponds to the y-coordinate stored within the state vector.

This parameter applies to signals from a Multi-Object Tracker block that were initialized by a linear
Kalman filter. The state vector format depends on the motion model used to initialize the Kalman
filter. For more details on these motion models, see trackingKF and “Linear Kalman Filters”.

The default selection matrix is for a 3-D constant velocity motion model. In this motion model, the
state vectors of tracked objects are of the form [Xx;vx;y;vy;z;vz], where:

* X is the x-coordinate of a tracked object.

Bird's-Eye Scope

» vx is the velocity of a tracked object in the x-direction.
* y is the y-coordinate of a tracked object.
* vy is the velocity of a tracked object in the y-direction.
* zisthe z-coordinate of a tracked object.
» vz is the velocity of a tracked object in the z-direction.

Multiplying the state vector by this selection matrix returns only the first element of the state vector,
x, and the third element of the state vector, y.

[1,0,0,0,0,0; 0,0,1,0,0,0] * [x;vx;y;vy;z;vz] = [x;y]
Tunable: No

Track velocity selector — Selection matrix used to extract velocities of tracked objects
[0,1,0,0,0,0; 0,0,0,1,0,0] (default) | 2-by-n matrix of zeros and ones

Selection matrix used to extract the velocities of tracked objects, specified as a 2-by-n matrix of zeros
and ones. n is the size of the state vector for each tracked object in the scenario. The scope multiplies
the selection matrix by the state vector of a tracked object to return the velocity of the object in the
(x, y) direction.

* The first row of the matrix corresponds to the x-direction velocity stored within the state vector.

* The second row of the matrix corresponds to the y-direction velocity stored within the state vector.
This parameter applies to signals from a Multi-Object Tracker block that were initialized by a linear

Kalman filter. The state vector format depends on the motion model used to initialize the Kalman
filter. For more details on these motion models, see trackingKF and “Linear Kalman Filters”.

The default selection matrix is for a 3-D constant velocity motion model. In this motion model, the
state vectors of tracked objects are of the form [Xx;vx;y;vy;z;vz], where:

* X is the x-coordinate of a tracked object.
* vx is the velocity of a tracked object in the x-direction.
* y is the y-coordinate of a tracked object.
* vy is the velocity of a tracked object in the y-direction.
* zisthe z-coordinate of a tracked object.
* vz is the velocity of a tracked object in the z-direction.

Multiplying the state vector by this selection matrix returns only the second element of the state
vector, vx, and the fourth element of the state vector, vy.

[0,1,0,0,0,0; 0,0,0,1,0,0] * [Xx;vx;y;vy;z;vz] = [vx;vy]
Tunable: No
Global Settings

Display short signal names — Display signal names without path information
on (default) | of f

* Select this parameter to display short signal names (signals without path information).

1-5

1 Apps

1-6

* Clear this parameter to display long signal names (signals with path information).

Consider the signal VisionDetection within subsystem Sensor Simulation. When you select
this parameter, the short name, VisionDetection, is displayed. When you clear this parameter, the
long name, Sensor Simulation/VisionDetection, is displayed.

Tunable: Yes
Signal Properties

These properties are a subset of the available signal properties. To view all the properties of a signal,
first select that signal from the left pane. Then, on the scope toolstrip, click Properties.

Alpha — Transparency of coverage area
0.1 (default) | real scalar in the range [0, 1]

Transparency of the coverage area, specified as a real scalar in the range [0, 1]. A value of 0 makes
the coverage area fully transparent. A value of 1 makes the coverage area fully opaque.

This property is available only for signals in the Sensor Coverage group.
Tunable: Yes

Velocity Scaling — Scale factor for magnitude length of velocity vectors
1 (default) | real scalar in the range [0, 20]

Scale factor for the magnitude length of the velocity vectors, specified as a real scalar in the range [0,
20]. The scope renders the magnitude vector value as M x Velocity Scaling, where M is the
magnitude of the velocity.

This property is available only for signals in the Detections or Tracks groups.

Tunable: Yes

Limitations

General Limitations

* Referenced models are not supported. To visualize signals that are within referenced models,
move the output of these signals to the top-level model.

* Rapid accelerator mode is not supported.

» If you initialize your model in fast restart, then after the first time you simulate, the Find Signals
button is disabled. To enable Find Signals again, on the Debug tab of the Simulink toolstrip,
click Fast Restart.

Scenario Reader Block Limitations
* The Bird's-Eye Scope does not support visualization in a model that contains:

¢ More than one Scenario Reader block.

* A Scenario Reader block within a nonvirtual subsystem, such as an atomic or enabled
subsystem.

* A Scenario Reader block that is configured to output actors and lane boundaries in world
coordinates (Coordinate system of outputs parameter set to World Coordinates).

Bird's-Eye Scope

» For Scenario Reader blocks in which you specify the ego vehicle using the Ego Vehicle input port,
the ego vehicle signal must be connected directly to the block. Visualization of ego vehicle signals
that are output from a nonvirtual subsystem or referenced model are not supported.

3D Simulation Block Limitations

» The visualization of roads, lanes, and actors from Simulation 3D Scene Configuration blocks is not
supported. If your block contains a Simulation 3D Scene Configuration block, the Bird's-Eye
Scope still displays an ego vehicle, but it has default vehicle dimensions.

More About

Applicable Signals

When the Bird's-Eye Scope finds signals in your model, it automatically groups signals by type.
These groupings are based on the sources of the signals within the model.

Signal Group

Description

Signal Sources

Ground Truth

Road boundaries and lane
markings in the scenario

You cannot modify this group or
any of its signals.

To inspect large road networks,
use the World Coordinates
View window. See “Vehicle and
World Coordinate Views” on
page 1-9.

* Scenario Reader block

Actors

Actors in the scenario, including
the ego vehicle

You cannot modify this group or
any of its signals or subgroups.

To view actors that are located
away from the ego vehicle, use
the World Coordinates View
window. See “Vehicle and World
Coordinate Views” on page 1-
9.

Scenario Reader block

* Vision Detection Generator,
Radar Detection Generator,
and Lidar Point Cloud
Generator blocks (for actor

profile information only, such

as the length, width, and
height of actors)

» If actor profile
information is not set or
is inconsistent between

blocks, the scope sets the

actor profiles to the
default actor profile
values for each block.

* The profile of the ego
vehicle is always set to
the default profile for
each block.

1-7

1 Apps

Signal Group

Description

Signal Sources

Sensor Coverage

Coverage areas of vision, radar,
and lidar sensors, sorted into
Vision, Radar, and Lidar
subgroups

You can modify signals in this
group.

You can rename or delete
subgroups but not the top-level
Sensor Coverage group. You
can also add subgroups and
move signals between
subgroups. If you delete a
subgroup, its signals move to
the top-level Sensor Coverage
group.

Vision Detection Generator
block

¢ Simulation 3D Vision
Detection Generator

Radar Detection Generator
block

* Simulation 3D Probabilistic
Radar block

e Lidar Point Cloud Generator
block

* Simulation 3D Lidar block

You can modify signals in this
group.

You can rename or delete
subgroups but not the top-level
Tracks group. You can also add
subgroups to this group and
move signals into them. If you
delete a subgroup, its signals
move to the top-level Tracks
group.

Detections Detections obtained from vision, |* Vision Detection Generator
radar, and lidar sensors, sorted block
into Vision, Radar, and Lidar |, ginulation 3D Vision
subgroups Detection Generator
You can modify signals in this * Radar Detection Generator
group. block

* Lidar Point Cloud Generator

You can rename or delete Tl
subgroups but not the top-level]) o
Detections group. You can also Simulation 3D Probabilistic
add subgroups and move signals| Radar block
between subgroups. If you * Simulation 3D Lidar block
delete a subgroup, its signals
move to the top-level
Detections group.

Tracks Tracks of objects in the scenario |* Multi-Object Tracker block

1-8

Bird's-Eye Scope

Signal Group

Description

Signal Sources

Other Applicable Signals

Signals that the scope cannot
automatically group, such as
ones that combine information
from multiple sensors

You can modify signals in this
group but you cannot add
subgroups.

Signals in this group do not
display during simulation.

* Blocks that combine or
cluster signals (such as the
Detection Concatenation
block)

* Nonvirtual Simulink buses
containing position and
velocity information for
detections and tracks

* Vehicle To World and World
To Vehicle blocks

* Any blocks that create buses
containing actor poses

For details on the actor pose
information required when
creating these buses, see the
Actors output port of the
Scenario Reader block.

To view a model that includes samples of all these signals types, see the “Sensor Fusion Using
Synthetic Radar and Vision Data in Simulink” example.

Vehicle and World Coordinate Views

In the Bird's-Eye Scope, the default view displays the driving scenario in vehicle coordinates.
During simulation, this view displays the scenario from the perspective of the ego vehicle. Use this
view to inspect aspects of the scenario in the immediate vicinity of the ego vehicle.

1-9

1 Apps

Longitudinal Distance (m)

Lateral Distance (m)

You can also display the driving scenario in world coordinates. On the scope toolstrip, click World
Coordinates to open the World Coordinates View window. Use this window to view the scenario as
a whole. You can also use this view to inspect the trajectories of actors that are not in the immediate
vicinity of the ego vehicle.

1-10

Bird's-Eye Scope

Longitudinal Distance {m;

Vehicle Coordinates View World Coordinates View
ettt

Y {mj)

| I SR N S—

Lateral Distance (m) X (m)

To display the roads and lanes within the World Coordinates View, click Find Signals. To display
the ego vehicle and other actors in the scenario, run the simulation. This view does not display
detections, tracks, sensor coverage areas, and other applicable signals. You can view these signals
only in the Vehicle Coordinates View window.

Note In the World Coordinates View window, the circle around the ego vehicle highlights the
location of the vehicle in the scenario. It is not a sensor coverage area.

Tips
* To find the source of a signal within the model, in the left pane of the scope, right-click a signal

and select Highlight in Model.

* You can show or hide signals while simulating. For example, to hide a sensor coverage, first select
it from the left pane. Then, from the Properties tab, clear the Show Sensor Coverage check
box.

1-11

1 Apps

1-12

When you reopen the scope after saving and closing a model, the scope canvas is initially blank.
Click Find Signals to find the signals again. The signals have the same properties from when you
last saved the model.

If the simulation runs too quickly, you can slow it down by using simulation pacing. On the
Simulation tab of the Simulink toolstrip, select Run > Simulation Pacing. Then, select the
Enable pacing to slow down simulation check box and decrease the simulation time to less
than the default of one second per wall clock second.

To better inspect the scenario, you can pan and zoom within the Vehicle Coordinates View and
World Coordinates View windows. To return to the default display of either window, in the

!
upper-right corner of that window, click the home button Ll

See Also

Detection Concatenation | Lidar Point Cloud Generator | Multi-Object Tracker | Radar Detection
Generator | Scenario Reader | Simulation 3D Lidar | Simulation 3D Probabilistic Radar | Simulation
3D Vision Detection Generator | Vision Detection Generator

Topics

“Visualize Sensor Data and Tracks in Bird's-Eye Scope”

“Visualize Sensor Data from Unreal Engine Simulation Environment”
“Sensor Fusion Using Synthetic Radar and Vision Data in Simulink”
“Lane Following Control with Sensor Fusion and Lane Detection”
“Autonomous Emergency Braking with Sensor Fusion”

“Test Open-Loop ADAS Algorithm Using Driving Scenario”

“Test Closed-Loop ADAS Algorithm Using Driving Scenario”

Introduced in R2018b

Driving Scenario Designer

Driving Scenario Designer

Design driving scenarios, configure sensors, and generate synthetic data

Description

The Driving Scenario Designer app enables you to design synthetic driving scenarios for testing
your autonomous driving systems.

Using the app, you can:

* Create road and actor models using a drag-and-drop interface.

» Configure vision, radar, and lidar sensors mounted on the ego vehicle. You can use these sensors
to simulate detections of actors and lane boundaries in the scenario and to generate point cloud
data from a scenario.

* Load driving scenarios representing European New Car Assessment Programme (Euro NCAP®)
test protocols [1][2][3] and other prebuilt scenarios.

* Import OpenDRIVE® roads and lanes into a driving scenario. The app supports OpenDRIVE format
specification version 1.4H [4].

+ Import road data from OpenStreetMap® or HERE HD Live Map! web services into a driving
scenario.

* Export the road network in a driving scenario to an OpenDRIVE file.
« Export synthetic sensor detections to MATLAB®.

* Generate MATLAB code of the scenario and sensors, and then programmatically modify the
scenario and import it back into the app for further simulation.

* Generate a Simulink model from the scenario and sensors, and use the generated models to test
your sensor fusion or vehicle control algorithms.

To learn more about the app, see Driving Scenario Designer.

1. You need to enter into a separate agreement with HERE in order to gain access to the HDLM services and to get the
required credentials (access key id and access key secret) for using the HERE Service.

1-13

https://www.mathworks.com/videos/driving-scenario-designer-1529302116471.html
https://www.here.com

1 Apps

E) Driving Scenario Designer - EgoVehicleTurnsLeft_VehiclelMakesUTurn_Vehicle2GoesStraight - Scenario Canvas — [m| x
== U we
w0 & d Ko dl [> O [T @ &
MNew Open Import Save Add Add Add Add Goto Step Continue Step FIRepeat pefay 3D Sim Export
= = ~ 2 Road Actor> (Camera Radar Start Back Forward Layout ~ =
FILE SCENARIO SENSORS SIMULATE VIEW EXPORT
| Roads | Actors | Sensors [Scenario Canvas 1SensorCan\ras | | Ego-Centric View | Bird's-Eye Plot |
T T T T T T T T T
150 i
40
140 1
30
130 g
@
o
§ 20
£ B
120 %
S =
=
=
£ 10}
=
=]
10 y =
of
100 - 7
10 1
90 7
1 1 1 1 1 1 1 L 1 1 1 1 1 Il 1 1 1
10 5 0 5 10 -15 -20 -25 -30 -35 40 20 15 10 5 0 -5 -10 -15 -20
Y (m) Lateral Distance (m)
) 5645 || [Vision Radar

Open the Driving Scenario Designer App

* MATLAB Toolstrip: On the Apps tab, under Automotive, click the app icon.
* MATLAB command prompt: Enter drivingScenarioDesigner.

Examples

Create a Driving Scenario

Create a driving scenario of a vehicle driving down a curved road, and export the road and vehicle
models to the MATLAB workspace. For a more detailed example of creating a driving scenario, see
“Create Driving Scenario Interactively and Generate Synthetic Sensor Data”.

Open the Driving Scenario Designer app.

1-14

Driving Scenario Designer

drivingScenarioDesigner

Create a curved road. On the app toolstrip, click Add Road. Click the bottom of the canvas, extend
the road path to the middle of the canvas, and click the canvas again. Extend the road path to the top
of the canvas, and then double-click to create the road. To make the curve more complex, click and
drag the road centers (open circles), or double-click the road to add more road centers.

4337

ar

1-15

1 Apps

Add lanes to the road. In the left pane, on the Roads tab, expand the Lanes section. Set Number of
Lanes to 2. By default, the road is one-way and has solid lane markings on either side to indicate the
shoulder.

Add a vehicle at one end of the road. On the app toolstrip, select Add Actor > Car. Then click the
road to set the initial position of the car.

1-16

Driving Scenario Designer

Set the driving trajectory of the car. Right-click the car, select Add Forward Waypoints, and add
waypoints for the car to pass through. After you add the last waypoint, press Enter. The car
autorotates in the direction of the first waypoint.

Adjust the speed of the car as it passes between waypoints. In the Waypoints, Speeds, Wait Times,
and Yaw table in the left pane, set the velocity, v (m/s), of the ego vehicle as it enters each waypoint

1-17

1 Apps

segment. Increase the speed of the car for the straight segments and decrease its speed for the
curved segments. For example, the trajectory has six waypoints, set the v (m/s) cells to 30, 20, 15,
15, 20, and 30.

v (m/s)
30

Run the scenario, and adjust settings as needed. Then click Save > Roads & Actors to save the road
and car models to a MAT-file.

Generate Sensor Data from Scenario
Generate lidar point cloud data from a prebuilt Euro NCAP driving scenario.

» For more details on prebuilt scenarios available from the app, see “Prebuilt Driving Scenarios in
Driving Scenario Designer”.

» For more details on available Euro NCAP scenarios, see “Euro NCAP Driving Scenarios in Driving
Scenario Designer”.

Load a Euro NCAP autonomous emergency braking (AEB) scenario of a collision with a pedestrian
child. At collision time, the point of impact occurs 50% of the way across the width of the car.

path = fullfile(matlabroot, 'toolbox"', 'shared', 'drivingscenario’,
'"PrebuiltScenarios', 'EuroNCAP');

addpath(genpath(path)) % Add folder to path

drivingScenarioDesigner('AEB PedestrianChild Nearside 50width.mat"')

rmpath(path) % Remove folder from path

1-18

Driving Scenario Designer

Add a lidar sensor to the ego vehicle. First click Add Lidar. Then, on the Sensor Canvas, click the
predefined sensor location at the roof center of the car. The lidar sensor appears in black at the
predefined location. The gray color that surrounds the car is the coverage area of the sensor.

1-19

1 Apps

I o il

L D |
0

I I I I I O I I T O s .:_

- D o 0 .

Run the scenario. Inspect different aspects of the scenario by toggling between canvases and views.
You can toggle between the Sensor Canvas and Scenario Canvas and between the Bird's-Eye Plot
and Ego-Centric View.

In the Bird's-Eye Plot and Ego-Centric View, the actors are displayed as meshes instead of as
cuboids. To change the display settings, use the Display options on the app toolstrip.

1-20

Driving Scenario Designer

Scenario Canvas Sensor Canvas Ego-Centric View Bird's-Eye Plot |
Lidar
60 T T T T T T
T T T T T
50 40 F 4
35T 7
40 r
30 [S — 7
— E 251 1
30r 8 R
T 201 b
H L]
(=] [
g 15 7
201 =
= L J
£ 10
=
=]
— 5 |
1071
ob 4
0r 5 1
=10 [b
-10 ' ' ' : ' ' ' 25 {D 0 {u éu
30 20 10 0 =10 =20 -30 c
Y (m) 1215 | @ Lateral Distance (m)

Export the sensor data to the MATLAB workspace. Click Export > Export Sensor Data, enter a
workspace variable name, and click OK.

Import Programmatic Driving Scenario and Sensors

Programmatically create a driving scenario, radar sensor, and camera sensor, and then import the
scenario and sensors into the app. For more details on working with programmatic driving scenarios
and sensors, see “Create Driving Scenario Variations Programmatically”.

Create a simple driving scenario by using a drivingScenario object. In this scenario, the ego
vehicle travels straight on a 50-meter road segment at a constant speed of 30 meters per second. For
the ego vehicle, specify a ClassID of 1. This value corresponds to the app Class ID of 1, which
refers to actors of class Car. For more details on how the app defines classes, see the Class
parameter description in the “Actors” on page 1-0 parameter tab.

scenario = drivingScenario;
roadCenters = [0 0 0; 50 0 0];
road(scenario, roadCenters);

egoVehicle = vehicle(scenario, 'ClassID',1,'Position',[5 0 0]);
waypoints = [5 0 0; 45 0 0];

speed = 30;

trajectory(egoVehicle,waypoints, speed);

1-21

1 Apps

Create a radar sensor by using a radarDetectionGenerator object, and create a camera sensor by
using a visionDetectionGenerator object. Place both sensors at the vehicle origin, with the
radar facing forward and the camera facing backward.

radar = radarDetectionGenerator('SensorLocation', [0 0]);
camera = visionDetectionGenerator('SensorLocation', [0 O], 'Yaw',b-180);

Import the scenario, front-facing radar sensor, and rear-facing camera sensor into the app.

drivingScenarioDesigner(scenario,{radar,camera})

50 F T T T T T T T T T]
45 [] 7
40 7
35 7
30 7

Ei 26 7

-4
201 7
15 | -
10F 7

5 I -

Ur i i i i —:I_ i i i i]

25 20 15 10] 1]] -10 -15 =20 -25
Y (m)

1-22

Driving Scenario Designer

You can then run the scenario and modify the scenario and sensors. To generate new
drivingScenario, radarDetectionGenerator, and visionDetectionGenerator objects, on
the app toolstrip, select Export > Export MATLAB Function, and then run the generated function.

Generate Simulink Model of Scenario and Sensor

Load a driving scenario containing a sensor and generate a Simulink model from the scenario and
sensor. For a more detailed example on generating Simulink models from the app, see “Generate
Sensor Detection Blocks Using Driving Scenario Designer”.

Load a prebuilt driving scenario into the app. The scenario contains two vehicles crossing through an
intersection. The ego vehicle travels north and contains a camera sensor. This sensor is configured to
detect both objects and lanes.

path = fullfile(matlabroot, 'toolbox', 'shared', 'drivingscenario', 'PrebuiltScenarios');
addpath(genpath(path)) % Add folder to path
drivingScenarioDesigner('EgoVehicleGoesStraight VehicleFromLeftGoesStraight.mat')
rmpath(path) % Remove folder from path

1-23

1 Apps

14or 1 40 \ /o
35+ \\\ .,"f -
130 | 1 \
30 1
120 | 1 E 5] 1
[1H] Y !
o ‘\. ."l
5 20f 1
. B
E 110 . B
> o 15 \ 7
5 \ /
B Y £
& 10} 1
100 — =
— W)
1 of == -
5 F -
80 [4
1 1 1 1 1 _1 D [1 1 1 1 1 1 1]
60 50 40 30 20 10 0 15 10 5 (1] -5 10 -15
Y (m T visi Lateral Distance (m
) (m) T=3.05s @ Vision (m)

Generate a Simulink model of the scenario and sensor. On the app toolstrip, select Export > Export
Simulink Model. If you are prompted, save the scenario file.

Object
-
Actors P Actors) Detections p
Vision
EgoVehicleGoesStraight_VehicleFromlLeftGoesStraight g:;ﬂ?gr
[Sensor Index: 1]
Lane o | Lane Lane S
Boundaries | Boundaries Detections
Scenario Reader Camera

The Scenario Reader block reads the road and actors from the scenario file. To update the scenario
data in the model, update the scenario in the app and save the file.

The Vision Detection Generator block recreates the camera sensor defined in the app. To update the
sensor in the model, update the sensor in the app, select Export > Export Sensor Simulink Model,
and copy the newly generated sensor block into the model. If you updated any roads or actors while
updating the sensors, then select Export > Export Simulink Model. In this case, the Scenario
Reader block accurately reads the actor profile data and passes it to the sensor.

1-24

Driving Scenario Designer

Specify Vehicle Trajectories for 3D Simulation

Create a scenario with vehicle trajectories that you can later recreate in Simulink for simulation in a

3D environment.

Open one of the prebuilt scenarios that recreates a default scene available through the 3D
environment. On the app toolstrip, select Open > Prebuilt Scenario > Simulation3D and select a

scenario. For example, select the DoubleLaneChange.mat scenario.

Specify a vehicle and its trajectory.

1-25

1 Apps

A EE LR RN

Update the dimensions of the vehicle to match the dimensions of the predefined vehicle types in the
3D simulation environment.

1 On the Actors tab, select the 3D Display Type option you want.

2 On the app toolstrip, select 3D Display > Use 3D Simulation Actor Dimensions. In the
Scenario Canvas, the actor dimensions update to match the predefined dimensions of the actors
in the 3D simulation environment.

Preview how the scenario will look when you later recreate it in Simulink. On the app toolstrip, select
3D Display > View Simulation in 3D Display. After the 3D display window opens, click Run.

1-26

nnnnnnnn

® AutoVrtiEny (64-bit, PCD3D_SMS) -] ®

Driving Scenario Designer

Modify the vehicle and trajectory as needed. Avoid changing the road network or the actors that were
predefined in the scenario. Otherwise, the app scenario will not match the scenario that you later
recreate in Simulink. If you change the scenario, the 3D display window closes.

When you are done modifying the scenario, you can recreate it in a Simulink model for use in the 3D
simulation environment. For an example that shows how to set up such a model, see “Visualize
Sensor Data from Unreal Engine Simulation Environment”.

. “Create Driving Scenario Interactively and Generate Synthetic Sensor Data”

. “Create Reverse Motion Driving Scenarios Interactively”

. “Import OpenDRIVE Roads into Driving Scenario”

. “Import HERE HD Live Map Roads into Driving Scenario”

. “Import OpenStreetMap Data into Driving Scenario”

. “Generate Sensor Detection Blocks Using Driving Scenario Designer”

. “Test Open-Loop ADAS Algorithm Using Driving Scenario”

. “Test Closed-Loop ADAS Algorithm Using Driving Scenario”

Parameters

Roads — Road width, bank angle, lane specifications, and road center locations
tab

To enable the Roads parameters, add at least one road to the scenario. Then, select a road from
either the Scenario Canvas or the Road parameter. The parameter values in the Roads tab are
based on the road you select.

Parameter Description

Road Road to modify, specified as a list of the roads in
the scenario.

Name Name of road.

Width (m) Width of the road, in meters, specified as a

decimal scalar in the range (0, 50].

If the curvature of the road is too sharp to
accommodate the specified road width, the app
does not generate the road.

Default: 6

1-27

1 Apps

1-28

Parameter

Description

Bank Angle (deg)

Side-to-side incline of the road, in degrees,
specified as one of these values:

* Decimal scalar — Applies a uniform bank
angle along the entire length of the road

* N-element vector of decimal values — Applies
a different bank angle to each road center,
where N is the number of road centers in the
selected road

When you add an actor to a road, you do not have
to change the actor position to match the bank
angles specified by this parameter. The actor
automatically follows the bank angles of the road.

Default: 0

Lanes — Lane specifications, such as lane types and lane markings

tab section

Use these parameters to specify lane information, such as lane types and lane markings.

Parameter

Description

Number of lanes

Number of lanes in the road, specified as one of
these values:

* Integer, M, in the range [1, 30] — Creates an
M:-lane road whose default lane markings
indicate that the road is one-way.

* Two-element vector, [M N], where M and N
are positive integers whose sum must be in
the range [2, 30] — Creates a road with (M +
N) lanes. The default lane markings of this
road indicate that it is two-way. The first M
lanes travel in one direction. The next N lanes
travel in the opposite direction.

If you increase the number of lanes, the added
lanes are of the width specified in the Lane
Width (m) parameter. If Lane Width (m) is a
vector of differing lane widths, then the added
lanes are of the width specified in the last vector
element.

Driving Scenario Designer

Parameter

Description

Lane Width (m)

Width of each lane in the road, in meters,
specified as one of these values:

* Decimal scalar in the range (0, 50] — The
same width applies to all lanes.

* N-element vector of decimal values in the
range (0, 50] — A different width applies to
each lane, where N is the total number of
lanes specified in the Number of lanes
parameter.

The width of each lane must be greater than the
width of the lane markings it contains. These lane
markings are specified by the Marking > Width
(m) parameter.

Lane Types

Lanes in the road, specified as a list of the lane
types in the selected road. To modify one or more
lane parameters that include lane type, color, and
strength, select the desired lane from the drop-
down list.

Lane Types > Type

Type of lane, specified as one of these values:

* 'Driving' — Lanes for driving.
e 'Border' — Lanes at the road borders.

* 'Restricted' — Lanes reserved for high
occupancy vehicles.

'Shoulder' — Lanes reserved for emergency
stopping.

* 'Parking'— Lanes alongside driving lanes,
intended for parking vehicles.

Default: 'Driving'

1-29

1 Apps

1-30

Parameter

Description

Lane Types > Color

Color of lane, specified as an RGB triplet with
default values as:

Type Color (Default
values)

'Driving’ [0.8 0.8 0.8]

'Border' [0.72 0.72 0.72]

'Restricted’ [0.59 0.56 0.62]
'Shoulder' [0.59 00.59 0.59]
'Parking'’ [0.28 0.28 0.28]

Alternatively, you can also specify some common
colors as an RGB triplet, hexadecimal color code,
color name, or short color name. For more
information, see “Color Specifications for Lanes
and Markings” on page 1-69.

Lane Types > Strength

Saturation strength of lane color, specified as a
decimal scalar in the range [0, 1].

* A value of 0 specifies that the lane color is
fully unsaturated, resulting in a gray colored
lane.

* Avalue of 1 specifies that the lane color is
fully saturated, resulting in a true colored
lane.

Default: 1

Lane Markings

Lane markings, specified as a list of the lane
markings in the selected road. To modify one or
more lane marking parameters which include
marking type, color, and strength, select the
desired lane marking from the drop-down list.

A road with N lanes has (N + 1) lane markings.

Lane Markings > Specify multiple marker
types along a lane

Select this parameter to define composite lane
markings. A composite lane marking comprises
multiple marker types along a lane. The portion
of the lane marking that contains each marker
type is referred as a marker segment. For more
information on composite lane markings, see
Composite Lane Marking on page 1-72.

Driving Scenario Designer

Parameter

Description

Lane Markings > Number of Segments

Number of marker segments in a composite lane
marking, specified as an integer greater than or
equal to 2. A composite lane marking must have
at least two marker segments.

Default: 2
Dependencies

To enable this parameter, select the Specify
multiple marker types along a lane parameter.

Lane Markings > Segment Range

Normalized range for each marker segment in a
composite lane marking, specified as a row vector
of values in the range [0, 1].. The length of the
vector must be equal to the Number of
Segments parameter value.

Default: [0.5 0.5]
Dependencies

To enable this parameter, select the Specify
multiple marker types along a lane parameter.

Lane Markings > Marker Segment

Marker segments, specified as a list of marker
types in the selected lane marking. To modify one
or more marker segment parameters that include
marking type, color, and strength, select the
desired marker segment from the drop-down list.

Dependencies

To enable this parameter, select the Specify
multiple marker types along a lane parameter.

1-31

1 Apps

1-32

Parameter

Description

Lane Markings > Type

Type of lane marking, specified as one of these
values:

* Unmarked — No lane marking

* Solid — Solid line

* Dashed — Dashed line

* DoubleSolid — Two solid lines

* DoubleDashed — Two dashed lines

 SolidDashed — Solid line on left, dashed line
on right

* DashedSolid — Dashed line on left, solid line
on right

By default, for a one-way road, the leftmost lane
marking is a solid yellow line, the rightmost lane
marking is a solid white line, and the markings
for the inner lanes are dashed white lines. For
two-way roads, the default outermost lane
markings are both solid white lines and the
dividing lane marking is two solid yellow lines.

If you enable the Specify multiple marker
types along a lane parameter, then this value is
applied to the selected marker segment in a
composite lane marking.

Lane Markings > Color

Color of lane marking, specified as an RGB
triplet, hexadecimal color code, color name, or
short color name. For a lane marker specifying a
double line, the same color is used for both lines.

You can also specify some common colors as an
RGB triplet, hexadecimal color code, color name,
or short color name. For more information, see
“Color Specifications for Lanes and Markings” on
page 1-69.

If you enable the Specify multiple marker
types along a lane parameter, then this value is
applied to the selected marker segment in a
composite lane marking.

Driving Scenario Designer

Parameter

Description

Lane Markings > Strength

Saturation strength of lane marking color,
specified as a decimal scalar in the range [0, 1].

* Avalue of 0 specifies that the lane marking
color is fully unsaturated, resulting in a gray
colored lane marking.

* A value of 1 specifies that the lane marking
color is fully saturated, resulting in a true
colored lane marking.

For a lane marker specifying a double line, the
same strength is used for both lines.

Default: 1

If you enable the Specify multiple marker
types along a lane parameter, then this value is
applied to the selected marker segment in a
composite lane marking.

Lane Markings > Width (m)

Width of lane marking, in meters, specified as a
positive decimal scalar.

The width of the lane marking must be less than
the width of its enclosing lane. The enclosing lane
is the lane directly to the left of the lane marking.

For a lane marker specifying a double line, the
same width is used for both lines.

Default: 0.15

If you enable the Specify multiple marker
types along a lane parameter, then this value is
applied to the selected marker segment in a
composite lane marking.

Lane Markings > Length (m)

Length of dashes in dashed lane markings, in
meters, specified as a decimal scalar in the range
(0, 501.

For a lane marker specifying a double line, the
same length is used for both lines.

Default: 3

If you enable the Specify multiple marker
types along a lane parameter, then this value is
applied to the selected marker segment in a
composite lane marking.

1-33

1 Apps

1-34

Parameter

Description

Lane Markings > Space (m)

Length of spaces between dashes in dashed lane
markings, in meters, specified as a decimal scalar
in the range (0, 150].

For a lane marker specifying a double line, the
same space is used for both lines.

Default: 9

If you enable the Specify multiple marker
types along a lane parameter, then this value is
applied to the selected marker segment in a
composite lane marking.

Road Centers — Road center locations
tab section

Each row of the Road Centers table contains the x-, y-, and z-positions of a road center within the
selected road. All roads must have at least two unique road center positions. When you update a cell
within the table, the Scenario Canvas updates to reflect the new road center position. The
orientation of the road depends on the values of the road centers. The road centers specifies the
direction in which the road renders in the Scenario Canvas. For more information, see Draw
Direction of Road and Numbering of Lanes on page 1-69.

Parameter Description

x (m) x-axis position of the road center, in meters,
specified as a decimal scalar.

y (m) y-axis position of the road center, in meters,

specified as a decimal scalar.

Driving Scenario Designer

Parameter

Description

z (m)

z-axis position of the road center, in meters,
specified as a decimal scalar.

Default: 0

The z-axis specifies the elevation of the road.
If the elevation between road centers is too
abrupt, adjust these elevation values.

When you add an actor to a road, you do not
have to change the actor position to match
changes in elevation. The actor automatically
follows the elevation of the road.

When two elevated roads form a junction, the
elevation around that junction can vary widely.
The exact amount of elevation depends on
how close the road centers of each road are to
each other. If you try to place an actor at the
junction, the app might be unable to compute
the precise elevation of the actor. In this case,
the app cannot place the actor at that
junction.

To address this issue, in the Scenario
Canvas, modify the intersecting roads by
moving the road centers of each road away
from each other. Alternatively, manually adjust
the elevation of the actor to match the
elevation of the road surface.

Actors — Actor positions, orientations, RCS patterns, and trajectories

tab

To enable the Actors parameters, add at least one actor to the scenario. Then, select an actor from
either the Scenario Canvas or from the list on the Actors tab. The parameter values in the Actors

tab are based on the actor you select.

1-35

1 Apps

1-36

Parameter

Description

Color

To change the color of an actor, next to the actor selection list,
click the color patch for that actor.

Roads Actors

1: Car {ego vehicle) e H

Then, use the color picker to select one of the standard colors
commonly used in MATLAB graphics. Alternatively, select a

I'm
custom color from the Custom Colors tab by first clicking '"—
in the upper-right corner of the Color dialog box. You can then
select custom colors from a gradient or specify a color using an
RGB triplet, hexadecimal color code, or HSV triplet.

By default, the app sets each newly created actor to a new color.
This color order is based on the default color order of Axes
objects. For more details, see the ColorOrder property for
Axes objects.

To set a single default color for all newly created actors of a
specific class, on the app toolstrip, select Add Actor > Edit
Actor Classes. Then, select Set Default Color and click the
corresponding color patch to set the color. To select a default
color for a class, the Scenario Canvas must contain no actors of
that class.

Color changes made in the app are carried forward into Bird's-
Eye Scope visualizations.

Set as Ego Vehicle

Set the selected actor as the ego vehicle in the scenario.

When you add sensors to your scenario, the app adds them to the
ego vehicle. In addition, the Ego-Centric View and Bird's-Eye
Plot windows display simulations from the perspective of the
ego vehicle.

Only actors who have vehicle classes, such as Car or Truck, can
be set as the ego vehicle. The ego vehicle must also have a 3D
Display Type parameter value other than Cuboid.

For more details on actor classes, see the Class parameter
description.

Name

Name of actor.

Driving Scenario Designer

Parameter

Description

Class

Class of actor, specified as the list of classes to which you can
change the selected actor.

You can change the class of vehicle actors only to other vehicle
classes. The default vehicle classes are Car and Truck.
Similarly, you can change the class of nonvehicle actors only to
other nonvehicle classes. The default nonvehicle classes are
Pedestrian, Bicycle, and Barrier.

The list of vehicle and nonvehicle classes appear in the app
toolstrip, in the Add Actor > Vehicles and Add Actor > Other
sections, respectively.

Actors created in the app have default sets of dimensions, radar
cross-section patterns, and other properties based on their Class
ID value. The table shows the default Class ID values and actor
classes.

Class ID Actor Class
1 Car

2 Truck

3 Bicycle

4 Pedestrian
5 Barrier

To modify actor classes or create new actor classes, on the app
toolstrip, select Add Actor > Edit Actor Classes or Add Actor
> New Actor Class, respectively.

1-37

1 Apps

Parameter Description

3D Display Type Display type of actor as it appears in the 3D display window,
specified as the list of display types to which you can change the
selected actor.

To display the scenario in the 3D display window during
simulation, on the app toolstrip, click 3D Display > View
Simulation in 3D Display. The app renders this display by
using the Unreal Engine® from Epic Games®.

For any actor, the available 3D Display Type options depend on
the actor class specified in the Class parameter.

Actor Class 3D Display Type Options
Car * Sedan (default for Car
Truck class)

* Muscle Car

Custom vehicle class
e SUV

* Small Pickup Truck

* Hatchback

1 On the app toolstrip, select|, Box Truck (default for
Add Actor > New Actor Truck class)

Class.

2 In the Class Editor
window, select the Vehicle
parameter.

To create a custom vehicle
class:

e Cuboid (default for custom
vehicle classes)

3 Set other class properties
as needed and click OK.

Bicycle e Bicyclist (default for
Bicycle class)

Pedestrian

* Male Pedestrian (default

Barrier .
for Pedestrian class)

Custom nonvehicle class . Female Pedestrian

Barrier (default for

To create a custom nonvehicle

class: Barrier class)

1 On the app toolstrip, select * C“bOi‘?' (default for custom
Add Actor > New Actor nonvehicle classes)
Class.

2 In the Class Editor
window, clear the Vehicle
parameter.

3 Set other class properties
as needed and click OK.

If you change the dimensions of an actor using the Actor
Properties parameters, the app applies these changes in the
Scenario Canvas display but not in the 3D display. This case

1-38

Driving Scenario Designer

Parameter

Description

does not apply to actors whose 3D Display Type is set to
Barrier or Cuboid. The dimensions of these actors change in
both displays.

In the 3D display, actors of all other display types have
predefined dimensions. To use the same dimensions in both
displays, you can apply the predefined 3D display dimensions to
the actors in the Scenario Canvas display. On the app toolstrip,
under 3D Display, select Use 3D Simulation Actor
Dimensions.

Actor Properties — Actor properties, including position and orientation

tab section

Use these parameters to specify properties such as the position and orientation of an actor.

Parameter Description

Length (m) Length of actor, in meters, specified as a decimal
scalar in the range (0, 60].
For vehicles, the length must be greater than
(Front Overhang + Rear Overhang).

Width (m) Width of actor, in meters, specified as a decimal
scalar in the range (0, 20].

Height (m) Height of actor, in meters, specified as a decimal

scalar in the range (0, 20].

Front Overhang

Distance between the front axle and front
bumper, in meters, specified as a decimal scalar.

The front overhang must be less than (Length
(m) - Rear Overhang).

This parameter applies to vehicles only.

Default: 0.9

Rear Overhang

Distance between the rear axle and rear bumper,
in meters, specified as a decimal scalar.

The rear overhang must be less than (Length
(m) - Front Overhang).

This parameter applies to vehicles only.

Default: 1

1-39

1 Apps

Parameter Description

Roll (°) Orientation angle of the actor about its x-axis, in
degrees, specified as a decimal scalar.

Roll (°) is clockwise-positive when looking in the
forward direction of the x-axis, which points
forward from the actor.

When you export the MATLAB function of the
driving scenario and run that function, the roll
angles of actors in the output scenario are
wrapped to the range [-180, 180].

Default: 0

Pitch (°) Orientation angle of the actor about its y-axis, in
degrees, specified as a decimal scalar.

Pitch (°) is clockwise-positive when looking in
the forward direction of the y-axis, which points
to the left of the actor.

When you export the MATLAB function of the
driving scenario and run that function, the pitch
angles of actors in the output scenario are
wrapped to the range [-180, 180].

Default: 0

Yaw (°) Orientation angle of the actor about its z-axis, in
degrees, specified as a decimal scalar.

Yaw (°) is clockwise-positive when looking in the
forward direction of the z-axis, which points up
from the ground. However, the Scenario Canvas
has a bird's-eye-view perspective that looks in the
reverse direction of the z-axis. Therefore, when
viewing actors on this canvas, Yaw (°) is
counterclockwise-positive.

When you export the MATLAB function of the
driving scenario and run that function, the yaw
angles of actors in the output scenario are
wrapped to the range [-180, 180].

Default: 0

Radar Cross Section — RCS of actor
tab section

Use these parameters to manually specify the radar cross-section (RCS) of an actor. Alternatively, to
import an RCS from a file or from the MATLAB workspace, expand this parameter section and click
Import.

1-40

Driving Scenario Designer

Parameter

Description

Azimuth Angles (deg)

Horizontal reflection pattern of actor, in degrees,
specified as a vector of monotonically increasing
decimal values in the range [-180, 180].

Default: [-180 180]

Elevation Angles (degq)

Vertical reflection pattern of actor, in degrees,
specified as a vector of monotonically increasing
decimal values in the range [-90, 90].

Default: [-90 90]

Pattern (dBsm)

RCS pattern, in decibels per square meter,
specified as a Q-by-P table of decimal values. RCS
is a function of the azimuth and elevation angles,
where:

* Qs the number of elevation angles specified
by the Elevation Angles (deg) parameter.

* P is the number of azimuth angles specified by
the Azimuth Angles (deg) parameter.

Trajectory — Actor trajectories
tab section

Spawn and Despawn an Actor During Simulation

Parameter

Description

Actor spawn and despawn

Select this parameter to spawn or despawn an
actor in the driving scenario, while the simulation
is running. To enable this parameter, you must
first select an actor in the scenario by clicking on
the actor.

Specify values for the Entry Time(s) and Exit
Time(s) parameters to make the actor enter
(spawn) and exit (despawn) the scenario,
respectively.

Entry Time(s)

Specify the time at which an actor spawns into
the scenario during simulation. The entry time
must always be less than the exit time. Units are
in seconds. The default value for entry time is 0.

Exit Time(s)

Specify the time at which an actor despawns from
the scenario during simulation. The exit time
must always be greater than the entry time. Units
are in seconds. The default value for exit time is
Inf.

The values for the Entry Time(s) and Exit Time(s) parameters must be less than the entire
simulation time that is set by either the stop condition or the stop time. If you specify values for
Entry Time(s) and Exit Time(s) that are greater than the simulation duration, as determined by

1-41

1 Apps

either the set stop time or stop condition, then the actor will either not spawn or not despawn,
respectively

Use the Waypoints, Speeds, Wait Times, and Yaw table to manually set or modify the positions,
speeds, wait times, and yaw orientation angles of actors at their specified waypoints. When specifying
trajectories, to switch between adding forward and reverse motion waypoints, use the add forward

and reverse motion waypoint buttons . *“-P.

Parameter Description

Constant Speed (m/s) Default speed of actors as you add waypoints,
specified as a positive decimal scalar in meters
per second.

If you set specific speed values in the v (m/s)
column of the Waypoints, Speeds, Wait Times,
and Yaw table, then the app clears the Constant
Speed (m/s) value. If you then specify a new
Constant Speed (m/s) value, then the app sets
all waypoints to the new constant speed value.

The default speed of an actor varies by actor
class. For example, cars and trucks have a default
constant speed of 30 meters per second, whereas
pedestrians have a default constant speed of 1.5
meters per second.

1-42

Driving Scenario Designer

Parameter Description

Waypoints, Speeds, Wait Times, and Yaw Actor waypoints, specified as a table.

Each row corresponds to a waypoint and contains
the position, speed, and orientation of the actor
at that waypoint. The table has these columns.

* x (m) — World coordinate x-position of each
waypoint in meters.

* y (m) — World coordinate y-position of each
waypoint in meters.

* 7 (m) — World coordinate z-position of each
waypoint in meters.

* v (m/s) — Actor speed, in meters per second,
at each waypoint. By default, the app sets the
v (m/s) of newly added waypoints to the
Constant Speed (m/s) parameter value. To
specify a reverse motion between trajectories,
set v (m/s) to a negative value. Positive
speeds (forward motions) and negative speeds
(reverse motions) must be separated by a
waypoint with a speed of 0.

e wait (s) — Wait time for an actor, in seconds,
at each waypoint. When you set the wait time
to a positive value, the corresponding velocity
value v (m/s) resets to 0. You cannot set wait
times at consecutive waypoints along the
trajectory of an actor to positive values.

* yaw (°) — Yaw orientation angle of an actor,
in degrees, at each waypoint. Yaw angles are
counterclockwise-positive when looking at the
scenario from the top down. By default, the
app computes the yaw automatically based on
the specified trajectory. To constrain the
trajectory such that the vehicle has specific
orientations at certain waypoints, set the
desired yaw (°) values at those waypoints. To
restore a yaw back to its default value, right-
click the waypoint and select Restore
Default Yaw.

Sensors (Camera) — Camera sensor placement, intrinsic camera parameters, and
detection parameters
tab

To access these parameters, add at least one camera sensor to the scenario by following these steps:

1 On the app toolstrip, click Add Camera.

2 From the Sensors tab, select the sensor from the list. The parameter values in this tab are based
on the sensor you select.

1-43

1 Apps

1-44

Parameter Description

Enabled Enable or disable the selected sensor. Select this
parameter to capture sensor data during
simulation and visualize that data in the Bird's-
Eye Plot pane.

Name Name of sensor.

Update Interval (ms)

Frequency at which the sensor updates, in
milliseconds, specified as an integer multiple of
the app sample time defined under Settings, in
the Sample Time (ms) parameter.

The default Update Interval (ms) value of 100
is an integer multiple of the default Sample
Time (ms) parameter value of 10. When the
update interval is a multiple of the sample time, it
ensures that the app samples and displays the
detections found at these intervals during
simulation.

If you update the app sample time such that a
sensor is no longer a multiple of the app sample
time, the app prompts you with the option to
automatically update the Update Interval (ms)
parameter to the closest integer multiple.

Default: 100

Type

Type of sensor, specified as Radar for radar
sensors, Vision for camera sensors, or Lidar for
lidar sensors.

Sensor Placement — Camera position and orientation

tab section

Use these parameters to set the position and orientation of the selected camera sensor.

Parameter

Description

X (m)

X-axis position of the sensor in the vehicle
coordinate system, in meters, specified as a
decimal scalar.

The X-axis points forward from the vehicle. The
origin is located at the center of the vehicle's rear
axle.

Y (m)

Y-axis position of the sensor in the vehicle
coordinate system, in meters, specified as a
decimal scalar.

The Y-axis points to the left of the vehicle. The
origin is located at the center of the vehicle's rear
axle.

Driving Scenario Designer

Parameter

Description

Height (m)

Height of the sensor above the ground, in meters,
specified as a positive decimal scalar.

Default: 1.1

Roll (°)

Orientation angle of the sensor about its X-axis,
in degrees, specified as a decimal scalar.

Roll (°) is clockwise-positive when looking in the
forward direction of the X-axis, which points
forward from the sensor.

Default: 0

Pitch (°)

Orientation angle of the sensor about its Y-axis, in
degrees, specified as a decimal scalar.

Pitch (°) is clockwise-positive when looking in
the forward direction of the Y-axis, which points
to the left of the sensor.

Default: 1

Yaw (°)

Orientation angle of the sensor about its Z-axis,
in degrees, specified as a decimal scalar.

Yaw (°) is clockwise-positive when looking in the
forward direction of the Z-axis, which points up
from the ground. The Sensor Canvas has a
bird's-eye-view perspective that looks in the
reverse direction of the Z-axis. Therefore, when
viewing sensor coverage areas on this canvas,
Yaw (°) is counterclockwise-positive.

Camera Settings — Intrinsic camera parameters

tab section

Use these parameters to set the intrinsic parameters of the camera sensor.

Parameter

Description

Focal Length X

Horizontal point at which the camera is in focus,
in pixels, specified as a positive decimal scalar.

The default focal length changes depending on
where you place the sensor on the ego vehicle.

Focal Length Y

Vertical point at which the camera is in focus, in
pixels, specified as a positive decimal scalar.

The default focal length changes depending on
where you place the sensor on the ego vehicle.

1-45

1 Apps

Parameter Description

Image Width Horizontal camera resolution, in pixels, specified
as a positive integer.

Default: 640

Image Height Vertical camera resolution, in pixels, specified as
a positive integer.

Default: 480

Principal Point X Horizontal image center, in pixels, specified as a
positive decimal scalar.

Default: 320

Principal Point Y Vertical image center, in pixels, specified as a
positive decimal scalar.

Default: 240

Detection Parameters — Camera detection parameters
tab section

To view all camera detection parameters in the app, expand the Sensor Limits, Lane Settings, and
Accuracy & Noise Settings sections.

Parameter Description

Detection Type Type of detections reported by camera, specified
as one of these values:
* Objects — Report object detections only.

* Objects & Lanes — Report object and lane
boundary detections.

* Lanes — Report lane boundary detections
only.

Default: Objects

Detection Probability Probability that the camera detects an object,
specified as a decimal scalar in the range (0, 1].

Default: 0.9

False Positives Per Image Number of false positives reported per update
interval, specified as a nonnegative decimal
scalar. This value must be less than or equal to
the maximum number of detections specified in
the Limit # of Detections parameter.

Default: 0.1

1-46

Driving Scenario Designer

Parameter

Description

Limit # of Detections

Select this parameter to limit the number of
simultaneous object detections that the sensor
reports. Specify Limit # of Detections as a
positive integer less than 263,

To enable this parameter, set the Detection Type
parameter to Objects or Objects & Lanes.

Default: of f

Detection Coordinates

Coordinate system of output detection locations,
specified as one of these values:

* Ego Cartesian — The app outputs
detections in the coordinate system of the ego
vehicle.

* Sensor Cartesian — The app outputs
detections in the coordinate system of the
Sensor.

Default: Ego Cartesian

Sensor Limits

Parameter

Description

Max Speed (m/s)

Fastest relative speed at which the camera can
detect objects, in meters per second, specified as
a nonnegative decimal scalar.

Default: 100

Max Range (m)

Farthest distance at which the camera can detect
objects, in meters, specified as a positive decimal
scalar.

Default: 150

Max Allowed Occlusion

Maximum percentage of object that can be
blocked while still being detected, specified as a
decimal scalar in the range [0, 1).

Default: 0.5

Min Object Image Width

Minimum horizontal size of objects that the
camera can detect, in pixels, specified as positive
decimal scalar.

Default: 15

Min Object Image Height

Minimum vertical size of objects that the camera
can detect, in pixels, specified as positive decimal
scalar.

Default: 15

1-47

1 Apps

Lane Settings

Parameter Description

Lane Update Interval (ms) Frequency at which the sensor updates lane
detections, in milliseconds, specified as a decimal
scalar.

Default: 100

Min Lane Image Width Minimum horizontal size of objects that the
sensor can detect, in pixels, specified as a
decimal scalar.

To enable this parameter, set the Detection Type
parameter to Lanes or Objects & Lanes.

Default: 3

Min Lane Image Height Minimum vertical size of objects that the sensor
can detect, in pixels, specified as a decimal
scalar.

To enable this parameter, set the Detection Type
parameter to Lanes or Objects & Lanes.

Default: 20

Boundary Accuracy Accuracy with which the sensor places a lane
boundary, in pixels, specified as a decimal scalar.

To enable this parameter, set the Detection Type
parameter to Lanes or Objects & Lanes.

Default: 3

Limit # of Lanes Select this parameter to limit the number of lane
detections that the sensor reports. Specify Limit
of Lanes as a positive integer.

To enable this parameter, set the Detection Type
parameter to Lanes or Objects & Lanes.

Default: of f

1-48

Driving Scenario Designer

Accuracy & Noise Settings

Parameter

Description

Bounding Box Accuracy

Positional noise used for fitting bounding boxes to
targets, in pixels, specified as a positive decimal
scalar.

Default: 5

Process Noise Intensity (m/s”2)

Noise intensity used for smoothing position and
velocity measurements, in meters per second
squared, specified as a positive decimal scalar.

Default: 5

Has Noise

Select this parameter to enable adding noise to
Sensor measurements.

Default: of f

Sensors (Radar) — Radar sensor placement and detection parameters

tab

To access these parameters, add at least one radar sensor to the scenario.

1 On the app toolstrip, click Add Radar.

2 On the Sensors tab, select the sensor from the list. The parameter values changes based on the

sensor you select.

Parameter Description

Enabled Enable or disable the selected sensor. Select this
parameter to capture sensor data during
simulation and visualize that data in the Bird's-
Eye Plot pane.

Name Name of sensor.

1-49

1 Apps

Parameter

Description

Update Interval (ms)

Frequency at which the sensor updates, in
milliseconds, specified as an integer multiple of
the app sample time defined under Settings, in
the Sample Time (ms) parameter.

The default Update Interval (ms) value of 100
is an integer multiple of the default Sample
Time (ms) parameter value of 10. When the
update interval is a multiple of the sample time, it
ensures that the app samples and displays the
detections found at these intervals during
simulation.

If you update the app sample time such that a
sensor is no longer a multiple of the app sample
time, the app prompts you with the option to
automatically update the Update Interval (ms)
parameter to the closest integer multiple.

Default: 100

Type

Type of sensor, specified as Radar for radar
sensors, Vision for camera sensors, or Lidar for
lidar sensors.

Sensor Placement — Radar position and orientation

tab section

Use these parameters to set the position and orientation of the selected radar sensor.

Parameter

Description

X (m)

X-axis position of the sensor in the vehicle
coordinate system, in meters, specified as a
decimal scalar.

The X-axis points forward from the vehicle. The
origin is located at the center of the vehicle's rear
axle.

Y (m)

Y-axis position of the sensor in the vehicle
coordinate system, in meters, specified as a
decimal scalar.

The Y-axis points to the left of the vehicle. The
origin is located at the center of the vehicle's rear
axle.

Height (m)

Height of the sensor above the ground, in meters,
specified as a positive decimal scalar.

Default: 1.1

Driving Scenario Designer

Parameter Description

Roll (°) Orientation angle of the sensor about its X-axis,
in degrees, specified as a decimal scalar.

Roll (°) is clockwise-positive when looking in the
forward direction of the X-axis, which points
forward from the sensor.

Default: 0

Pitch (°) Orientation angle of the sensor about its Y-axis, in
degrees, specified as a decimal scalar.

Pitch (°) is clockwise-positive when looking in
the forward direction of the Y-axis, which points
to the left of the sensor.

Default: 1

Yaw (°) Orientation angle of the sensor about its Z-axis,
in degrees, specified as a decimal scalar.

Yaw (°) is clockwise-positive when looking in the
forward direction of the Z-axis, which points up
from the ground. The Sensor Canvas has a
bird's-eye-view perspective that looks in the
reverse direction of the Z-axis. Therefore, when
viewing sensor coverage areas on this canvas,
Yaw (°) is counterclockwise-positive.

Detection Parameters — Radar detection parameters
tab section

To view all radar detection parameters in the app, expand the Advanced Parameters and Accuracy
& Noise Settings sections.

Parameter Description

Detection Probability Probability that the radar detects an object,
specified as a decimal scalar in the range (0, 1].
Default: 0.9

False Alarm Rate Probability of a false detection per resolution

rate, specified as a decimal scalar in the range
[1le-07, 1e-03].
Default: 1e-06

Field of View Azimuth Horizontal field of view of radar, in degrees,
specified as a positive decimal scalar.

Default: 20

1-51

1 Apps

1-52

Parameter

Description

Field of View Elevation

Vertical field of view of radar, in degrees,
specified as a positive decimal scalar.

Default: 5

Max Range (m)

Farthest distance at which the radar can detect
objects, in meters, specified as a positive decimal
scalar.

Default: 150

Range Rate Min, Range Rate Max

Select this parameter to set minimum and
maximum range rate limits for the radar. Specify
Range Rate Min and Range Rate Max as
decimal scalars, in meters per second, where
Range Rate Min is less than Range Rate Max.

Default (Min): -100
Default (Max): 100

Has Elevation

Select this parameter to enable the radar to
measure the elevation of objects. This parameter
enables the elevation parameters in the
Accuracy & Noise Settings section.

Default: of f

Has Occlusion

Select this parameter to enable the radar to
model occlusion.

Default: on

Driving Scenario Designer

Advanced Parameters

Parameter

Description

Reference Range

Reference range for a given probability of
detection, in meters, specified as a positive
decimal scalar.

The reference range is the range at which the
radar detects a target of the size specified by
Reference RCS, given the probability of
detection specified by Detection Probability.

Default: 100

Reference RCS

Reference RCS for a given probability of
detection, in decibels per square meter, specified
as a nonnegative decimal scalar.

The reference RCS is the target size at which the
radar detects a target, given the reference range
specified by Reference Range and the
probability of detection specified by Detection
Probability.

Default: 0

Limit # of Detections

Select this parameter to limit the number of
simultaneous detections that the sensor reports.
Specify Limit # of Detections as a positive
integer less than 2.

Default: of f

Detection Coordinates

Coordinate system of output detection locations,
specified as one of these values:

* Ego Cartesian — The app outputs
detections in the coordinate system of the ego
vehicle.

* Sensor Cartesian — The app outputs
detections in the coordinate system of the
Sensor.

* Sensor spherical — The app outputs
detections in a spherical coordinate system.
This coordinate system is centered at the
radar and aligned with the orientation of the
radar on the ego vehicle.

Default: Ego Cartesian

1-53

1 Apps

Accuracy & Noise Settings

Parameter

Description

Azimuth Resolution

Minimum separation in azimuth angle at which
the radar can distinguish between two targets, in
degrees, specified as a positive decimal scalar.

The azimuth resolution is typically the 3 dB
downpoint in the azimuth angle beamwidth of the
radar.

Default: 4

Azimuth Bias Fraction

Maximum azimuth accuracy of the radar,
specified as a nonnegative decimal scalar.

The azimuth bias is expressed as a fraction of the
azimuth resolution specified by the Azimuth
Resolution parameter. Units are dimensionless.

Default: 0.1

Elevation Resolution

Minimum separation in elevation angle at which
the radar can distinguish between two targets, in
degrees, specified as a positive decimal scalar.

The elevation resolution is typically the 3 dB
downpoint in the elevation angle beamwidth of
the radar.

To enable this parameter, in the Detection
Parameters section, select the Has Elevation
parameter.

Default: 10

Elevation Bias Fraction

Maximum elevation accuracy of the radar,
specified as a nonnegative decimal scalar.

The elevation bias is expressed as a fraction of
the elevation resolution specified by the
Elevation Resolution parameter. Units are
dimensionless.

To enable this parameter, under Detection
Parameters, select the Has Elevation
parameter.

Default: 0.1

Range Resolution

Minimum range separation at which the radar
can distinguish between two targets, in meters,
specified as a positive decimal scalar.

Default: 2.5

Driving Scenario Designer

Parameter

Description

Range Bias Fraction

Maximum range accuracy of the radar, specified
as a nonnegative decimal scalar.

The range bias is expressed as a fraction of the
range resolution specified in the Range
Resolution parameter. Units are dimensionless.

Default: 0.05

Range Rate Resolution

Minimum range rate separation at which the
radar can distinguish between two targets, in
meters per second, specified as a positive decimal
scalar.

To enable this parameter, in the Detection
Parameters section, select the Range Rate
Min, Range Rate Max parameter and set the
range rate values.

Default: 0.5

Range Rate Bias Fraction

Maximum range rate accuracy of the radar,
specified as a nonnegative decimal scalar.

The range rate bias is expressed as a fraction of
the range rate resolution specified in the Range
Rate Resolution parameter. Units are
dimensionless.

To enable this parameter, under the Detection
Parameters section, select the Range Rate
Min, Range Rate Max parameter and set the
range rate values.

Default: 0.05

Has Noise

Select this parameter to enable adding noise to
Sensor measurements.

Default: of f

Has False Alarms

Select this parameter to enable false alarms in
sensor detections.

Default: of f

Sensors (Lidar) — Lidar sensor placement, point cloud reporting, and detection

parameters
tab

To access these parameters, add at least one lidar sensor to the scenario.

1 On the app toolstrip, click Add Lidar.

2 On the Sensors tab, select the sensor from the list. The parameter values change based on the

sensor you select.

1-55

1 Apps

1-56

When you add a lidar sensor to a scenario, the Bird's-Eye Plot and Ego-Centric View display the
mesh representations of actors. For example, here is a sample view of actor meshes on the Ego-
Centric View.

The lidar sensors use these more detailed representations of actors to generate point cloud data. The
Scenario Canvas still displays only the cuboid representations. The other sensors still base their
detections on the cuboid representations.

To turn off actor meshes, use the properties under Display on the app toolstrip. To modify the mesh
display types of actors, select Add Actor > Edit Actor Classes. In the Class Editor, modify the Mesh
Display Type parameter of that actor class.

Parameter Description

Enabled Enable or disable the selected sensor. Select this
parameter to capture sensor data during
simulation and visualize that data in the Bird's-
Eye Plot pane.

Name Name of sensor.

Driving Scenario Designer

Parameter

Description

Update Interval (ms)

Frequency at which the sensor updates, in
milliseconds, specified as an integer multiple of
the app sample time defined under Settings, in
the Sample Time (ms) parameter.

The default Update Interval (ms) value of 100
is an integer multiple of the default Sample
Time (ms) parameter value of 10. When the
update interval is a multiple of the sample time, it
ensures that the app samples and displays the
detections found at these intervals during
simulation.

If you update the app sample time such that a
sensor is no longer a multiple of the app sample
time, the app prompts you with the option to
automatically update the Update Interval (ms)
parameter to the closest integer multiple.

Default: 100

Type

Type of sensor, specified as Radar for radar
sensors, Vision for camera sensors, or Lidar for
lidar sensors.

Sensor Placement — Lidar position and orientation

tab section

Use these parameters to set the position and orientation of the selected lidar sensor.

Parameter

Description

X (m)

X-axis position of the sensor in the vehicle
coordinate system, in meters, specified as a
decimal scalar.

The X-axis points forward from the vehicle. The
origin is located at the center of the vehicle's rear
axle.

Y (m)

Y-axis position of the sensor in the vehicle
coordinate system, in meters, specified as a
decimal scalar.

The Y-axis points to the left of the vehicle. The
origin is located at the center of the vehicle's rear
axle.

Height (m)

Height of the sensor above the ground, in meters,
specified as a positive decimal scalar.

Default: 1.1

1-57

1 Apps

Parameter Description

Roll (°) Orientation angle of the sensor about its X-axis,
in degrees, specified as a decimal scalar.

Roll (°) is clockwise-positive when looking in the
forward direction of the X-axis, which points
forward from the sensor.

Default: 0

Pitch (°) Orientation angle of the sensor about its Y-axis, in
degrees, specified as a decimal scalar.

Pitch (°) is clockwise-positive when looking in
the forward direction of the Y-axis, which points
to the left of the sensor.

Default: 1

Yaw (°) Orientation angle of the sensor about its Z-axis,
in degrees, specified as a decimal scalar.

Yaw (°) is clockwise-positive when looking in the
forward direction of the Z-axis, which points up
from the ground. The Sensor Canvas has a
bird's-eye-view perspective that looks in the
reverse direction of the Z-axis. Therefore, when
viewing sensor coverage areas on this canvas,
Yaw (°) is counterclockwise-positive.

Point Cloud Reporting — Point cloud reporting parameters
tab section

Parameter Description

Detection Coordinates Coordinate system of output detection locations,
specified as one of these values:

* Ego Cartesian — The app outputs
detections in the coordinate system of the ego
vehicle.

* Sensor Cartesian — The app outputs
detections in the coordinate system of the
Sensor.

Default: Ego Cartesian

Output organized point cloud locations Select this parameter to output the generated
sensor data as an organized point cloud. If you
clear this parameter, the output is unorganized.

Default: on

1-58

Driving Scenario Designer

Parameter Description

Include ego vehicle in generated point cloud |Select this parameter to include the ego vehicle
in the generated point cloud.

Default: on

Include roads in generated point cloud Select this parameter to include roads in the
generated point cloud.

Default: of f

Detection Parameters — Lidar detection parameters
tab section

1-59

1 Apps

Sensor Limits

Parameter

Description

Max Range (m)

Farthest distance at which the lidar can detect
objects, in meters, specified as a positive decimal
scalar.

Default: 50

Range Accuracy (m)

Accuracy of range measurements, in meters,
specified as a positive decimal scalar.

Default: 0.002

Azimuth

Azimuthal resolution of the lidar sensor, in
degrees, specified as a positive decimal scalar.
The azimuthal resolution defines the minimum
separation in azimuth angle at which the lidar
can distinguish two targets.

Default: 1.6

Elevation

Elevation resolution of the lidar sensor, in
degrees, specified as a positive decimal scalar.
The elevation resolution defines the minimum
separation in elevation angle at which the lidar
can distinguish two targets.

Default: 1.25

Azimuthal Limits (deg)

Azimuthal limits of the lidar sensor, in degrees,
specified as a two-element vector of decimal
scalars of the form [min, max].

Default: [-45 45]

Elevation Limits (deg)

Elevation limits of the lidar sensor, in degrees,
specified as a two-element vector of decimal
scalars of the form [min, max].

Default: [-20 20]

Has Noise

Select this parameter to enable adding noise to
Sensor measurements.

Default: of f

Settings — Simulation sample time, stop condition, and stop time

dialog box

To access these parameters, on the app toolstrip, click Settings.

1-60

Driving Scenario Designer

Simulation Settings

Parameter

Description

Sample Time (ms)

Frequency at which the simulation updates, in
milliseconds.

Increase the sample time to speed up simulation.
This increase has no effect on actor speeds, even
though actors can appear to go faster during
simulation. The actor positions are just being
sampled and displayed on the app at less
frequent intervals, resulting in faster, choppier
animations. Decreasing the sample time results in
smoother animations, but the actors appear to
move slower, and the simulation takes longer.

The sample time does not correlate to the actual
time. For example, if the app samples every 0.1
seconds (Sample Time (ms) = 100) and runs for
10 seconds, the amount of elapsed actual time
might be less than the 10 seconds of elapsed
simulation time. Any apparent synchronization
between the sample time and actual time is
coincidental.

Default: 10

Stop Condition

Stop condition of simulation, specified as one of
these values:

* First actor stops — Simulation stops
when the first actor reaches the end of its
trajectory.

* Last actor stops — Simulation stops
when the last actor reaches the end of its
trajectory.

* Set time — Simulation stops at the time
specified by the Stop Time (s) parameter.

Default: First actor stops

Stop Time (s)

Stop time of simulation, in seconds, specified as a
positive decimal scalar.

To enable this parameter, set the Stop Condition
parameter to Set time.

Default: 0.1

1-61

1 Apps

1-62

Parameter Description

Use RNG Seed Select this parameter to use a random number
generator (RNG) seed to reproduce the same
results for each simulation. Specify the RNG seed
as a nonnegative integer less than 232,

Default: of f

Programmatic Use
drivingScenarioDesigner opens the Driving Scenario Designer app.

drivingScenarioDesigner(scenarioFileName) opens the app and loads the specified scenario
MAT-file into the app. This file must be a scenario file saved from the app. This file can include all
roads, actors, and sensors in the scenario. It can also include only the roads and actors component, or
only the sensors component.

If the scenario file is not in the current folder or not in a folder on the MATLAB path, specify the full
path name. For example:

drivingScenarioDesigner('C:\Desktop\myDrivingScenario.mat');

You can also load prebuilt scenario files. Before loading a prebuilt scenario, add the folder containing
the scenario to the MATLAB path. For an example, see “Generate Sensor Data from Scenario” on
page 1-18.

drivingScenarioDesigner(scenario) loads the specified drivingScenario object into the
app. The ClassID properties of actors in this object must correspond to these default Class ID
parameter values in the app:

e 1—_Car
e 2 —Truck
* 3 — Bicycle

* 4 — Pedestrian
e 5 — Barrier

When you create actors in the app, the actors with these Class ID values have a default set of
dimensions, radar cross-section patterns, and other properties. The camera and radar sensors
process detections differently depending on type of actor specified by the Class ID values.

When importing drivingScenario objects into the app, the behavior of the app depends on the
ClassID of the actors in that scenario.

» Ifan actor has a ClassID of 0, the app returns an error. In drivingScenario objects, a
ClassID of 0 is reserved for an object of an unknown or unassigned class. The app does not
recognize or use this value. Assign these actors one of the app Class ID values and import the
drivingScenario object again.

» If an actor has a nonzero ClassID that does not correspond to a Class ID value, the app returns
an error. Either change the ClassID of the actor or add a new actor class to the app. On the app
toolstrip, select Add Actor > New Actor Class.

Driving Scenario Designer

If an actor has properties that differ significantly from the properties of its corresponding Class
ID actor, the app returns a warning. The ActorID property referenced in the warning
corresponds to the ID value of an actor in the list at the top of the Actors tab. The ID value
precedes the actor name. To address this warning, consider updating the actor properties or its
ClassID value. Alternatively, consider adding a new actor class to the app.

drivingScenarioDesigner(,sensors) loads the specified sensors into the app, using any of
the previous syntaxes. Specify sensors as a radarDetectionGenerator object,
visionDetectionGenerator object, lLidarPointCloudGenerator object, or cell array of such
objects. If you specify sensors along with a scenario file that contains sensors, the app does not
import the sensors from the scenario file.

For an example of importing sensors, see “Import Programmatic Driving Scenario and Sensors” on
page 1-21.

Limitations

OpenStreetMap — Import Limitations

When importing OpenStreetMap data, road and lane features have these limitations:

Lane-level information is not imported from OpenStreetMap roads. Lane specifications are based
only on the direction of travel specified in the OpenStreetMap road network, where:

* One-way roads are imported as single-lane roads with default lane specifications. These lanes
are programmatically equivalent to Llanespec(1).

+ Two-way roads are imported as two-lane roads with bidirectional travel and default lane
specifications. These lanes are programmatically equivalent to lanespec([1 1]).

The table shows these differences in the OpenStreetMap road network and the road network in
the imported driving scenario.

OpenStreetMap Road Network Imported Driving Scenario

| |/

When importing OpenStreetMap road networks that specify elevation data, if elevation data is not
specified for all roads being imported, then the generated road network might contain
inaccuracies and some roads might overlap.

The basemap used in the app can have slight differences from the map used in the
OpenStreetMap service. Some imported road issues might also be due to missing or inaccurate
map data in the OpenStreetMap service. To check whether the data is missing or inaccurate due
to the map service, consider viewing the map data on an external map viewer.

If you receive a warning that the geometry of a road is unable to be computed, then the curvature
of the road is too sharp for it to render properly and it is not imported.

HERE HD Live Map — Import Limitations

1-63

1 Apps

1-64

When importing HERE HDLM data, these road and lane features are not supported:

* Lanes with varying widths — In the generated road network, each lane is set to have the
maximum width found along its entire length. Consider a HERE HDLM lane with a width that
varies from 2 to 4 meters along its length. In the generated road network, the lane width is 4
meters along its entire length.

* Roads with varying numbers of lanes along their lengths — In the generated road network, each
road is set to have the maximum number of lanes along its entire length. Consider a HERE HDLM
road with 3 lanes on one half and 2 lanes on the other half. In the generated road network, the
road has 3 lanes along its entire length.

* Multiple lane marking styles along a lane — In the generated road network, each lane is set to
have the marking style of the lane segment with the maximum width along the road. Consider a
HERE HDLM lane with 2 lane segments. The first lane segment is 2 meters wide and has solid
markings. The second lane segment is 4 meters wide and has dashed markings. In the generated
road network, the lane has a fixed width of 4 meters throughout and dashed markings along its
entire length.

These modifications to the road networks can sometimes cause roads to overlap in the driving
scenario. Consider the HERE HDLM roads for the divided highway highlighted in blue in the table.
Due to the unsupported features, in the imported driving scenario, the lane widths of the roads
increase. This limitation causes the roads to overlap and appear as one road. Sensors that detect
lanes are unable to detect the covered lanes.

HERE HDLM Road Network Imported Driving Scenario

If you receive a warning that the geometry of a road is unable to be computed, then the curvature of
the road is too sharp for it to render properly and it is not imported.

In addition to the unsupported features, the basemap used in the app might have slight differences
from the map used in the HERE HDLM service. Some issues with the imported roads might also be
due to missing or inaccurate map data in the HERE HDLM service. To check where the issue stems
from in the map data, use the HERE HD Live Map Viewer to view the geometry of the HERE HDLM

Driving Scenario Designer

road network. This viewer requires a valid HERE license. For more details, see the HERE
Technologies website.

HERE HD Live Map — Route Selection Limitations

When selecting HERE HD Live Map roads to import from a region of interest, the maximum allowable
size of the region is 20 square kilometers. If you specify a driving route that is greater than 20 square
kilometers, the app draws a region that is optimized to fit as much of the beginning of the route as
possible into the display. This figure shows an example of a region drawn around the start of a route
that exceeds this maximum size.

11 km

ElSEA

1mi =
E=ri, HERE, NP5

OpenDRIVE Import Limitations

You can import only lanes, lane type information, and roads. The import of road objects and traffic
signals is not supported.

OpenDRIVE files containing large road networks can take up to several minutes to load. In
addition, these road networks can cause slow interactions on the app canvas. Examples of large
road networks include ones that model the roads of a city or ones with roads that are thousands of
meters long.

Lanes with variable widths are not supported. The width is set to the highest width found within
that lane. For example, if a lane has a width that varies from 2 meters to 4 meters, the app sets
the lane width to 4 meters throughout.

Roads with lane type information specified as driving, border, restricted, shoulder, and
parking are supported. Lanes with any other lane type information are imported as border lanes.

Roads with multiple lane marking styles specified as 'Unmarked', 'Solid', 'DoubleSolid",
'Dashed', 'DoubleDashed', 'SolidDashed', and 'DashedSolid' are supported.

Lane marking styles Bott Dots, Curbs, and Grass are not supported. Lanes with these marking
styles are imported as unmarked.

Euro NCAP Limitations

1-65

https://www.here.com
https://www.here.com

1 Apps

1-66

» Scenarios of speed assistance systems (SAS) are not supported. These scenarios require the
detection of speed limits from traffic signs, which the app does not support.

3D Display Limitations

These limitations describe how 3D Display visualizations differ from the cuboid visualizations that
appear on the Scenario Canvas.

* Roads do not form junctions with unmarked lanes at intersections. The roads and their lane
markings overlap.

* Not all actor or lane marking colors are supported. The 3D display matches the selected color to
the closest available color that it can render.

* Lane type colors of nondriving lanes are not supported. If you select a nondriving lane type, in the
3D display, the lane displays as a driving lane.

* On the Actors tab, specified Roll (°) and Pitch (°) parameter values of an actor are ignored. In
the Waypoints table, z (m) values (that is, elevation values) are also ignored. During simulation,
actors follow the elevation and banking angle of the road surface.

* Multiple marking styles along a lane are not supported. The 3D display applies the first lane
marking style of the first lane segment along the entire length of the lane.

» Actors with a 3D Display Type of Cuboid do not move in the 3D display. During simulation, these
actors remain stationary at their initial specified positions.

More About

Actor and Vehicle Positions and Dimensions

In driving scenarios, an actor is a cuboid (box-shaped) object with a specific length, width, and
height. Actors also have a radar cross-section (RCS) pattern, specified in dBsm, which you can refine
by setting angular azimuth and elevation coordinates. The position of an actor is defined as the center
of its bottom face. This center point is used as the actor's rotational center, its point of contact with
the ground, and its origin in its local coordinate system. In this coordinate system:

* The X-axis points forward from the actor.
* The Y-axis points left from the actor.
* The Z-axis points up from the ground.

Roll, pitch, and yaw are clockwise-positive when looking in the forward direction of the X-, Y-, and Z-
axes, respectively.

Driving Scenario Designer

Actor

S o
X ;

Y
r'y

=]

®

EI pitch L'X_
v |V <] yoli

|

: length

| .
L..i,ll position
I
I

A vehicle is an actor that moves on wheels. Vehicles have three extra properties that govern the
placement of their front and rear axle.

* Wheelbase — Distance between the front and rear axles

* Front overhang — Distance between the front of the vehicle and the front axle

* Rear overhang — Distance between the rear axle and the rear of the vehicle

Unlike other types of actors, the position of a vehicle is defined by the point on the ground that is
below the center of its rear axle. This point corresponds to the natural center of rotation of the
vehicle. As with nonvehicle actors, this point is the origin in the local coordinate system of the
vehicle, where:

* The X-axis points forward from the vehicle.

» The Y-axis points left from the vehicle.

* The Z-axis points up from the ground.

Roll, pitch, and yaw are clockwise-positive when looking in the forward direction of the X-, Y-, and Z-
axes, respectively.

1-67

1 Apps

1-68

Vehicle

o Z
\> y vawc
a0
S
-
A
e
-
E | = —
N I . | T2 (/ |/{]
v X ol \.L#p.w
= < blrl—'if— > ~ position
' front wheelbase | vear |
joverhang| Ioverhang ||
| ! |
l |
| < >
I length ‘I

The origin (that is, the position) of cuboid vehicles differs from the origin of vehicles in the 3D
simulation environment. In the 3D simulation environment, vehicle origins are on the ground, at the

geometric center of the vehicle.

Cuboid Vehicle Origin

3D Simulation Vehicle Origin

[

For nonvehicle actors, the origins are identical and located at the bottom of the geometric center of

the actors.

Driving Scenario Designer

In Simulink, to convert a vehicle from the cuboid origin to the 3D simulation origin, use a Cuboid To
3D Simulation block. For more details about 3D simulation coordinates, see “Coordinate Systems for
Unreal Engine Simulation in Automated Driving Toolbox”.

Color Specifications for Lanes and Markings

This table lists the named color options, the equivalent RGB triplets, and hexadecimal color codes
that you can use for specifying the color of lanes and markings in a road.

Color Name |Short Name |RGB Triplet Hexadecimal Appearance
Color Code

red r [1 0 0] #FFOO00 —
green g [0 1 0] #0OFFOO

blue b [0 0 1] #000OFF ——
cyan C [0 1 1] #OOFFFF

magenta m [1 0 1] #FFOOFF I
yellow y [0.98 0.86 #FADB5C

0.36]

black k [0 0 0] #000000 E—
white w [11 1] #FFFFFF]

Draw Direction of Road and Numbering of Lanes

To create a road by using the road function, specify the road centers as a matrix input. The function
creates a directed line that traverses the road centers, starting from the coordinates in the first row
of the matrix and ending at the coordinates in the last row of the matrix. The coordinates in the first
two rows of the matrix specify the draw direction of the road. These coordinates correspond to the
first two consecutive road centers. The draw direction is the direction in which the roads render in
the scenario plot.

To create a road by using the Driving Scenario Designer app, you can either specify the Road
Centers parameter or interactively draw on the Scenario Canvas. For a detailed example, see
“Create a Driving Scenario” on page 1-14. In this case, the draw direction is the direction in which
roads render in the Scenario Canvas.

* For a road with a top-to-bottom draw direction, the difference between the x-coordinates of the
first two consecutive road centers is positive.

* For a road with a bottom-to-top draw direction, the difference between the x-coordinates of the
first two consecutive road centers is negative.

1-69

1 Apps

20 ¢

18

16 1

14

12 |

X (m)

-2

Draw Direction : Top-to-Bottom o0 Draw Direction : Bottom-to-Top
' Road Center 1~ _ _ 18 | Road Center 2~ _ _
16 |
14
Left
T :_.Ej: Leftedge >
12 1 of the road
E, 10
x 8t
R L 6 L R
4t
2 =
L - Left|l 0 »>o L - Leftllane
ST o S o — =
Road Center 2- ~ PR Road Center 1- ~ R - Right lane
. . . . 2L . .
20 15 10 5 20 15 10 9 0
Y (m) Y (m)

1-70

For a road with a left-to-right draw direction, the difference between the y-coordinates of the first

two consecutive road centers is positive.

For a road with a right-to-left draw direction, the difference between the y-coordinates of the first

two consecutive road centers is negative.

Driving Scenario Designer

X (m)

20

18 |

16|

14

12

10

Draw Direction : Left-to-Right

L-Lel
R - Ri
Left edge of the road
L
'l.'II R
.
l".
1)
Road Center 1 Road C
20 15 10 5
Y (m)

Draw Direction : Right-to-Left

L - Left lane
R - Right lane
R
.II'I| L ji
5 i
\ T [
L1 ¥
Y i
Road Center 2 - Road Center {
Left edge of the road
20 15 10 5
Y (m)

Numbering Lanes

Lanes must be numbered from left to right, with the left edge of the road defined relative to the draw
direction of the road. For a one-way road, by default, the left edge of the road is a solid yellow
marking which indicates the end of the road in transverse direction (direction perpendicular to draw
direction). For a two-way road, by default, both edges are marked with solid white lines.

For example, these diagrams show how the lanes are numbered in a one-way and two-way road with a

draw direction from top-to-bottom.

Numbering Lanes in a One-Way Road

Numbering Lanes in a Two-Way Road

1-71

1 Apps

1-72

Specify the number of lanes as a positive integer

for a one-way road. If you set the integer value as
3, then the road has three lanes that travel in the
same direction. The lanes are numbered starting

from the left edge of the road.

1, 2, 3 denote the first, second, and third lanes of
the road, respectively.

Specify the number of lanes as a two-element
vector of positive integer for a two-way road. If
you set the vector as [1 2], then the road has
three lanes: two lanes traveling in one direction
and one lane traveling in the opposite direction.
Because of the draw direction, the road has one
left lane and two right lanes. The lanes are
numbered starting from the left edge of the road.

1L denote the only left lane of the road. 1R and

The lane specifications apply by the order in which

Composite Lane Marking

the lanes are numbered.

A composite lane marking comprises two or more marker segments that define multiple marking
types along a lane. The geometric properties for a composite lane marking include the geometric
properties of each marking type and the normalized lengths of the marker segments.

The order in which the specified marker segments occur in a composite lane marking depends on the
draw direction of the road. Each marker segment is a directed segment with a start point and moves
towards the last road center. The first marker segment starts from the first road center and moves

towards the last road center for a specified length.

The second marker segment starts from the end

point of the first marker segment and moves towards the last road center for a specified length. The

2R denote the first and second right lanes of the
Road Center 1~ - _ road, respectively.
25 e il
3 2 1 Road Center 1~ . _
20 25 el
o 2R 1R 1L
E s 20
e
-
10| E 15
= Left edge
< 9
of the road
5 f 10 1
Road Center 2-~
10 5 0 -5 5
Y (m) - >
Road Center 2-
10 5 0 -5 -10

Driving Scenario Designer

same process applies for each marker segment that you specify for the composite lane marking. You
can set the normalized length for each of these marker segments by specifying the range input
argument.

For example, consider a one-way road with two lanes. The second lane marking from the left edge of
the road is a composite lane marking with marking types Solid and Dashed. The normalized range
for each marking type is 0.5. The first marker segment is a solid marking and the second marker
segment is a dashed marking. These diagrams show the order in which the marker segments apply
for left-to-right and right-to-left draw directions of the road.

20 ¢ Draw Direction : Left-to-Righ o Draw Direction : Right-to-Left
18 18
16 16
14 r 14

Left edge of the road

12 ¢ 12 |

E 10 E 10
> 8 > 8 ;
| A f
B \ 6 \ i
ki kY i
% L !
4 X 4r L) !
A v 4
o Road Center 1 Road 2| Road Center 2 Road Center 1
Or Or Left edge of the road
2 : : : 2 : ; :
20 15 10 5 20 15 10 5
Y (m) Y (m)

For information on the geometric properties of lane markings, see “Lane Specifications” on page 4-
502.

Tips

* When importing map data, the map regions you specify and the number of roads you select have a
direct effect on app performance. To improve performance, specify the smallest map regions and
select the fewest roads that you need to create your driving scenario.

* You can undo (press Ctrl+Z) and redo (press Ctrl+Y) changes you make on the scenario and
sensor canvases. For example, you can use these shortcuts to delete a recently placed road center
or redo the movement of a radar sensor. For more shortcuts, see “Keyboard Shortcuts and Mouse
Actions for Driving Scenario Designer”

* In scenarios that contain many actors, to keep track of the ego vehicle, you can add an indicator
around the vehicle. On the app toolstrip, select Display > Show ego indicator. The circle around

1-73

1 Apps

the ego vehicle highlights the location of the vehicle in the scenario. This circle is not a sensor
coverage area.

Compatibility Considerations

Corrections to Image Width and Image Height camera parameters of Driving Scenario
Designer
Behavior changed in R2018b

Starting in R2018b, in the Camera Settings group of the Driving Scenario Designer app, the
Image Width and Image Height parameters set their expected values. Previously, Image Width
set the height of images produced by the camera, and Image Height set the width of images
produced by the camera.

If you are using R2018a, to produce the expected image sizes, transpose the values set in the Image
Width and Image Height parameters.

References

[1] European New Car Assessment Programme. Euro NCAP Assessment Protocol - SA. Version 8.0.2.
January 2018.

[2] European New Car Assessment Programme. Euro NCAP AEB C2C Test Protocol. Version 2.0.1.
January 2018.

[3] European New Car Assessment Programme. Euro NCAP LSS Test Protocol. Version 2.0.1. January
2018.

[4] Dupuis, Marius, et al. OpenDRIVE Format Specification. Revision 1.4, Issue H, Document No.
VI2014.106. Bad Aibling, Germany: VIRES Simulationstechnologie GmbH, November 4, 2015.

See Also

Apps
Bird's-Eye Scope

Blocks
Lidar Point Cloud Generator | Radar Detection Generator | Scenario Reader | Vision Detection
Generator

Objects
drivingScenario | lidarPointCloudGenerator | radarDetectionGenerator |
visionDetectionGenerator

Driving Scenario Designer

Topics

“Create Driving Scenario Interactively and Generate Synthetic Sensor Data
“Create Reverse Motion Driving Scenarios Interactively”

“Import OpenDRIVE Roads into Driving Scenario”

“Import HERE HD Live Map Roads into Driving Scenario”

“Import OpenStreetMap Data into Driving Scenario”

“Generate Sensor Detection Blocks Using Driving Scenario Designer”
“Test Open-Loop ADAS Algorithm Using Driving Scenario”

“Test Closed-Loop ADAS Algorithm Using Driving Scenario”

“Keyboard Shortcuts and Mouse Actions for Driving Scenario Designer”
“Prebuilt Driving Scenarios in Driving Scenario Designer”

”

External Websites

Euro NCAP Safety Assist Protocols
ASAM OpenDRIVE

HERE Technologies
openstreetmap.org

Introduced in R2018a

1-75

https://www.euroncap.com/en/for-engineers/protocols/safety-assist/
https://www.asam.net/standards/detail/opendrive/
https://www.here.com
https://www.openstreetmap.org/

1 Apps

1-76

Ground Truth Labeler

Label ground truth data for automated driving applications

Description

The Ground Truth Labeler app enables you to label ground truth data in multiple videos, image
sequences, or lidar point clouds.

Using the app, you can:

Simultaneously label multiple time-overlapped signals representing the same scene.

Define rectangular region of interest (ROI) labels, polyline ROI labels, pixel ROI labels, cuboid ROI
labels for lidar labeling, and scene label definitions. Use these labels to interactively label your
ground truth data.

Use built-in detection or tracking algorithms to label ground truth data.
Write, import, and use custom automation algorithms to automatically label ground truth data.
Evaluate the performance of your label automation algorithms by using a visual summary.

Export the ground truth labels as a groundTruthMultisignal object. You can use this object for
system verification or for training an object detector or semantic segmentation network.

Display time-synchronized signals, such as CAN bus data, by using the
driving.connector.Connector APIL

To learn more about this app, see “Get Started with the Ground Truth Labeler”.

Ground Truth Labeler

4\ Ground Truth Labeler — O X
LIDAR coelsEd B9 ol@e
)] R i Bird's Eve Vi
@5 @ oy Colormap |Red to blue s 2‘;_)) g S Ego Direction
2 Chase View
Hide | Ground Shnr.\k Snap to Clu.ster Colormap Value [Z Height = Restn@ = v
Ground | Settings | to Fit | Cluster Settings 0 Default View @ Ego View
GROUND CUBOID COLORMAP CAMERA VIEW
| ROl Labels Scene Labels video_01_city_c2s_fow_10s [lidarSequence Attributes and Sublabels
q‘.]]ﬁg(b »_='?,_, Signal Name : lidarSequence
Label Sublabel Adtribute car
+ Vehicles £ ERLAE S,
b car Oog
» brakeLight O
b truck OB
Pl |
Sublabels
brakeLight
1 O r
00.00000 08.83070 1020001 10.20001 (1] (] | 1] o]} o] N Zoom in-Time Intarval
Start Time Current End Time Max Time 4 | i

Open the Ground Truth Labeler App

MATLAB Toolstrip: On the Apps tab, under Autometive, click the app icon.
MATLAB command prompt: Enter groundTruthLabeler.

Examples

“Get Started with the Ground Truth Labeler”

“Automate Ground Truth Labeling of Lane Boundaries”

“Automate Ground Truth Labeling for Semantic Segmentation”

“Automate Attributes of Labeled Objects”

“Evaluate Lane Boundary Detections Against Ground Truth Data”
“Evaluate and Visualize Lane Boundary Detections Against Ground Truth”

Programmatic Use

groundTruthLabeler opens a new session of the app, enabling you to label ground truth data.

groundTruthLabeler(videoFileName) opens the app and loads the input video. The video file
must have an extension supported by VideoReader.

1-77

1 Apps

1-78

Example: groundTruthLabeler('caltech cordoval.avi')

groundTruthLabeler(imageSeqFolder) opens the app and loads the image sequence from the
input folder. An image sequence is an ordered set of images that resembles a video.

imageSeqFolder must be a string scalar or character vector that specifies the folder containing the
image files. The image files must have extensions supported by imformats and are loaded in the
order returned by the dir function.

The images in imageSeqFolder must be the same size. If the images vary in size, the app imports
only the images that are of the same size as the first image in the sequence. To label a collection of
unordered images that vary in size, use the Image Labeler app instead.

groundTruthLabeler(imageSeqFolder,timestamps) opens the app and loads a sequence of
images with their corresponding timestamps. timestamps must be a duration vector of the same
length as the number of images in the sequence.

For example, load a sequence of road images and their corresponding timestamps into the app.

imageDir = fullfile(toolboxdir('driving'), 'drivingdata', 'roadSequence');
load(fullfile(imageDir, 'timeStamps.mat'))
groundTruthLabeler(imageDir,timeStamps)

groundTruthLabeler(, 'ConnectorTargetHandle', connector) opens the app and loads
both of these components:

* Avideo or image sequence signal, depending on the input argument combination you specify

* An external analysis or visualization tool that is time-synchronized with the specified signal

The connector input is a handle to a driving.connector.Connector class that implements the
external tool.

For example, this syntax opens the app with a video signal and synchronized lidar visualization tool.

groundTruthLabeler('01 city c2s fcw 10s.mp4', 'ConnectorTargetHandle',@LidarDisplay);
When you have an external tool connected to a signal in the app, consider these tips.

+ Ifyou remove the signal that is connected to the tool, the app disconnects the tool and closes it.

* The signal connected to the tool must be the master signal, that is, the signal whose timestamps
are used in the playback controls at the bottom of the app. If you change the master signal, the
app disconnects the tool and closes it.

* Ifyou start a new app session, the app disconnects the tool and closes it.

groundTruthLabeler(sessionFile) opens the app and loads a saved app session,
sessionFile. The sessionFile input contains the path and file name. The MAT-file that
sessionFile points to contains the saved session.

Limitations

» Lidar signals do not support line or pixel ROI labels.
» Pixel ROI labels do not support sublabels or attributes.
* Cuboid ROI labels do not support sublabels.

Ground Truth Labeler

e The Label Summary window does not support sublabels or attributes

More About
ROI Labels, Sublabels, and Attributes

On the left side of the app, the ROI Labels pane contains the region of interest (ROI) label definitions
that you can mark on the frames. You can create label definitions directly from this pane.
Alternatively, you can create label definitions programmatically by using a
labelDefinitionCreatorMultisignal object and then import these label definitions into an app

session.
The app supports the definition of ROI labels, sublabels, and attributes.
ROI Labels

An ROI label is a label that corresponds to a region of interest (ROI) in a signal frame. The table
describes the supported label types.

ROI Label Description Example: Driving Scene

Projected cuboid Draw cuboidal ROI labels (3-D
bounding boxes).

1-79

1 Apps

1-80

ROI Label

Description

Example: Driving Scene

Rectangle/Cuboid

Draw rectangular or cuboidal
ROI labels around objects,
depending on the signal type.

* Inimage signals, draw
rectangular ROI labels (2-D
bounding boxes).

* In lidar signals, draw
cuboidal ROI labels (3-D
bounding boxes). For more
on lidar labeling, see “Label
Lidar Point Clouds for Object
Detection”.

Vehicles, pedestrians, road signs

Rectangle:

Line

Draw linear ROI labels to
represent lines. To draw a
polyline ROI, use two or more
points.

Lane boundaries, guard rails,
road curbs

Ground Truth Labeler

ROI Label

Description

Example: Driving Scene

Pixel label

Assign labels to pixels for
semantic segmentation. You can
label pixels manually using
polygons, brushes, or flood fill.
For more on pixel labeling, see
“Label Pixels for Semantic
Segmentation” (Computer
Vision Toolbox).

Vehicles, road surface, trees,
pavement

ROI Sublabels

An ROI sublabel is an ROI label that belongs to a parent label. Use ROI sublabels to provide a greater
level of detail about the ROIs in your labeled ground truth data. For example, a vehicle label might
contain headlight, licensePlate, and wheel sublabels. You can create sublabels only for rectangular
and polyline labels. For more details about sublabels, see “Use Sublabels and Attributes to Label
Ground Truth Data” (Computer Vision Toolbox).

ROI Attributes

An ROI attribute specifies additional information about an ROI label or sublabel. For example, in a
driving scene, attributes might include the type or color of a vehicle. The table describes the

supported attribute types.

Attribute Type

Sample Attribute Definition

Sample Default Values

Numeric Value

Attribute Name

numboors

Default Scalar Value (Optional)
4

String

Aftribute Name

color String

Default Value (Optional)

Logical

Afttribute Mame

inMotion Logic4

Default Walue (Cptional)

True

<

1-81

1 Apps

1-82

Attribute Type Sample Attribute Definition |Sample Default Values
Liiert Attribute Mame ublabels |_
carType List w
List tems (Each item must appear on a new line}
Sedan rs
Hatchback
Wagon
Missan
W
inMotion True
color Blue
numDoors 4
carType Sedan
Sedan
Wagan

For more details about attributes, see “Use Sublabels and Attributes to Label Ground Truth Data”
(Computer Vision Toolbox).

Tips

* To avoid having to relabel ground truth with new labels, organize the labeling scheme you want to
use before marking your ground truth.

* You can copy and paste labels between signals that are of the same type.

Algorithms

You can use label automation algorithms to speed up labeling within the app. To create your own
label automation algorithm to use within the app, see “Create Automation Algorithm for Labeling”
(Computer Vision Toolbox). You can also use one of the provided built-in algorithms. Follow these
steps:

Load the data you want to label, and create at least one label definition.

2 On the app toolstrip, click Select Algorithm, and select one of the built-in automation
algorithms.

3 Click Automate, and then follow the automation instructions in the right pane of the automation
window.

Ground Truth Labeler

ACF Vehicle Detector

Detect and label vehicles using aggregate channel features (ACF). This algorithm is based on the
vehicleDetectorACF function. To use this algorithm, you must define at least one rectangle ROI
label. You do not need to draw any ROI labels.

To help improve the algorithm results, first click Settings. You can change any of these settings.

* The pretrained vehicle detector model that the algorithm uses — The ' full-view' model was
trained using unoccluded images of the front, rear, left, and right sides of vehicles. The ' front-
rear-view' model was trained using images of only the front and rear sides of the vehicle.

* The overlap ratio threshold, from 0 to 1, for detecting vehicles — When rectangle ROIs overlap by
more than this threshold, the algorithm discards one of the ROIs.

* The classification score threshold for detecting vehicles — Increase the score to increase the
prediction confidence of the algorithm. Rectangles with scores below this threshold are discarded.

You can also configure the detector with a calibrated monocular camera by importing a monoCamera
object into the MATLAB workspace. Specify the length and width ranges of the vehicle in world units,
such as meters.

ACF People Detector

Detect and label people using aggregate channel features (ACF). This algorithm is based on the
peopleDetectorACF function. To use this algorithm, you must define at least one rectangle ROI
label. You do not need to draw any ROI labels.

To help improve the algorithm results, first click Settings. You can change any of these settings.

* The pretrained people detector model that the algorithm uses — The 'inria-100x41' model
was trained using the INRIA person data set. The 'caltech-50x21"' model was trained using the
Caltech Pedestrian data set.

* The overlap ratio threshold, from 0 to 1, for detecting people — When rectangle ROIs overlap by
more than this threshold, the algorithm discards one of the ROIs.

» The classification score threshold for detecting people — Increase the score to increase the
prediction confidence of the algorithm. Rectangles with scores below this threshold are discarded.

Point Tracker

Track and label one or more rectangle ROI labels over short intervals by using the Kanade-Lucas-
Tomasi (KLT) algorithm. This algorithm is based on the vision.PointTracker System object™. To
use this algorithm, you must define at least one rectangle ROI label, but you do not need to draw any
ROI labels.

To change the feature detector used to obtain the initial points for tracking, click Settings. This table
shows the feature detector options.

Feature Detector Description Equivalent Function

Minimum Eigen Value Detect corners by using the detectMinEigenFeatures
minimum eigenvalue algorithm.

Harris Detect corners by using the detectHarrisFeatures
Harris-Stephens algorithm.

1-83

1 Apps

1-84

Feature Detector Description Equivalent Function

FAST Detect corners by using the detectFASTFeatures
features from accelerated
segment test (FAST) algorithm.

BRISK Detect features by using the detectBRISKFeatures
binary robust invariant scalable
keypoints (BRISK) algorithm.

KAZE Detect features by using detectKAZEFeatures
nonlinear diffusion to construct
a scale space of an image, and
then detecting multiscale corner
features (KAZE features) from
that scale space.

SURF Detect blob features by using detectSURFFeatures
the speeded-up robust features
(SURF) algorithm.

MSER Detect regions by using the detectMSERFeatures
maximally stable extremal

regions (MSER) algorithm.

Temporal Interpolator

Estimate rectangle ROIs between frames by interpolating the ROI locations across the time interval.
To use this algorithm, you must draw a rectangle ROI on a minimum of two frames: one at the
beginning of the interval and one at the end of the interval. The interpolation algorithm estimates and
draws ROIs in the intermediate frames.

Consider a video with 10 frames. The first frame has a rectangle ROI centered at [5, 5]. The 10th
frame has a rectangle ROI centered at [25, 25]. At each frame, the algorithm moves the ROI 2 pixels
in the x-direction and 2 pixels in the y-direction. Therefore, the algorithm centers the ROl at [7, 7] in
the second frame, [9, 9] in the third frame, and so on, up to [23, 23] in the second-to-last frame.

Point Cloud Temporal Interpolator

Estimate cuboid ROIs between point cloud frames by interpolating the ROI locations across the time
interval. To use this algorithm, you must draw a cuboid ROI on a minimum of two frames: one at the
beginning of the interval and one at the end of the interval. The interpolation algorithm estimates and
draws ROIs in the intermediate frames.

Consider a point cloud sequence with 10 frames. The first frame has a cuboid ROI centered at [5, 5,
0]. The 10th frame has a cuboid ROI centered at [25, 25, 0]. At each frame, the algorithm moves the
ROI 2 points in the x-direction, 2 points in the y-direction, and 0 points in the z-direction. Therefore,
the algorithm centers the ROI at [7, 7, 0] in the second frame, [9, 9, 0] in the third frame, and so on,
up to [23, 23, 0] in the second-to-last frame.

Lane Boundary Detector
Detect and label lane boundaries using an estimated bird’s-eye-view projected image. To use this

algorithm, you must define at least one line ROI label. You do not need to draw any ROI labels. To
detect lane boundaries, the algorithm follows these steps:

Ground Truth Labeler

1 [t makes an initial guess at the placement of the lane boundaries in the image.

2 [t transforms the ROI around the lanes into a bird's-eye view image to make the lanes parallel
and remove distortion.

3 It uses this image to segment the lane boundaries.
To help improve the algorithm results, first click Settings. You can change any of these settings.

* The placement of the lane lines for generating the bird's-eye view image

* The ROI around the lanes, which you can expand to include more than just the ego lane
boundaries in the image

* The pixel width of detected lane boundaries in the image

You can also change the number of lane boundaries that you want to detect. The default number of
lane boundaries is 2.

Compatibility Considerations

Ground Truth Labeler app no longer exports groundTruth objects
Behavior change in future release

If you import labels or open an app session created before R2020a, the Ground Truth Labeler
exports labeled data as a groundTruthMultisignal object instead of as a groundTruth object.

If you do not need to label multiple signals simultaneously and do not require lidar labeling, import
the labels or session into the Video Labeler app instead. The Video Labeler app continues to export
groundTruth objects.

See Also

Apps
Image Labeler | Video Labeler

Objects
groundTruthDataSource | groundTruthMultisignal |
labelDefinitionCreatorMultisignal

Classes
driving.connector.Connector |vision.labeler.AutomationAlgorithm |
vision.labeler.loading.MultiSignalSource | vision.labeler.mixin.Temporal

Topics

“Get Started with the Ground Truth Labeler”

“Automate Ground Truth Labeling of Lane Boundaries”

“Automate Ground Truth Labeling for Semantic Segmentation”
“Automate Attributes of Labeled Objects”

“Evaluate Lane Boundary Detections Against Ground Truth Data”
“Evaluate and Visualize Lane Boundary Detections Against Ground Truth”
“Choose an App to Label Ground Truth Data” (Computer Vision Toolbox)
“Keyboard Shortcuts and Mouse Actions for Ground Truth Labeler”
“Label Pixels for Semantic Segmentation” (Computer Vision Toolbox)
“Label Lidar Point Clouds for Object Detection”

1-85

1 Apps

“Create Class for Loading Custom Ground Truth Data Sources”
“Create Automation Algorithm for Labeling” (Computer Vision Toolbox)
“Share and Store Labeled Ground Truth Data” (Computer Vision Toolbox)

Introduced in R2017a

1-86

Blocks

2 Blocks

2-2

Bicycle Model

Implement a single track 3DOF rigid vehicle body to calculate longitudinal, lateral, and yaw motion

Description

The Bicycle Model block implements a rigid two-axle single track vehicle body model to calculate
longitudinal, lateral, and yaw motion. The block accounts for body mass, aerodynamic drag, and
weight distribution between the axles due to acceleration and steering. There are two types of
Bicycle Model blocks.

Block Implementation
Bicycle Model - Velocity Input * Block assumes that the external longitudinal velocity is
quasi-steady state so the longitudinal acceleration is
Info [p approximately zero.
 WhikngF ! waot p + Since the motion is quasi-steady, the block calculates
‘ iotb only lateral forces using the tire slip angles and linear
cornering stiffness.
_ | psi
)mdcmn
| ! "t
Bicycle Model - Velocity Input
Bicycle Model - Force Input * Block uses the external longitudinal force to accelerate
. or brake the vehicle.
Aumiange ep + Block calculates lateral forces using the tire slip angles
| wclot [p and linear cornering stiffness.
HF<F ydot [
psi [
HFR | | b
Bicycle Model - Force Input

To calculate the normal forces on the front and rear axles, the block uses rigid-body vehicle motion,
suspension system forces, and wind and drag forces. The block resolves the force and moment
components on the rigid vehicle body frame.

Ports
Input

Wh1AngF — Wheel angle
scalar

Front wheel angle, in rad.

FxF — Force Input: Total longitudinal force on the front axle
scalar

Longitudinal force on the front axle, Fxg, along vehicle-fixed x-axis, in N.

Bicycle Model

Bicycle Model - Force Input block input port.

FxR — Force Input: Total longitudinal force on the rear axle
scalar

Longitudinal force on the rear axle, Fxg, along vehicle-fixed x-axis, in N.
Bicycle Model - Force Input block input port.

xdotin — Velocity Input: Longitudinal velocity
scalar

Vehicle CG velocity along vehicle-fixed x-axis, in m/s.
Bicycle Model - Velocity Input block input port.
Output

Info — Bus signal
bus

Bus signal containing these block values.

Signal Description Value Units

InertFrm |Cg Disp X Vehicle CG displacement |Computed |m
along the earth-fixed X-
axis

Y Vehicle CG displacement |Computed |m
along the earth-fixed Y-
axis

VA Vehicle CG displacement |0 m
along the earth-fixed Z-
axis

Vel Xdot Vehicle CG velocity along |Computed |m/s
the earth-fixed X-axis

Ydot Vehicle CG velocity along |Computed |m/s
the earth-fixed Y-axis

Zdot Vehicle CG velocity along |0 m/s
the earth-fixed Z-axis

Ang phi Rotation of the vehicle- 0 rad
fixed frame about the
earth-fixed X-axis (roll)

theta Rotation of the vehicle- 0 rad
fixed frame about the
earth-fixed Y-axis (pitch)

psi Rotation of the vehicle- Computed |rad
fixed frame about the
earth-fixed Z-axis (yaw)

2-3

2 Blocks

Signal

Description

Value

Units

2-4

FrntAxl

Disp

Front wheel displacement
along the earth-fixed X-
axis

Computed

Front wheel displacement
along the earth-fixed Y-
axis

Computed

Front wheel displacement
along the earth-fixed Z-
axis

0

Vel

Xdot

Front wheel velocity along
the earth-fixed X-axis

Computed

m/s

Ydot

Front wheel velocity along
the earth-fixed Y-axis

Computed

m/s

Zdot

Front wheel velocity along
the earth-fixed Z-axis

0

m/s

RearAx1l

Disp

Rear wheel displacement
along the earth-fixed X-
axis

Computed

Rear wheel displacement
along the earth-fixed Y-
axis

Computed

Rear wheel displacement
along the earth-fixed Z-
axis

0

Vel

Xdot

Rear wheel velocity along
the earth-fixed X-axis

Computed

m/s

Ydot

Rear wheel velocity along
the earth-fixed Y-axis

Computed

m/s

Zdot

Rear wheel velocity along
the earth-fixed Z-axis

0

m/s

Hitch

Disp

Hitch offset from axle
plane along the earth-
fixed X-axis

Computed

Hitch offset from center
plane along the earth-
fixed Y-axis

Computed

Hitch offset from axle
plane along the earth-
fixed Z-axis

Computed

Vel

Xdot

Hitch offset velocity from
axle plane along the
earth-fixed X-axis

Computed

Bicycle Model

Signal

Description

Value

Units

Ydot

Hitch offset velocity from
center plane along the
earth-fixed Y-axis

Computed

m

Zdot

Hitch offset velocity from
axle plane along the
earth-fixed Z-axis

Computed

Geom

Disp

Vehicle chassis offset from
axle plane along the
earth-fixed X-axis

Computed

Vehicle chassis offset from
center plane along the
earth-fixed Y-axis

Computed

Vehicle chassis offset from
axle plane along the
earth-fixed Z-axis

Computed

Vel

Xdot

Vehicle chassis offset
velocity along the earth-
fixed X-axis

Computed

m/s

Ydot

Vehicle chassis offset
velocity along the earth-
fixed Y-axis

Computed

m/s

Zdot

Vehicle chassis offset
velocity along the earth-
fixed Z-axis

Computed

m/s

BdyFrm

Cg

Vel

xdot

Vehicle CG velocity along
the vehicle-fixed x-axis

Computed

m/s

ydot

Vehicle CG velocity along
the vehicle-fixed y-axis

Computed

m/s

zdot

Vehicle CG velocity along
the vehicle-fixed z-axis

0

m/s

Ang

Beta

Body slip angle,

_ Yy

Vx

Computed

rad

AngVel

p

Vehicle angular velocity
about the vehicle-fixed x-
axis (roll rate)

rad/s

Vehicle angular velocity
about the vehicle-fixed y-
axis (pitch rate)

rad/s

Vehicle angular velocity
about the vehicle-fixed z-
axis (yaw rate)

Computed

rad/s

2-5

2 Blocks

Signal

Description

Value

Units

Acc

ax

Vehicle CG acceleration
along the vehicle-fixed x-
axis

Computed

Jgn

ay

Vehicle CG acceleration
along the vehicle-fixed y-
axis

Computed

Jgn

az

Vehicle CG acceleration
along the vehicle-fixed 2-
axis

gn

xddot

Vehicle CG acceleration
along the vehicle-fixed x-
axis

Computed

m/s™2

yddot

Vehicle CG acceleration
along the vehicle-fixed y-
axis

Computed

m/s™2

zddot

Vehicle CG acceleration
along the vehicle-fixed 2-
axis

m/s™2

AngAcc

pdot

Vehicle angular
acceleration about the
vehicle-fixed x-axis

rad/s

gdot

Vehicle angular
acceleration about the
vehicle-fixed y-axis

rad/s

rdot

Vehicle angular
acceleration about the
vehicle-fixed z-axis

Computed

rad/s

DCM

Direction cosine matrix

Computed

rad

Forces

2-6

Body

Fx

Net force on vehicle CG
along the vehicle-fixed x-
axis

Computed

Fy

Net force on vehicle CG
along the vehicle-fixed y-
axis

Computed

Fz

Net force on vehicle CG
along the vehicle-fixed 2-
axis

Ext

Fx

External force on vehicle
CG along the vehicle-fixed
X-axis

Computed

Fy

External force on vehicle
CG along the vehicle-fixed
y-axis

Computed

Bicycle Model

Signal

Description

Value

Units

Fz

External force on vehicle
CG along the vehicle-fixed
Z-axis

0

Hitch

Fx

Hitch force applied to
body at the hitch location
along the vehicle-fixed x-
axis

Input

Fy

Hitch force applied to
body at the hitch location
along the vehicle-fixed y-
axis

Input

Fz

Hitch force applied to
body at the hitch location
along the vehicle-fixed z-
axis

Input

FrntAxl

Fx

Longitudinal force on
front wheel, along the
vehicle-fixed x-axis

Computed

Fy

Lateral force on front
wheel along the vehicle-
fixed y-axis

Computed

Fz

Normal force on front
wheel, along the vehicle-
fixed z-axis

Computed

RearAx1l

Fx

Longitudinal force on rear
wheel, along the vehicle-
fixed x-axis

Computed

Fy

Lateral force on rear
wheel along the vehicle-
fixed y-axis

Computed

Fz

Normal force on rear
wheel, along the vehicle-
fixed z-axis

Computed

Tires

FrntTir
e

Fx

Front tire force, along the
vehicle-fixed x-axis

Computed

Fy

Front tire force, along the
vehicle-fixed y-axis

Computed

Fz

Front tire force, along the
vehicle-fixed z-axis

Computed

RearTir
e

FxF

Rear tire force, along the
vehicle-fixed x-axis

Computed

Fy

Rear tire force, along the
vehicle-fixed y-axis

Computed

2-7

2 Blocks

Signal

Description

Value

Units

2-8

Fz

Rear tire force, along the
vehicle-fixed z-axis

Computed

N

Drag

Fx

Drag force on vehicle CG
along the vehicle-fixed x-
axis

Computed

N

Fy

Drag force on vehicle CG
along the vehicle-fixed y-
axis

Computed

Fz

Drag force on vehicle CG
along the vehicle-fixed z-
axis

Computed

Grvty

Fx

Gravity force on vehicle
CG along the vehicle-fixed
X-axis

Computed

Fy

Gravity force on vehicle
CG along the vehicle-fixed
y-axis

Computed

Fz

Gravity force on vehicle
CG along the vehicle-fixed
z-axis

Computed

Moments

Body

Mx

Body moment on vehicle
CG about the vehicle-fixed
X-axis

My

Body moment on vehicle
CG about the vehicle-fixed
y-axis

Computed

Mz

Body moment on vehicle
CG about the vehicle-fixed
Z-axis

N-m

Drag

Mx

Drag moment on vehicle
CG about the vehicle-fixed
X-axis

My

Drag moment on vehicle
CG about the vehicle-fixed
y-axis

Computed

N-m

Mz

Drag moment on vehicle
CG about the vehicle-fixed
z-axis

Ext

Mx

External moment on
vehicle CG about the
vehicle-fixed x-axis

My

External moment on
vehicle CG about the
vehicle-fixed y-axis

Computed

N-m

Bicycle Model

Signal

Description

Value

Units

Mz

External moment on
vehicle CG about the
vehicle-fixed z-axis

0

N-m

Hitch

Mx

Hitch moment at the hitch
location about vehicle-
fixed x-axis

My

Hitch moment at the hitch
location about vehicle-
fixed y-axis

Computed

Mz

Hitch moment at the hitch
location about vehicle-
fixed z-axis

FrntAxl

Disp

Front wheel displacement
along the vehicle-fixed x-
axis

Computed

Front wheel displacement
along the vehicle-fixed y-
axis

Computed

Front wheel displacement
along the vehicle-fixed 2-
axis

Computed

Vel

xdot

Front wheel velocity along
the vehicle-fixed x-axis

Computed

m/s

ydot

Front wheel velocity along
the vehicle-fixed y-axis

Computed

m/s

zdot

Front wheel velocity along
the vehicle-fixed z-axis

0

m/s

Steer

WhlAngFL

Front left wheel steering
angle

Computed

rad

WhlAngFR

Front right wheel steering
angle

Computed

rad

RearAxl

Disp

Rear wheel displacement
along the vehicle-fixed x-
axis

Computed

Rear wheel displacement
along the vehicle-fixed y-
axis

Computed

Rear wheel displacement
along the vehicle-fixed 2-
axis

Computed

Vel

xdot

Rear wheel velocity along
the vehicle-fixed x-axis

Computed

m/s

ydot

Rear wheel velocity along
the vehicle-fixed y-axis

Computed

m/s

2-9

2 Blocks

Signal

Description

Value

Units

zdot

Rear wheel velocity along
the vehicle-fixed z-axis

0

m/s

Steer

WhlAngRL

Rear left wheel steering
angle

Computed

rad

WhlAngRR

Rear right wheel steering
angle

Computed

rad

Hitch

Disp

Hitch offset from axle
plane along the vehicle-
fixed x-axis

Input

Hitch offset from center
plane along the vehicle-
fixed y-axis

Input

Hitch offset from axle
plane along the earth-
fixed z-axis

Input

Vel

xdo

Hitch offset velocity along
the vehicle-fixed x-axis

Computed

m/s

ydo

Hitch offset velocity along
the vehicle-fixed y-axis

Computed

m/s

zdo

Hitch offset velocity along
the vehicle-fixed z-axis

Computed

m/s

Pwr

Ext

Applied external power

Computed

Hitch

Power loss due to hitch

Computed

Drag

Power loss due to drag

Computed

Geom

2-10

Disp

Vehicle chassis offset from
axle plane along the
vehicle-fixed x-axis

Input

BI=E|=E|=

Vehicle chassis offset from
center plane along the
vehicle-fixed y-axis

Input

Vehicle chassis offset from
axle plane along the
earth-fixed z-axis

Input

Vel

xdo

Vehicle chassis offset
velocity along the vehicle-
fixed x-axis

Computed

m/s

ydo

Vehicle chassis offset
velocity along the vehicle-
fixed y-axis

Computed

m/s

zdo

Vehicle chassis offset
velocity along the vehicle-
fixed z-axis

m/s

Bicycle Model

Signal Description Value Units
Ang Bet |Body slip angle, Computed |rad
a
Vv
=_Y
B v,
Signal Description Value [Units
PwrInfo |PwrTrnsfrd PwrFxExt Externally applied longitudinal force |Comp |W
power uted
PwrFyExt Externally applied lateral force Comp |W
power uted
PwrMzExt Externally applied roll moment Comp |W
power uted
PwrFwFx Longitudinal force applied at the Comp |W
front axle power uted
PwrFwFy Lateral force applied at the front Comp |W
axle power uted
PwrFwRx Longitudinal force applied at the Comp |W
rear axle power uted
PwrFwRy Lateral force applied at the rear Comp |W
axle power uted
PwrNotTrnsfr |PwrFxDrag Longitudinal drag force power Comp |W
d uted
PwrFyDrag Lateral drag force power Comp |W
uted
PwrMzDrag Drag pitch moment power Comp |W
uted
PwrStored PwrStoredGrvty |Rate change in gravitational Comp |W
potential energy uted
PwrStoredxdot Rate of change of longitudinal Comp |W
kinetic energy uted
PwrStoredydot Rate of change of lateral kinetic Comp |W
energy uted
PwrStoredr Rate of change of rotational yaw Comp |W
kinetic energy uted

xdot — Vehicle body longitudinal velocity

scalar

Vehicle CG velocity along vehicle-fixed x-axis, in m/s.

ydot — Vehicle body lateral velocity

scalar

Vehicle CG velocity along vehicle-fixed y-axis, in m/s.

2-11

2 Blocks

2-12

psi— Yaw
scalar

Rotation of the vehicle-fixed frame about earth-fixed Z-axis (yaw), in rad..

r — Yaw rate
scalar

Vehicle angular velocity, r, about the vehicle-fixed z-axis (yaw rate), in rad/s.

Parameters
Longitudinal

Number of wheels on front axle, NF — Front wheel count
2 (default) | scalar

Number of wheels on front axle, Nr. The value is dimensionless.

Number of wheels on rear axle, NR — Rear wheel count
2 (default) | scalar

Number of wheels on rear axle, Ni. The value is dimensionless.

Vehicle mass, m — Vehicle mass
2000 (default) | scalar

Vehicle mass, m, in kg.

Longitudinal distance from center of mass to front axle, a — Front axle distance
1.4 (default) | scalar

Horizontal distance a from the vehicle CG to the front wheel axle, in m.

Longitudinal distance from center of mass to rear axle, b — Rear axle distance
1.6 (default) | scalar

Horizontal distance b from the vehicle CG to the rear wheel axle, in m.

Vertical distance from center of mass to axle plane, h — Height
0.35 (default) | scalar

Height of vehicle CG above the axles, h, in m.

Longitudinal distance from center of mass to hitch, dh — Distance from CM to
hitch
1 (default) | scalar

Longitudinal distance from center of mass to hitch, dh, in m.

Dependencies
To enable this parameter, on the Input signals pane, select Hitch forces or Hitch moments.

Vertical distance from hitch to axle plane, hh — Distance from hitch to axle plane
0.2 (default) | scalar

Bicycle Model

Vertical distance from hitch to axle plane, hh, in m.

Dependencies
To enable this parameter, on the Input signals pane, select Hitch forces or Hitch moments.

Initial inertial frame longitudinal position, X_o — Position
0 (default) | scalar

Initial vehicle CG displacement along earth-fixed X-axis, in m.

Initial longitudinal velocity, xdot_o — Velocity
0 (default) | scalar

Initial vehicle CG velocity along vehicle-fixed x-axis, in m/s.

Dependencies

For the Vehicle Body 3DOF Single Track or Vehicle Body 3DOF Dual Track blocks, to enable this
parameter, set Axle forces to one of these options:

+ External longitudinal forces
* External forces

Lateral

Front tire corner stiffness, Cy_f — Stiffness
12e3 (default) | scalar

Front tire corner stiffness, Cyy, in N/rad.

Dependencies

For the Vehicle Body 3DOF Single Track or Vehicle Body 3DOF Dual Track blocks, to enable this
parameter:

1 Set Axle forces to one of these options:

*+ External longitudinal velocity
* External longitudinal forces
2 (Clear Mapped corner stiffness.

Rear tire corner stiffness, Cy_r — Stiffness
11e3 (default) | scalar

Rear tire corner stiffness, Cy,, in N/rad.

Dependencies

For the Vehicle Body 3DOF Single Track or Vehicle Body 3DOF Dual Track blocks, to enable this
parameter:

1 Set Axle forces to one of these options:

* External longitudinal velocity
* External longitudinal forces

2-13

2 Blocks

2 (Clear Mapped corner stiffness.

Initial inertial frame lateral displacement, Y_o — Position
0 (default) | scalar

Initial vehicle CG displacement along earth-fixed Y-axis, in m.

Initial lateral velocity, ydot_o — Velocity
0 (default) | scalar

Initial vehicle CG velocity along vehicle-fixed y-axis, in m/s.

Yaw

Yaw polar inertia, Izz — Inertia
4000 (default) | scalar

Yaw polar inertia, in kg*m”2.

Initial yaw angle, psi_o — Psi rotation
0 (default) | scalar

Rotation of the vehicle-fixed frame about earth-fixed Z-axis (yaw), in rad.

Initial yaw rate, r_o — Yaw rate
0 (default) | scalar

Vehicle angular velocity about the vehicle-fixed z-axis (yaw rate), in rad/s.

Aerodynamic

Longitudinal drag area, Af — Effective vehicle cross-sectional area
2 (default) | scalar

Effective vehicle cross-sectional area, Ay, to calculate the aerodynamic drag force on the vehicle, in
m?,

Longitudinal drag coefficient, Cd — Air drag coefficient
.3 (default) | scalar

Air drag coefficient, C;. The value is dimensionless.

Longitudinal lift coefficient, Cl — Air lift coefficient
.1 (default) | scalar

Air lift coefficient, C;. The value is dimensionless.

Longitudinal drag pitch moment, Cpm — Pitch drag
.1 (default) | scalar

Longitudinal drag pitch moment coefficient, C,,,. The value is dimensionless.

Relative wind angle vector, beta_w — Wind angle
[0:0.01:0.3] (default) | vector

Relative wind angle vector, j,,, in rad.

2-14

Bicycle Model

Side force coefficient vector, Cs — Side force coefficient
[0:0.03:0.9] (default) | vector

Side force coefficient vector coefficient, C. The value is dimensionless.

Yaw moment coefficient vector, Cym — Yaw moment drag
[0:0.01:0.3] (default) | vector

Yaw moment coefficient vector coefficient, C,,. The value is dimensionless.
Environment

Absolute air pressure, Pabs — Pressure
101325 (default) | scalar | scalar

Environmental absolute pressure, P, in Pa.

Air temperature, Tair — Temperature
273 (default) | scalar

Environmental absolute temperature, T, in K.
Dependencies

To enable this parameter, clear Air temperature.

Gravitational acceleration, g — Gravity
9.81 (default) | scalar

Gravitational acceleration, g, in m/s”™2.

Nominal friction scaling factor, mu — Friction scale factor
1 (default) | scalar

Nominal friction scale factor, j1. The value is dimensionless.

Dependencies

For the Vehicle Body 3DOF Single Track or Vehicle Body 3DOF Dual Track blocks, to enable this
parameter:

1 Set Axle forces to one of these options:

* External longitudinal velocity
* External longitudinal forces
2 Clear External Friction.

Simulation

Longitudinal velocity tolerance, xdot_tol — Tolerance
.01 (default) | scalar

Longitudinal velocity tolerance, in m/s.

Nominal normal force, Fznom — Normal force
5000 (default) | scalar

2-15

2 Blocks

2-16

Nominal normal force, in N.

Dependencies

For the Vehicle Body 3DOF Single Track or Vehicle Body 3DOF Dual Track blocks, to enable this
parameter, set Axle forces to one of these options:

 External longitudinal velocity
* External longitudinal forces

Geometric longitudinal offset from axle plane, longOff — Longitudinal offset
0 (default) | scalar

Vehicle chassis offset from axle plane along body-fixed x-axis, in m. When you use the 3D visualization
engine, consider using the offset to locate the chassis independent of the vehicle CG.

Geometric lateral offset from center plane, latOff — Lateral offset
0 (default) | scalar

Vehicle chassis offset from center plane along body-fixed y-axis, in m. When you use the 3D
visualization engine, consider using the offset to locate the chassis independent of the vehicle CG.

Geometric vertical offset from axle plane, vertOff — Vertical offset
0 (default) | scalar

Vehicle chassis offset from axle plane along body-fixed z-axis, in m. When you use the 3D visualization
engine, consider using the offset to locate the chassis independent of the vehicle CG.

Wrap Euler angles, wrapAng — Selection
off (default) | on

Wrap the Euler angles to the interval [-pi, pil. For vehicle maneuvers that might undergo vehicle
yaw rotations that are outside of the interval, consider deselecting the parameter if you want to:

» Track the total vehicle yaw rotation.
* Avoid discontinuities in the vehicle state estimators.

References

[1] Gillespie, Thomas. Fundamentals of Vehicle Dynamics. Warrendale, PA: Society of Automotive
Engineers (SAE), 1992.

Introduced in R2018a

Cuboid To 3D Simulation

Cuboid To 3D Simulation

Convert actor from cuboid coordinates to 3D simulation coordinates
Library: Automated Driving Toolbox / Driving Scenario and Sensor
Modeling

NActor CuboidTo3DSimulation Yh

Description

The Cuboid To 3D Simulation block converts a cuboid actor pose in world coordinates to the X, Y, and
Yaw coordinates used by the Simulation 3D Vehicle with Ground Following block. Use the converted
values to set vehicle positions within the 3D simulation environment for actors created using the
Driving Scenario Designer app. The ground terrain of the scene determines the roll (x-axis
rotation), pitch (y-axis rotation), and elevation (z-axis position) of the vehicle.

You can specify a bus containing a single actor pose or multiple actor poses. By default, the block
converts the pose of the first actor in the bus. To specify the actor whose pose you want to convert,
specify the ActorID of that actor.

In cuboid and 3D simulation driving scenarios, the coordinate systems are the same, but the origins
of vehicles differ. In cuboid driving scenarios, the vehicle origin is on the ground, under the center of
the rear axle. The block transforms this origin to the origin used in the 3D simulation environment,
which is under the geometric center of the vehicle. The table shows the origin difference between the
two environments.

Cuboid Vehicle Origin 3D Simulation Vehicle Origin

2-17

2 Blocks

2-18

Ports

Input

Actor — Cuboid actor pose in world coordinates

Simulink bus containing MATLAB structure

Cuboid actor pose in world coordinates, specified as a Simulink bus containing a MATLAB structure.

To obtain this structure input, use the Scenario Reader block to read actors from a scenario. By
default, the Scenario Reader block outputs actors in ego vehicle coordinates. To convert these poses
from ego vehicle to world coordinates, use the Vehicle To World block.

The structure in this bus can contain a single actor pose or multiple actor poses.

Single-Pose Structure

To specify a single actor pose, the structure must contain these fields.

Field Description

ActorID Scenario-defined actor identifier, specified as a
positive integer.

Position Position of actor, specified as a real-valued vector
of the form [x, y, z]. Units are in meters.

Velocity Velocity (v) of actor in the x-, y-, and z-direction,
specified as a real-valued vector of the form [v,,
vy, V.]. Units are in meters per second.

Roll Roll angle of actor, specified as a real-valued
scalar. Units are in degrees.

Pitch Pitch angle of actor, specified as a real-valued
scalar. Units are in degrees.

Yaw Yaw angle of actor, specified as a real-valued
scalar. Units are in degrees.

AngularVelocity Angular velocity (w) of actor in the x-, y-, and 2-
direction, specified as a real-valued vector of the
form [w,, wy, w,]. Units are in degrees per second.

Multiple-Pose Structure

To specify multiple actor poses, the structure must contain these fields.

Field Description Type

NumActors Number of actors Nonnegative integer

Time Current simulation time Real-valued scalar

Actors Actor poses NumActors-length array of
actor pose structures

Each actor pose structure in Actors must have these fields.

Cuboid To 3D Simulation

Field Description

ActorID Scenario-defined actor identifier, specified as a
positive integer.

Position Position of actor, specified as a real-valued vector
of the form [x, y, z]. Units are in meters.

Velocity Velocity (v) of actor in the x-, y-, and z-direction,
specified as a real-valued vector of the form [v,,
Vy, V.]. Units are in meters per second.

Roll Roll angle of actor, specified as a real-valued
scalar. Units are in degrees.

Pitch Pitch angle of actor, specified as a real-valued
scalar. Units are in degrees.

Yaw Yaw angle of actor, specified as a real-valued
scalar. Units are in degrees.

AngularVelocity Angular velocity (w) of actor in the x-, y-, and 2-
direction, specified as a real-valued vector of the
form [w,, wy, w,]. Units are in degrees per second.

The block converts only one pose from the Actors array. To specify which pose to convert, select
Specify Actor ID, and then specify the ActorID of the actor by using the ActorID used for
conversion parameter.

Output

X — Longitudinal position of actor in 3D simulation coordinates
numeric scalar

Longitudinal position of the actor in 3D simulation coordinates, returned as a numeric scalar. Units
are in meters.

In this coordinate system, when looking in the positive direction of the X-axis, the positive Y-axis
points left, and the Z-axis points up.

To specify the X-position of a vehicle in the 3D simulation environment, connect this port to the X
input port of a Simulation 3D Vehicle with Ground Following block.

Y — Lateral position of actor in 3D simulation coordinates
numeric scalar

Lateral position of the actor in 3D simulation coordinates, returned as a numeric scalar. Units are in
meters.

In this coordinate system, when looking in the positive direction of the X-axis, the positive Y-axis
points left, and the Z-axis points up.

To specify the Y-position of a vehicle in the 3D simulation environment, connect this port to the Y
input port of a Simulation 3D Vehicle with Ground Following block.

Yaw — Yaw orientation angle of actor in 3D simulation coordinates
numeric scalar

2-19

2 Blocks

2-20

Yaw orientation angle of the actor about the Z-axis in 3D simulation coordinates, returned as a
numeric scalar. Units are in degrees.

In this coordinate system, when looking in the positive direction of the Z-axis, yaw is clockwise-
positive. However, if you view the simulation from a 2D top-down perspective, then yaw is
counterclockwise-positive, because you are viewing the scene along the negative Z-axis.

To specify the yaw orientation angle of a vehicle in the 3D simulation environment, connect this port
to the Yaw input port of a Simulation 3D Vehicle with Ground Following block.

Parameters

Specify Actor ID — Enable ID specification of cuboid actor
off (default) | on

Select this parameter to enable the ActorID used for conversion parameter, where you can specify
the ActorID of the cuboid actor pose to convert to 3D simulation coordinates.

If you clear this parameter, then the block converts the first actor pose in the input Actor bus.

ActorID used for conversion — ActorID value of cuboid actor
1 (default) | positive integer

ActorID value of the cuboid actor to convert to 3D simulation coordinates, specified as a positive
integer. This parameter must be a valid ActorID from the input Actor bus.

Dependencies
To enable this parameter; select Specify Actor ID.

Simulate using — Type of simulation to run
Interpreted execution (default) | Code generation

* Interpreted execution — Simulate the model using the MATLAB interpreter. This option
shortens startup time. In Interpreted execution mode, you can debug the source code of the
block.

* Code generation — Simulate the model using generated C/C++ code. The first time you run a
simulation, Simulink generates C/C++ code for the block. The C code is reused for subsequent
simulations as long as the model does not change. This option requires additional startup time.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Scenario Reader | Simulation 3D Vehicle with Ground Following | Vehicle To World | World To Vehicle

Topics
“Coordinate Systems in Automated Driving Toolbox”
“Coordinate Systems for Unreal Engine Simulation in Automated Driving Toolbox”

Cuboid To 3D Simulation

Introduced in R2020a

2-21

2 Blocks

2-22

Detection Concatenation

Combine detection reports from different sensors
Library: Automated Driving Toolbox

A

Detection
Goncatenation Ut P

Ainz

Description

The Detection Concatenation block combines detection reports from multiple Radar Detection
Generator or Vision Detection Generator blocks onto a single output bus. Concatenation is useful
when detections from multiple sensor blocks are passed into a Multi-Object Tracker block. You can
accommodate additional sensors by changing the Number of input sensors to combine parameter
to increase the number of input ports.

Ports
Input

Inl, In2, ..., InN— Sensor detections to combine
Simulink buses containing MATLAB structures

Sensor detections to combine, where each detection is a Simulink bus containing a MATLAB
structure. See “Create Nonvirtual Buses” (Simulink) for more details.

The definitions of the detection lists are found in the Detections output port descriptions of the
Radar Detection Generator and Vision Detection Generator blocks.

By default, the block includes two ports for input detections. To add more ports, use the Number of
input sensors to combine parameter.

Output

Out — Combined sensor detections
Simulink bus containing MATLAB structure

Combined sensor detections from all input buses, returned as a Simulink bus containing a MATLAB
structure. See “Create Nonvirtual Buses” (Simulink). The definitions of the detection lists are found
in the Detections output port descriptions of the Radar Detection Generator and Vision Detection
Generator blocks

The Maximum number of reported detections output is the sum of the Maximum number of
reported detections of all input ports. The number of actual detections is the sum of the number of
actual detections in each input port. The ObjectAttributes fields in the detection structure are the
union of the ObjectAttributes fields in each input port.

Detection Concatenation

Parameters

Number of input sensors to combine — Number of input sensor ports
2 (default) | positive integer

Number of input sensor ports, specified as a positive integer. Each input port is labeled In1, In2, ...,
InN, where N is the value set by this parameter.

Data Types: double

Source of output bus name — Source of output bus name
Auto (default) | Property

Source of output bus name, specified as Auto or Property.

* Ifyou select Auto, the block automatically generates a bus name.
* Ifyou select Property, specify the bus name using the Specify an output bus name parameter.

Specify an output bus name — Name of output bus
no default

Dependencies
To enable this parameter, set the Source of output bus name parameter to Property.

Simulate using — Type of simulation to run
Interpreted execution (default) | Code generation

* Interpreted execution — Simulate the model using the MATLAB interpreter. This option
shortens startup time. In Interpreted execution mode, you can debug the source code of the
block.

* Code generation — Simulate the model using generated C/C++ code. The first time you run a
simulation, Simulink generates C/C++ code for the block. The C code is reused for subsequent
simulations as long as the model does not change. This option requires additional startup time.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also

Apps
Bird's-Eye Scope

Blocks
Multi-Object Tracker | Radar Detection Generator | Scenario Reader | Vision Detection Generator

Topics
“Create Nonvirtual Buses” (Simulink)

Introduced in R2017b

2-23

2 Blocks

Lateral Controller Stanley

Control steering angle of vehicle for path following by using Stanley method
Library: Automated Driving Toolbox / Vehicle Control

RefPose

Lateral
Controller SteerCmd [»
ey

IV VIRV V)
o
2
2
@
B

Description

The Lateral Controller Stanley block computes the steering angle command, in degrees, that adjusts
the current pose of a vehicle to match a reference pose, given the vehicle's current velocity and
direction. The controller computes this command using the Stanley method [1], whose control law is
based on both a kinematic and dynamic bicycle model. To change between models, use the Vehicle
model parameter.

* The kinematic bicycle model is suitable for path following in low-speed environments such as
parking lots, where inertial effects are minimal.

* The dynamic bicycle model is suitable for path following in high-speed environments such as
highways, where inertial effects are more pronounced. This vehicle model provides additional
parameters that describe the dynamics of the vehicle.

Ports
Input

RefPose — Reference pose
[x, y, ©] vector

Reference pose, specified as an [x, y, @] vector. x and y are in meters, and © is in degrees.

x and y specify the reference point to steer the vehicle toward. @ specifies the orientation angle of the
path at this reference point and is positive in the counterclockwise direction.

» For a vehicle in forward motion, the reference point is the point on the path that is closest to the
center of the vehicle's front axle.

2-24

Lateral Controller Stanley

¥

Path

X, ¥y, — World coordinate system
[x, v, @] — Reference pose

|

i

i >

X xw

» For a vehicle in reverse motion, the reference point is the point on the path that is closest to the
center of the vehicle's rear axle.

F

Path

X Yo — World coordinate system
[%, v, @] — Reference pose

v

Data Types: single | double

CurrPose — Current pose
[x, y, O] vector

Current pose of the vehicle, specified as an [x, y, @] vector. x and y are in meters, and O is in degrees.

2-25

2 Blocks

x and y specify the location of the vehicle, which is defined as the center of the vehicle's rear axle.

O specifies the orientation angle of the vehicle at location (x,y) and is positive in the counterclockwise
direction.

l"IIII'I.'A.' 4

¥, .Y, — World coordinate system
[%, ¥, @] — Vehicle pose

For more details on vehicle pose, see “Coordinate Systems in Automated Driving Toolbox”.

Data Types: single | double

CurrVelocity — Current longitudinal velocity
real scalar

Current longitudinal velocity of the vehicle, specified as a real scalar. Units are in meters per second.

» If the vehicle is in forward motion, then this value must be greater than 0.
 If the vehicle is in reverse motion, then this value must be less than 0.
* Avalue of 0 represents a vehicle that is not in motion.

Data Types: single | double

Direction — Driving direction of vehicle
1 (forward motion) | -1 (reverse motion)

Driving direction of the vehicle, specified as 1 for forward motion or -1 for reverse motion. The
driving direction determines the position error and angle error used to compute the steering angle
command. For more details, see “Algorithms” on page 2-31.

Curvature — Curvature of path
real scalar

Curvature of the path at the reference point, in radians per meter, specified as a real scalar.

* For a vehicle in forward motion, the reference point is the point on the path that is closest to the
center of the vehicle's front axle.

2-26

Lateral Controller Stanley

L 2

Path

X Yo — World coordinate system
[x, ¥] — Reference point

P
L

|
i
|
X xw

» For a vehicle in reverse motion, the reference point is the point on the path that is closest to the
center of the vehicle's rear axle.

F

Path

XYy, — World coordinate system
[x, ¥] — Reference point

P
L8

L

You can obtain the curvature of a path from the Curvatures output port of a Path Smoother Spline
block. You can also obtain curvatures of lane boundaries from the output lane boundary structures of
a Scenario Reader block.

Dependencies

To enable this port, set Vehicle model to Dynamic bicycle model.

2-27

2 Blocks

CurrYawRate — Current yaw rate
real scalar

Current yaw rate of the vehicle, in degrees per second, specified as a real scalar. The current yaw
rate is the rate of change in the angular velocity of the vehicle.

Dependencies
To enable this port, set Vehicle model to Dynamic bicycle model.

CurrSteer — Current steering angle
real scalar

Current steering angle of the vehicle, in degrees, specified as a real scalar. This value is positive in
the counterclockwise direction.

Steering
angle

For more details, see “Coordinate Systems in Automated Driving Toolbox”.

Dependencies
To enable this port, set Vehicle model to Dynamic bicycle model.
Output

SteerCmd — Steering angle command
real scalar

Steering angle command, in degrees, returned as a real scalar. This value is positive in the
counterclockwise direction.

2-28

Lateral Controller Stanley

Steering
angle

For more details, see “Coordinate Systems in Automated Driving Toolbox”.

Parameters

Vehicle model — Vehicle model
Kinematic bicycle model (default) | Dynamic bicycle model

Select the type of vehicle model to set the Stanley method control law used by the block.

* Kinematic bicycle model — Kinematic bicycle model for path following in low-speed
environments such as parking lots, where inertial effects are minimal

* Dynamic bicycle model — Dynamic bicycle model for path following in high-speed
environments such as highways, where inertial effects are more pronounced

Position gain of forward motion — Position gain of vehicle in forward motion
2.5 (default) | positive real scalar

Position gain of the vehicle when it is in forward motion, specified as a positive scalar. This value
determines how much the position error affects the steering angle. Typical values are in the range [1,
5]. Increase this value to increase the magnitude of the steering angle.

Position gain of reverse motion — Position gain of vehicle in reverse motion
2.5 (default) | positive real scalar

Position gain of the vehicle when it is in reverse motion, specified as a positive scalar. This value
determines how much the position error affects the steering angle. Typical values are in the range [1,
5]. Increase this value to increase the magnitude of the steering angle.

Yaw rate feedback gain — Yaw rate feedback gain
2.5 (default) | nonnegative real scalar

Yaw rate feedback gain, specified as a nonnegative real scalar. This value determines how much
weight is given to the current yaw rate of the vehicle when the block computes the steering angle
command.

2-29

2 Blocks

2-30

Dependencies
To enable this parameter, set Vehicle model to Dynamic bicycle model.

Steering angle feedback gain — Steering angle feedback gain
2.5 (default) | nonnegative real scalar

Steering angle feedback gain, specified as a nonnegative real scalar. This value determines how much
the difference between the current steering angle command, SteerCmd, and the current steering
angle, CurrSteer, affects the next steering angle command.

Dependencies
To enable this parameter, set Vehicle model to Dynamic bicycle model.

Wheelbase of vehicle (m) — Distance between front and rear axle
2.8 (default) | real scalar

Distance between the front and rear axle of the vehicle, in meters, specified as a real scalar. This
value applies only when the vehicle is in forward motion, that is, when the Direction input port is 1.

Dependencies
To enable this parameter, set Vehicle model to Kinematic bicycle model.

Vehicle mass (kg) — Vehicle mass
1575 (default) | positive real scalar

Vehicle mass, in kilograms, specified as a positive real scalar.

Dependencies
To enable this parameter, set Vehicle model to Dynamic bicycle model.

Longitudinal distance from center of mass to front axle (m) — Distance to front
axle
1.2 (default) | positive real scalar

Longitudinal distance from the vehicle's center of mass to its front wheel axle, in meters, specified as
a positive real scalar.

Dependencies
To enable this parameter, set Vehicle model to Dynamic bicycle model.

Longitudinal distance from center of mass to rear axle (m) — Distance to rear
axle
1.6 (default) | positive real scalar

Longitudinal distance from the vehicle's center of mass to its rear wheel axle, in meters, specified as
a positive real scalar.

Dependencies
To enable this parameter, set Vehicle model to Dynamic bicycle model.

Front tire corner stiffness (N/rad) — Cornering stiffness of front tires
19000 (default) | positive real scalar

Lateral Controller Stanley

Cornering stiffness of front tires, in Newtons per radian, specified as a positive real scalar.

Dependencies
To enable this parameter, set Vehicle model to Dynamic bicycle model.

Maximum steering angle (deg) — Maximum allowed steering angle
35 (default) | real scalar in the range (0, 180)

Maximum allowed steering angle of the vehicle, in degrees, specified as a real scalar in the range (0,
180).

The output from the SteerCmd port is saturated to the range [-M, M], where M is the value of the
Maximum steering angle (deg) parameter.

* Values below -M are set to -M.
* Values above M are set to M.

Tips

* You can switch between bicycle models as the vehicle environment changes. Add two Lateral
Controller Stanley blocks to a variant subsystem and specify a different bicycle model for each
block. For an example, see “Lateral Control Tutorial”.

Algorithms

To compute the steering angle command, the controller minimizes the position error and the angle
error of the current pose with respect to the reference pose. The driving direction of the vehicle
determines these error values.

When the vehicle is in forward motion (Direction parameter is 1):

» The position error is the lateral distance from the center of the front axle to the reference point on
the path.

* The angle error is the angle of the front wheel with respect to reference path.
When the vehicle is in reverse motion (Direction parameter is - 1):

* The position error is the lateral distance from the center of the rear axle to the reference point on
the path.
* The angle error is the angle of the rear wheel with respect to reference path.

For details on how the controller minimizes these errors for kinematic and dynamic bicycle models,
see [1].

References

[1] Hoffmann, Gabriel M., Claire J. Tomlin, Michael Montemerlo, and Sebastian Thrun. "Autonomous
Automobile Trajectory Tracking for Off-Road Driving: Controller Design, Experimental
Validation and Racing." American Control Conference. 2007, pp. 2296-2301. doi:10.1109/
ACC.2007.4282788

2-31

2 Blocks

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also

Blocks
Longitudinal Controller Stanley | Path Smoother Spline | Velocity Profiler

Functions
lateralControllerStanley

Objects
pathPlannerRRT

Topics
“Coordinate Systems in Automated Driving Toolbox”

Introduced in R2018b

2-32

Lidar Point Cloud Generator

Lidar Point Cloud Generator

Generate lidar point cloud data for driving scenario

Library: Automated Driving Toolbox / Driving Scenario and Sensor
Modeling
>A‘cm"5 Lidar
Foint Cloud point cloud
Yew VEhids[SensDrlndEl 1]
Description

The Lidar Point Cloud Generator block generates a point cloud from lidar measurements taken by a
lidar sensor mounted on an ego vehicle.

The block derives the point cloud from simulated roads and actor poses in a driving scenario and
generates the point cloud at intervals equal to the sensor update interval. By default, detections are
referenced to the coordinate system of the ego vehicle. The block can simulate added noise at a
specified range accuracy by using a statistical model. The block also provides parameters to exclude
the ego vehicle and roads from the generated point cloud.

The lidar generates point cloud data based on the mesh representations of the roads and actors in the
scenario. A mesh is a 3-D geometry of an object that is composed of faces and vertices.

When building scenarios and sensor models using the Driving Scenario Designer app, the lidar
sensors exported to Simulink are output as Lidar Point Cloud Generator blocks.

Limitations

* C/C++ code generation is not supported.
* For Each subsystems are not supported.
* Rapid acceleration mode is not supported.

» Use of the Detection Concatenation block with this block is not supported. You cannot concatenate
point cloud data with detections from other sensors.

» If a model does not contain a Scenario Reader block, then this block does not include roads in the
generated point cloud.

» Point cloud data is not generated for lane markings.
Ports

Input

Actors — Scenario actor poses
Simulink bus containing MATLAB structure

Scenario actor poses in ego vehicle coordinates, specified as a Simulink bus containing a MATLAB
structure.

The structure must contain these fields.

2-33

2 Blocks

2-34

Field Description Type

NumActors Number of actors Nonnegative integer

Time Current simulation time Real-valued scalar

Actors Actor poses NumActors-length array of

actor pose structures

Each actor pose structure in Actors must have these fields.

Field Description

ActorID Scenario-defined actor identifier, specified as a
positive integer.

Position Position of actor, specified as a real-valued vector
of the form [x, y, z]. Units are in meters.

Velocity Velocity (v) of actor in the x-, y-, and z-direction,
specified as a real-valued vector of the form [v,,
vy, V.]. Units are in meters per second.

Roll Roll angle of actor, specified as a real-valued
scalar. Units are in degrees.

Pitch Pitch angle of actor, specified as a real-valued
scalar. Units are in degrees.

Yaw Yaw angle of actor, specified as a real-valued
scalar. Units are in degrees.

AngularVelocity Angular velocity (w) of actor in the x-, y-, and 2-

direction, specified as a real-valued vector of the
form [w,, wy, w,]. Units are in degrees per second.

Ego Vehicle — Ego vehicle pose
Simulink bus containing MATLAB structure

Ego vehicle pose, specified as a Simulink bus containing a MATLAB structure.

The structure must have these fields.

Field Description

ActorID Scenario-defined actor identifier, specified as a
positive integer.

Position Position of actor, specified as a real-valued vector
of the form [x, y, z]. Units are in meters.

Velocity Velocity (v) of actor in the x-, y-, and z-direction,
specified as a real-valued vector of the form [v,,
vy, V1. Units are in meters per second.

Roll Roll angle of actor, specified as a real-valued
scalar. Units are in degrees.

Pitch Pitch angle of actor, specified as a real-valued
scalar. Units are in degrees.

Lidar Point Cloud Generator

Field Description

Yaw Yaw angle of actor, specified as a real-valued
scalar. Units are in degrees.

AngularVelocity Angular velocity (w) of actor in the x-, y-, and 2-
direction, specified as a real-valued vector of the
form [w,, wy, w,]. Units are in degrees per second.

You can output the ego vehicle pose from a Scenario Reader block. In the Scenario Reader block used
in your model, select the Output ego vehicle pose parameter.

Output

Point Cloud — Point cloud data
m-by-n-by-3 array of positive real-valued [x, y, z] points

Point cloud data, returned as an m-by-n-by 3 array of positive real-valued [x, y, z] points. m is the
number of elevation (vertical) channels in the point cloud. n is the number of azimuthal (horizontal)
channels in the point cloud. m and n define the number of points in the point cloud, as shown in this
equation:

Vrov _ Hrov
X
Vres = Hges

* Vgoy is the vertical field of view of the lidar, in degrees, as specified by the Elevation limits of
lidar (deg) parameter.

* Vies is the vertical angular resolution of the lidar, in degrees, as specified by the Elevation
resolution of lidar (deg) parameter.

* Hrpgy is the horizontal field of view of the lidar, in degrees, as specified by the Azimuthal limits of
lidar (deg) parameter.

* Hpggs is the horizontal angular resolution of the lidar, in degrees, as specified by the Azimuthal
resolution of lidar (deg) parameter.

Each m-by-n entry in the array specifies the x-, y-, and z-coordinates of a detected point in the ego
vehicle coordinate system. If the lidar does not detect a point at a given coordinate, then x, y, and 2z
are returned as NaN.

By default, the Lidar Point Cloud Generator block includes road data in the generated point cloud.
The block obtains the road data in world coordinates from a Scenario Reader block that is in the
same model as the Lidar Point Cloud Generator block. The Lidar Point Cloud Generator block
computes the road mesh in ego vehicle coordinates based on the road data and the ego vehicle pose
at the Ego Vehicle input port. The Maximum detection range (m) parameter of the Lidar Point
Cloud Generator block determines the extent of the road mesh. To exclude road data from the point
cloud, clear the Include roads in generated point cloud parameter.

Parameters
Parameters
Sensor Identification

Unique identifier of sensor — Unique sensor identifier
1 (default) | positive integer

2-35

2 Blocks

2-36

Unique sensor identifier, specified as a positive integer. The sensor identifier distinguishes detections
that come from different sensors in a multisensor system. If a model contains multiple sensor blocks
that have the same sensor identifier, the Bird's-Eye Scope displays an error.

Required interval between sensor updates (s) — Required time interval between
sensor updates
0.1 (default) | positive scalar

Required time interval between sensor updates, specified as a positive scalar. The value of this
parameter must be an integer multiple of the Actors input port data interval. Updates requested
from the sensor between update intervals contain no detections. Units are in seconds.

Sensor Extrinsics

Sensor's (x,y) position (m) — Location of center of lidar sensor
[1.5 0] (default) | real-valued 1-by-2 vector

Location of the center of the lidar sensor, specified as a real-valued 1-by-2 vector. The Sensor's (x,y)
position (m) and Sensor's height (m) parameters define the coordinates of the lidar sensor with
respect to the ego vehicle coordinate system. The default value corresponds to a lidar sensor
mounted on a sedan, at the center of the roof's front edge. Units are in meters.

Sensor's height (m) — Height of lidar sensor
1.6 (default) | positive scalar

Height of the lidar sensor above the ground plane, specified as a positive scalar. The Sensor's (x,y)
position (m) and Sensor's height (m) parameters define the coordinates of the lidar sensor with
respect to the ego vehicle coordinate system. The default value corresponds to a lidar sensor
mounted on a sedan, at the center of the roof front edge. Units are in meters.

Yaw angle of sensor mounted on ego vehicle (deg) — Yaw angle of lidar sensor
0 (default) | real-valued scalar

Yaw angle of the lidar sensor, specified as a real-valued scalar. The yaw angle is the angle between
the center line of the ego vehicle and the downrange axis of the lidar sensor. A positive yaw angle

corresponds to a clockwise rotation when you look in the positive direction of the z-axis of the ego
vehicle coordinate system. Units are in degrees.

Pitch angle of sensor mounted on ego vehicle (deg) — Pitch angle of lidar sensor
0 (default) | real-valued scalar

Pitch angle of the lidar sensor, specified as a real-valued scalar. The pitch angle is the angle between
the downrange axis of the lidar sensor and the xy-plane of the ego vehicle coordinate system. A
positive pitch angle corresponds to a clockwise rotation when you look in the positive direction of the
y-axis of the ego vehicle coordinate system. Units are in degrees.

Roll angle of sensor mounted on ego vehicle (deg) — Roll angle of lidar sensor
0 (default) | real-valued scalar

Roll angle of the lidar sensor, specified as a real-valued scalar. The roll angle is the angle of rotation
of the downrange axis of the lidar sensor around the x-axis of the ego vehicle coordinate system. A
positive roll angle corresponds to a clockwise rotation when you look in the positive direction of the x-
axis of the ego vehicle coordinate system. Units are in degrees.

Lidar Point Cloud Generator

Point Cloud Reporting

Coordinate system used to report point cloud — Coordinate system of reported
detections
Ego Cartesian (default) | Sensor Cartesian

Coordinate system of reported detections, specified as one of these values:

* Ego Cartesian — Detections are reported in the ego vehicle Cartesian coordinate system.
* Sensor Cartesian — Detections are reported in the sensor Cartesian coordinate system.

Include ego vehicle in generated point cloud — Include ego vehicle in point cloud
on (default) | of f

Select this parameter to include the ego vehicle in the generated point cloud.

ActorID of ego vehicle — ActorID value of ego vehicle
1 (default) | positive integer

ActorlID value of the ego vehicle, specified as a positive integer. ActorID is the unique identifier for
an actor. This parameter must be a valid ActorID from the input Actor bus.

Dependencies
To enable this parameter, select the Include ego vehicle in generated point cloud parameter.

Include roads in generated point cloud — Include roads in point cloud
on (default) | of f

Select this parameter to include the roads in the generated point cloud.

Source of actor profiles — Source of actor profiles
From Scenario Reader block (default) | From workspace

Source of actor profiles, which are the physical and radar characteristics of all actors in the driving
scenario, specified as one of these options:

* From Scenario Reader block — The block obtains the actor profiles from the scenario
specified by the Scenario Reader block.

* From workspace — The block obtains the actor profiles from the MATLAB or model workspace
variable specified by the MATLAB or model workspace variable name parameter.

MATLAB or model workspace variable name — Variable name of actor profiles
actor profiles (default) | valid variable name

Variable name of actor profiles, specified as the name of a MATLAB or model workspace variable
containing actor profiles.

Actor profiles are the physical and radar characteristics of all actors in a driving scenario and are
specified as a structure or structure array.

« If the actor profiles variable contains a single structure, then all actors specified in the input
Actors bus use this profile.

» If the actor profiles variable is a structure array, then each actor specified in the input Actors bus
must have a unique actor profile.

2-37

2 Blocks

2-38

To generate an array of structures for your driving scenario, use the actorProfiles function. The
table shows the valid structure fields. If you do not specify a field, the fields are set to their default

values.

Field

Description

ActorID

Scenario-defined actor identifier, specified as a
positive integer.

ClassID

Classification identifier, specified as a
nonnegative integer. 0 represents an object of an
unknown or unassigned class.

Length

Length of actor, specified as a positive real-valued
scalar. Units are in meters.

Width

Width of actor, specified as a positive real-valued
scalar. Units are in meters.

Height

Height of actor, specified as a positive real-valued
scalar. Units are in meters.

OriginOffset

Offset of actor's rotational center from its
geometric center, specified as a real-valued
vector of the form [x, y, z]. The rotational center,
or origin, is located at the bottom center of the
actor. For vehicles, the rotational center is the
point on the ground beneath the center of the
rear axle. Units are in meters.

MeshVertices

Mesh vertices of actor, specified as an n-by-3 real-
valued matrix of vertices. Each row in the matrix
defines a point in 3-D space.

MeshFaces

Mesh faces of actor, specified as an m-by-3 matrix
of integers. Each row of MeshFaces represents a
triangle defined by the vertex IDs, which are the
row numbers of vertices.

RCSPattern

Radar cross-section (RCS) pattern of actor,
specified as a numel (RCSElevationAngles)-
by-numel (RCSAzimuthAngles) real-valued
matrix. Units are in decibels per square meter.

RCSAzimuthAngles

Azimuth angles corresponding to rows of
RCSPattern, specified as a vector of values in
the range [-180, 180]. Units are in degrees.

RCSElevationAngles

Elevation angles corresponding to rows of
RCSPattern, specified as a vector of values in
the range [-90, 90]. Units are in degrees.

For complete definitions of the structure fields, see the actor and vehicle functions.

Dependencies

To enable this parameter, set the Source of actor profiles parameter to From workspace.

Lidar Point Cloud Generator

Measurements
Settings

Maximum detection range (m) — Maximum detection range
120 (default) | positive scalar

Maximum detection range of the lidar sensor, specified as a positive scalar. The sensor cannot detect
actors beyond this range. This parameter also determines the extent of the road mesh. Units are in
meters.

Range accuracy (m) — Accuracy of range measurements
0.002 (default) | positive scalar

Accuracy of range measurements, specified as a positive scalar. Units are in meters.

Azimuthal resolution of lidar (deg) — Azimuthal resolution of lidar sensor
0.16 (default) | positive scalar

Azimuthal resolution of the lidar sensor, specified as a positive scalar. The azimuthal resolution
defines the minimum separation in azimuth angle at which the lidar can distinguish between two
targets. Units are in degrees.

Elevation resolution of lidar (deg) — Elevation resolution of lidar sensor
1.25 (default) | positive scalar

Elevation resolution of the lidar sensor, specified as a positive scalar. The elevation resolution defines
the minimum separation in elevation angle at which the lidar can distinguish between two targets.
Units are in degrees.

Azimuthal limits of lidar (deg) — Azimuthal limits of lidar sensor
[-180 180] (default) | 1-by-2 real-valued vector of form [min, max]

Azimuthal limits of the lidar sensor, specified as a 1-by-2 real-valued vector of the form [min, max].
Units are in degrees.

Elevation limits of lidar (deg) — Elevation limits of lidar sensor
[-20 20] (default) | 1-by-2 real-valued vector of form [min, max]

Elevation limits of the lidar sensor, specified as a 1-by-2 real-valued vector of the form [min, max].
Units are in degrees.

Add noise to measurements — Add noise to measurements
on (default) | of f

Select this parameter to add noise to lidar sensor measurements. When you clear this parameter, the
measurements have no noise.

See Also

Apps
Bird's-Eye Scope

Blocks
Radar Detection Generator | Scenario Reader | Simulation 3D Lidar | Vision Detection Generator

2-39

2 Blocks

Objects
lidarPointCloudGenerator

Introduced in R2020b

2-40

Longitudinal Controller Stanley

Longitudinal Controller Stanley

Control longitudinal velocity of vehicle by using Stanley method
Library: Automated Driving Toolbox / Vehicle Control

RefVelacity
AccelCmd
Cumveladity | oogitudinal
Controll

Direction Stanley

DecelCmd

Description

The Longitudinal Controller Stanley block computes the acceleration and deceleration commands, in
meters per second, that control the velocity of the vehicle. Specify the reference velocity, current
velocity, and current driving direction. The controller computes these commands using the Stanley
method [1], which the block implements as a discrete proportional-integral (PI) controller with
integral anti-windup. For more details, see “Algorithms” on page 2-42.

You can also compute the steering angle command of a vehicle using the Stanley method. See the
Lateral Controller Stanley block.

Ports
Input

RefVelocity — Reference velocity
real scalar

Reference velocity, in meters per second, specified as a real scalar.

CurrVelocity — Current velocity
real scalar

Current velocity of the vehicle, in meters per second, specified as a real scalar.

Direction — Driving direction
1 (forward motion) | -1 (reverse motion)

Driving direction of vehicle, specified as 1 for forward motion and -1 for reverse motion.

Reset — Trigger to reset integral of velocity error
0 (hold steady) | nonzero scalar (reset)

Trigger to reset the integral of velocity error, e(k), to zero. A value of 0 holds e(k) steady. A nonzero
value resets e(k).

Output

AccelCmd — Acceleration command
real scalar in the range [0, M,]

Acceleration command, returned as a real scalar in the range [0, M,], where M, is the value of the
Maximum longitudinal acceleration (m/s”2) parameter.

2-41

2 Blocks

2-42

DecelCmd — Deceleration command
real scalar in the range [0, Mp]

Deceleration command, returned as a real scalar in the range [0, Mp], where My, is the value of the
Maximum longitudinal deceleration (m/s”™2) parameter.

Parameters

Proportional gain, Kp — Proportional gain
2.5 (default) | positive real scalar

Proportional gain of controller, K,, specified as a positive real scalar.

Integral gain, Ki — Integral gain
1 (default) | positive real scalar

Integral gain of controller, K;, specified as a positive real scalar.

Sample time (s) — Sample time
0.05 (default) | positive real scalar

Sample time of controller, in seconds, specified as a positive real scalar.

Maximum longitudinal acceleration (m/s”2) — Maximum longitudinal acceleration
3 (default) | positive real scalar

Maximum longitudinal acceleration, in meters per second squared, specified as a positive real scalar.

The block saturates the output from the AccelCmd to the range [0, M,], where M, is the value of this
parameter. Values above M, are set to M,.

Maximum longitudinal deceleration (m/s”2) — Maximum longitudinal deceleration
6 (default) | positive real scalar

Maximum longitudinal deceleration, in meters per second squared, specified as a positive real scalar.

The block saturates the output from the DecelCmd port to the range [0, Mp], where My, is the value
of this parameter. Values above My, are set to My,

Algorithms

The Longitudinal Controller Stanley block implements a discrete proportional-integral (PI) controller
with integral anti-windup, as described by the “Anti-windup method” (Simulink) parameter of the PID
Controller block. The block uses this equation:

T
u(k) = (Kp + K- 0) (k)

* u(k) is the control signal at the kth time step.
* K, is the proportional gain, as set by the Proportional gain, Kp parameter.

* K is the integral gain, as set by the Integral gain, Ki parameter.
» T, is the sample time of the block in seconds, as set by the Sample time (s) parameter.

Longitudinal Controller Stanley

» e(k) is the velocity error (CurrVelocity - RefVelocity) at the kth time step. For each k, this error
is equal to the difference between the current velocity and reference velocity inputs
(CurrVelocity - RefVelocity).

The control signal, u, determines the value of acceleration command AccelCmd and deceleration
command DecelCmd. The block saturates the acceleration and deceleration commands to respective
ranges of [0, M,] and [0, Mp], where:

* M, is value of the Maximum longitudinal acceleration (m/s”~2) parameter.
* My is the value of the Maximum longitudinal deceleration (m/s”2) parameter.
At each time step, only one of the AccelCmd and DecelCmd port values is positive, and the other

port value is 0. In other words, the vehicle can either accelerate or decelerate in one time step, but it
cannot do both at one time.

The direction of motion, as specified in the Direction input port, determines which command is
positive at the given time step.

Direction Port Control Signal AccelCmd Port DecelCmd Port |Description
Value Value u(k) Value Value
1 (forward motion) |u(k) > 0 positive real scalar |0 Vehicle speeds up
as it travels
forward
uk) <0 0 positive real scalar |Vehicle slows down
as it travels
forward
-1 (reverse uk) >0 0 positive real scalar |Vehicle slows down
motion) as it travels in
reverse
u(k) <0 positive real scalar |0 Vehicle speeds up
as it travels in
reverse
References

[1] Hoffmann, Gabriel M., Claire J. Tomlin, Michael Montemerlo, and Sebastian Thrun. "Autonomous
Automobile Trajectory Tracking for Off-Road Driving: Controller Design, Experimental
Validation and Racing." American Control Conference. August 2007, pp. 2296-2301.
doi:10.1109/ACC.2007.4282788.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also

Blocks
Lateral Controller Stanley | PID Controller | Path Smoother Spline | Velocity Profiler

2-43

2 Blocks

Introduced in R2019a

2-44

Multi-Object Tracker

Multi-Object Tracker

Create and manage tracks of multiple objects
Library: Automated Driving Toolbox

) Detections X
Multi & o nfirmed b

Object Tracks
3 Prediction 17acker

Time

Description

The Multi-Object Tracker block initializes, confirms, predicts, corrects, and deletes the tracks of
moving objects. Inputs to the multi-object tracker are detection reports generated by Radar Detection
Generator and Vision Detection Generator blocks. The multi-object tracker accepts detections from
multiple sensors and assigns them to tracks using a global nearest neighbor (GNN) criterion. Each
detection is assigned to a separate track. If the detection cannot be assigned to any track, the multi-
object tracker creates a new track.

A new track starts in a tentative state. If enough detections are assigned to a tentative track, its
status changes to confirmed. When a track is confirmed, the multi-object tracker considers that track
to represent a physical object. If detections are not added to the track within a specifiable number of
updates, the track is deleted.

The multi-object tracker also estimates the state vector and state vector covariance matrix for each
track using a Kalman filter. These state vectors are used to predict a track's location in each frame
and determine the likelihood of each detection being assigned to each track.

Ports
Input

Detections — Detection list
Simulink bus containing MATLAB structure

Detection list, specified as a Simulink bus containing a MATLAB structure. See “Group Signal Lines
into Virtual Buses” (Simulink). The structure has the form:

Field Description Type
NumDetections Number of detections integer
IsValidTime False when updates are Boolean

requested at times that are
between block invocation
intervals

Detections Object detections Array of object detection
structures. The first
NumDetections of these
detections are actual detections.

The definitions of the object detection structures are found in the Detections output port
descriptions of the Radar Detection Generator and Vision Detection Generator blocks.

2-45

2 Blocks

2-46

Note The object detection structure contains a Time field. The time tag of each object detection
must be less than or equal to the time of the current invocation of the block. The time tag must also
be greater than the update time specified in the previous invocation of the block.

Prediction Time — Track update time
real scalar

Track update time, specified as a real scalar. The multi-object tracker updates all tracks to this time.
Update time must always increase with each invocation of the block. Units are in seconds.

Note The object detection structure contains a Time field. The time tag of each object detection
must be less than or equal to the time of the current invocation of the block. The time tag must also
be greater than the update time in the previous invocation of the block.

Dependencies
To enable this port, set Prediction time source to Input port.

Cost Matrix — Cost matrix
real-valued N,-by-Ny matrix

Cost matrix, specified as a real-valued N-by-Ny matrix, where N; is the number of existing tracks and
N, is the number of current detections.

The rows of the cost matrix correspond to the existing tracks. The columns correspond to the
detections. Tracks are ordered as they appear in the list of tracks in the All Tracks output port of the
previous invocation of the block.

In the first update to the multi-object tracker, or if the track has no previous tracks, assign the cost
matrix a size of [0, Ng]. The cost must be calculated so that lower costs indicate a higher likelihood
that the multi-object tracker assigns a detection to a track. To prevent certain detections from being
assigned to certain tracks, use Inf.

Dependencies
To enable this port, select Enable cost matrix input.

Detectable Track IDs — Detectable track IDs
real-valued M-by-1 vector | real-valued M-by-2 matrix

Detectable track IDs, specified as a real-valued M-by-1 vector or M-by-2 matrix. Detectable tracks are
tracks that the sensors expect to detect. The first column of the matrix contains a list of track IDs that
the sensors report as detectable. The optional second column contains the detection probability for
the track.

Tracks whose identifiers are not included in Detectable Track IDs are considered undetectable. The
track deletion logic does not count the lack of detection as a "missed detection" for track deletion
purposes.

If this port is not enabled, the tracker assumes all tracks to be detectable at each invocation of the
block.

Multi-Object Tracker

Dependencies

To enable this port, in the Port Setting tab, select Enable detectable track IDs Input.

Output

Confirmed Tracks — Confirmed tracks
Simulink bus containing MATLAB structure

Confirmed tracks, returned as a Simulink bus containing a MATLAB structure. See “Create

Nonvirtual Buses” (Simulink).

This table shows the structure fields.

Field Description
NumTracks Number of tracks
Tracks Array of track structures of a length set by the

Maximum number of tracks parameter. Only
the first NumTracks of these are actual tracks.

This table shows the fields of each track structure.

Field Description

TrackID Unique integer that identifies the track.

SourceIndex Unique identifier the tracker in a multiple tracker
environment. The SourceIndex is exactly the
same with the TrackerIndex.

UpdateTime The time the track was updated.

Age Number of times the track survived.

State Value of state vector at the update time.

StateCovariance Uncertainty covariance matrix.

Extent Spatial extent estimate of the tracked object,
returned as a d-by-d matrix, where d is the
dimension of the object. This field is only
returned when the tracking filter is specified as a
ggiwphd filter.

MeasurementRate Expected number of detections from the tracked
object. This field is only returned when the
tracking filter is specified as a ggiwphd filter.

IsConfirmed True if the track is assumed to be of a real target.

IsCoasted trackerPHD does not support the IsCoasted
field. The value is always 0.

ObjectClassID trackerPHD does not support the
ObjectClassID field. The value is always 0.

StateParameters Parameters about the track state reference frame
specified in the StateParameters property of
the PHD tracker.

2-47

2 Blocks

2-48

IsSelfReported

Indicate if the track is reported by the tracker.
This field is used in a track fusion environment. It
is returned as true by default.

A track is confirmed if:

* Atleast M detections are assigned to the track during the first N updates after track initialization.
To specify the values M and N, use the M and N for the M-out-of-N confirmation parameter.

* The detection initiating the track has an ObjectClassID greater than zero.

Tentative Tracks — Tentative tracks
Simulink bus containing MATLAB structure

Tentative tracks, returned as a Simulink bus containing a MATLAB structure. See “Create Nonvirtual
Buses” (Simulink). A track is tentative before it is confirmed.

This table shows the structure fields.

Field Description
NumTracks Number of tracks
Tracks Array of track structures of a length set by the

Maximum number of tracks parameter. Only
the first NumTracks of these are actual tracks.

This table shows the fields of each track structure.

Field Description

TrackID Unique integer that identifies the track.

SourceIndex Unique identifier the tracker in a multiple tracker
environment. The SourceIndex is exactly the
same with the TrackerIndex.

UpdateTime The time the track was updated.

Age Number of times the track survived.

State Value of state vector at the update time.

StateCovariance Uncertainty covariance matrix.

Extent Spatial extent estimate of the tracked object,
returned as a d-by-d matrix, where d is the
dimension of the object. This field is only
returned when the tracking filter is specified as a
ggiwphd filter.

MeasurementRate Expected number of detections from the tracked
object. This field is only returned when the
tracking filter is specified as a ggiwphd filter.

IsConfirmed True if the track is assumed to be of a real target.

IsCoasted trackerPHD does not support the IsCoasted

field. The value is always 0.

Multi-Object Tracker

ObjectClassID trackerPHD does not support the
ObjectClassID field. The value is always 0.

StateParameters Parameters about the track state reference frame
specified in the StateParameters property of
the PHD tracker.

IsSelfReported Indicate if the track is reported by the tracker.

This field is used in a track fusion environment. It
is returned as true by default.

Dependencies

To enable this port, select Enable tentative tracks output.

All Tracks — All tracks
Simulink bus containing MATLAB structure

Combined list of confirmed and tentative tracks, returned as a Simulink bus containing a MATLAB
structure. See “Create Nonvirtual Buses” (Simulink).

This table shows the structure fields.

Field Description
NumTracks Number of tracks
Tracks Array of track structures of a length set by the

Maximum number of tracks parameter. Only
the first NumTracks of these are actual tracks.

This table shows the fields of each track structure.

Field Description

TrackID Unique integer that identifies the track.

SourcelIndex Unique identifier the tracker in a multiple tracker
environment. The SourceIndex is exactly the
same with the TrackerIndex.

UpdateTime The time the track was updated.

Age Number of times the track survived.

State Value of state vector at the update time.

StateCovariance Uncertainty covariance matrix.

Extent Spatial extent estimate of the tracked object,
returned as a d-by-d matrix, where d is the
dimension of the object. This field is only
returned when the tracking filter is specified as a
ggiwphd filter.

MeasurementRate Expected number of detections from the tracked
object. This field is only returned when the
tracking filter is specified as a ggiwphd filter.

IsConfirmed True if the track is assumed to be of a real target.

2-49

2 Blocks

2-50

IsCoasted trackerPHD does not support the IsCoasted
field. The value is always 0.

ObjectClassID trackerPHD does not support the
ObjectClassID field. The value is always 0.

StateParameters Parameters about the track state reference frame

specified in the StateParameters property of
the PHD tracker.

IsSelfReported Indicate if the track is reported by the tracker.
This field is used in a track fusion environment. It

is returned as true by default.

Dependencies

To enable this port, select Enable all tracks output.

Parameters
Tracker Management

Tracker identifier — Unique tracker identifier
0 (default) | nonnegative integer

Unique tracker identifier, specified as a nonnegative integer. This parameter is used as the
SourceIndex in the outputs, and distinguishes tracks that come from different trackers in a
multiple-tracker system. You must specify this property as a positive integer to use the track outputs
as inputs to a track fuser.

Example: 1

Filter initialization function name — Kalman filter initialization function
initcvkf (default) | function name

Kalman filter initialization function, specified as a function name. The toolbox provides several
initialization functions. For an example of an initialization function, see initcvekf.

Threshold for assigning detections to tracks — Detection assignment threshold
30.0 (default) | positive real scalar

Detection assignment threshold, specified as a positive real scalar. To assign a detection to a track,
the detection's normalized distance from the track must be less than the assignment threshold. If
some detections remain unassigned to tracks that you want them assigned to, then increase the
threshold. If some detections are assigned to incorrect tracks, decrease the threshold.

M and N for the M-out-of-N confirmation — Confirmation parameters for track
creation
[2,3] (default) | two-element vector of positive integers

Confirmation parameters for track creation, specified as a two-element vector of positive integers,
[M,N]. A track is confirmed when at least M detections are assigned to the track during the first N
updates after track initialization. M must be less than or equal to N.

Multi-Object Tracker

* When setting N, consider the number of times you want the tracker to update before it confirms a
track. For example, if a tracker updates every 0.05 seconds, and you allow 0.5 seconds to make a
confirmation decision, set N = 10.

* When setting M, take into account the probability of object detection for the sensors. The
probability of detection depends on factors such as occlusion or clutter. You can reduce M when
tracks fail to be confirmed or increase M when too many false detections are assigned to tracks.

Example: [3,5]

P and R for the P-out-of-R deletion — Track deletion threshold
[5 5] (default) | real-valued 1-by-2 vector of positive integers

Track deletion threshold for history logic, specified as a real-valued 1-by-2 vector of positive integers
[P R].If a confirmed track is not assigned to any detection P times in the last Q tracker updates,
then the track is deleted.

Maximum number of tracks — Maximum number of tracks
200 (default) | positive integer

Maximum number of tracks that the block can process, specified as a positive integer.

Maximum number of sensors — Maximum number of sensors
20 (default) | positive integer

Maximum number of sensors that the block can process, specified as a positive integer. This value
should be greater than or equal to the highest SensorIndex value used in the Detections input
port.

Track state parameters — Parameters of the track state reference frame
struct (default) | struct | struct array

Parameters of the track state reference frame, specified as a struct or a struct array. Use this
property to define the track state reference frame and how to transform the track from the tracker
(called source) coordinate system to the fuser coordinate system.

Inputs and Outputs

Prediction time source — Source for prediction time
Input port (default) | Auto

Source for prediction time, specified as Input port or Auto. Select Input port to input an update
time by using the Prediction Time input port. Otherwise, the simulation clock managed by Simulink
determines the update time.

Example: Auto

Enable cost matrix input — Enable input port for cost matrix
off (default) | on

Select this check box to enable the input of a cost matrix by using the Cost Matrix input port.

Enable detectable track IDs input — Enable detectable track IDs input
off (default) | on

Select this check box to enable the Detectable Track IDs input port.

2-51

2 Blocks

2-52

Source of output bus name — Source of output bus name
Auto (default) | Property

Source of output bus name, specified as Auto or Property.

» If you select Auto, the block automatically creates a bus name.
» Ifyou select Property, specify the bus name using the Specify an output bus name parameter.

Specify an output bus name — Name of output bus
no default

Dependencies
To enable this parameter, set the Source of output bus name parameter to Property.

Enable tentative tracks output — Enable output port for tentative tracks
off (default) | on

Select this check box to enable the output of tentative tracks by using the Tentative Tracks output
port.

Enable all tracks output — Enable output port for all tracks
off (default) | on

Select this check box to enable the output of all the tracks by using the All Tracks output port.

Simulate using — Type of simulation to run
Interpreted execution (default) | Code generation

* Interpreted execution — Simulate the model using the MATLAB interpreter. This option
shortens startup time. In Interpreted execution mode, you can debug the source code of the
block.

* Code generation — Simulate the model using generated C/C++ code. The first time you run a
simulation, Simulink generates C/C++ code for the block. The C code is reused for subsequent
simulations as long as the model does not change. This option requires additional startup time.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also

Apps
Bird's-Eye Scope

Blocks
Detection Concatenation | Radar Detection Generator | Scenario Reader | Vision Detection Generator

Objects
multiObjectTracker

Introduced in R2017b

Path Smoother Spline

Path Smoother Spline

Smooth vehicle path using cubic spline interpolation
Library: Automated Driving Toolbox

b
A RefPoses Path Poses [}

Smocther
Splime
) Rai'Direcﬁonsp Directions [

Description

The Path Smoother Spline block generates a smooth vehicle path, consisting of a sequence of
discretized poses, by fitting the input reference path poses to a cubic spline. Given the input
reference path directions, the block also returns the directions that correspond to each pose.

Use this block to convert a C'-continuous path to a C2-continuous path. C'-continuous paths include
Dubins or Reeds-Shepp paths that are returned by path planners. For more details on these path
types, see “C1-Continuous and C2-Continuous Paths” on page 2-55.

You can use the returned poses and directions with a vehicle controller, such as the Lateral Controller
Stanley block.

Ports

Input

RefPoses — Reference poses
M-by-3 matrix of [x, y, ©] vectors

Reference poses of the vehicle along the path, specified as an M-by-3 matrix of [x, y, @] vectors,
where M is the number of poses.

x and y specify the location of the vehicle in meters. © specifies the orientation angle of the vehicle in
degrees.

Data Types: single | double

RefDirections — Reference directions
M-by-1 column vector of 1s (forward motion) and -1s (reverse motion)

Reference directions of the vehicle along the path, specified as an M-by-1 column vector of 1s
(forward motion) and -1s (reverse motion). M is the number of reference directions. Each element of
RefDirections corresponds to a pose in the RefPoses input port.

Data Types: single | double
Output

Poses — Discretized poses of smoothed path
N-by-3 matrix of [x, y, @] vectors

Discretized poses of the smoothed path, returned as an N-by-3 matrix of [x, y, @] vectors. N is the
number of poses specified in the Number of output poses parameter.

2-53

2 Blocks

x and y specify the location of the vehicle in meters. @ specifies the orientation angle of the vehicle in
degrees.

The values in Poses are of the same data type as the values in the RefPoses input port.

Directions — Driving directions at each output pose
N-by-1 column vector of 1s (forward motion) and -1s (reverse motion)

Driving directions of the vehicle at each output pose in Poses, returned as an N-by-1 column vector
of 1s (forward motion) and -1s (reverse motion). N is the number of poses specified in the Number
of output poses parameter.

The values in Directions are of the same data type as the values in the RefDirections input port.

You can use Directions to specify the reference path of a vehicle. You can also use Directions, along
with CumLengths and Curvatures, to generate a reference velocity profile for the vehicle. See the
Velocity Profiler block and the “Automated Parking Valet in Simulink” example.

CumLengths — Cumulative path lengths
N-by-1 real-valued column vector

Cumulative path lengths at each output pose in Poses, returned as an N-by-1 real-valued column
vector. N is the number of poses specified in the Number of output poses parameter. Units are in
meters.

You can use CumLengths, along with Directions and Curvatures, to generate a reference velocity
profile for the vehicle. See the Velocity Profiler block and the “Automated Parking Valet in Simulink”
example.

Dependencies
To enable this port, select the Show CumLengths and Curvatures output ports parameter.

Curvatures — Signed path curvatures
N-by-1 real-valued column vector

Signed path curvatures at each output pose in Poses, returned as an N-by-1 real-valued column
vector. N is the number of poses specified in the Number of output poses parameter. Units are in
radians per meter.

You can use Curvatures, along with Directions and CumLengths, to generate a reference velocity
profile for the vehicle. See the Velocity Profiler block and the “Automated Parking Valet in Simulink”
example.

Dependencies

To enable this port, select the Show CumLengths and Curvatures output ports parameter.

Parameters

Number of output poses — Number of smooth poses to return
100 (default) | positive integer

Number of smooth poses to return in the Poses output port, specified as a positive integer. To
increase the granularity of the returned poses, increase this parameter value.

2-54

Path Smoother Spline

Minimum separation of input poses — Minimum separation between poses
le-3 (default) | positive real scalar

Minimum separation between poses, in meters, specified as a positive real scalar. If the Euclidean (x,
y) distance between two poses is less than this value, then the block uses only one of these poses for
interpolation.

Sample time — Sample time
-1 (default) | positive real scalar

Sample time of the block, in seconds, specified as -1 or as a positive real scalar. The default of -1
means that the block inherits its sample time from upstream blocks.

Show CumLengths and Curvatures output ports — Output cumulative path lengths and
curvatures
off (default) | on

Select this parameter to enable the CumLengths and Curvatures output ports.

Simulate using — Type of simulation to run
Code Generation (default) | Interpreted Execution

* Code generation — Simulate the model using generated C/C++ code. The first time you run a
simulation, Simulink generates C/C++ code for the block. The C code is reused for subsequent
simulations as long as the model does not change. This option requires additional startup time.

* Interpreted execution — Simulate the model using the MATLAB interpreter. This option
shortens startup time. In Interpreted execution mode, you can debug the source code of the
block.

More About

Cl-Continuous and C2-Continuous Paths

A path is C!-continuous if its derivative exists and is continuous. Paths that are only C!-continuous
have discontinuities in their curvature. For example, a path composed of Dubins or Reeds-Sheep path
segments has discontinuities in curvature at the points where the segments join. These
discontinuities result in changes in direction that are not smooth enough for driving with passengers.

A path is also C2-continuous if its second derivative exists and is continuous. C2-continuous paths
have continuous curvature and are smooth enough for driving with passengers.

2-55

2 Blocks

2-56

Algorithms

* The path-smoothing algorithm interpolates a parametric cubic spline that passes through all input
reference pose points. The parameter of the spline is the cumulative chord length at these points.

[1]

* The tangent direction of the smoothed output path approximately matches the orientation angle of
the vehicle at the starting and goal poses.

References

[1] Floater, Michael S. "On the Deviation of a Parametric Cubic Spline Interpolant from Its Data
Polygon." Computer Aided Geometric Design. Vol. 25, Number 3, 2008, pp. 148-156.

[2] Lepetic, Marko, Gregor Klancar, Igor Skrjanc, Drago Matko, and Bostjan Potocnik. "Time Optimal
Path Planning Considering Acceleration Limits." Robotics and Autonomous Systems. Vol. 45,
Numbers 3-4, 2003, pp. 199-210.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also

Functions
smoothPathSpline

Blocks
Lateral Controller Stanley | Longitudinal Controller Stanley | Velocity Profiler

Introduced in R2019a

Radar Detection Generator

Radar Detection Generator

Create detection objects from radar measurements
Library: Automated Driving Toolbox / Driving Scenario and Sensor
Modeling

Radar

Detectio "
)Actnrs Generato etections [

[Sensor Index: 1]

Description

The Radar Detection Generator block generates detections from radar measurements taken by a
radar sensor mounted on an ego vehicle. Detections are derived from simulated actor poses and are
generated at intervals equal to the sensor update interval. By default, detections are referenced to
the coordinate system of the ego vehicle. The generator can simulate real detections with added
random noise and also generate false alarm detections. A statistical model generates the
measurement noise, true detections, and false positives. The random numbers generated by the
statistical model are controlled by random number generator settings on the Measurements tab.
You can use the Radar Detection Generator to create input to a Multi-Object Tracker block. When
building scenarios and sensor models using the Driving Scenario Designer app, the radar sensors
exported to Simulink are output as Radar Detection Generator blocks.

Ports
Input

Actors — Scenario actor poses
Simulink bus containing MATLAB structure

Scenario actor poses in ego vehicle coordinates, specified as a Simulink bus containing a MATLAB
structure.

The structure must contain these fields.

Field Description Type

NumActors Number of actors Nonnegative integer

Time Current simulation time Real-valued scalar

Actors Actor poses NumActors-length array of
actor pose structures

Each actor pose structure in Actors must contain these fields.

Field Description

ActorID Scenario-defined actor identifier, specified as a
positive integer.

2-57

2 Blocks

2-58

Field Description

Position Position of actor, specified as a real-valued vector
of the form [x, y, z]. Units are in meters.

Velocity Velocity (v) of actor in the x-, y-, and z-direction,
specified as a real-valued vector of the form [v,,
vy, V.. Units are in meters per second.

Roll Roll angle of actor, specified as a real-valued
scalar. Units are in degrees.

Pitch Pitch angle of actor, specified as a real-valued
scalar. Units are in degrees.

Yaw Yaw angle of actor, specified as a real-valued
scalar. Units are in degrees.

AngularVelocity Angular velocity (w) of actor in the x-, y-, and 2-
direction, specified as a real-valued vector of the
form [w,, wy, w,]. Units are in degrees per second.

Output

Detections — Detections
Simulink bus containing MATLAB structure

Object detections, returned as a Simulink bus containing a MATLAB structure. For more details about
buses, see “Create Nonvirtual Buses” (Simulink).

You can pass object detections from these sensors and other sensors to a tracker, such as a Multi-
Object Tracker block, and generate tracks.

Field Description Type
NumDetections Number of detections integer
IsValidTime False when updates are Boolean

requested at times that are
between block invocation
intervals

Detections Object detections Array of object detection
structures of length set by the
Maximum number of
reported detections
parameter. Only
NumDetections of these are
actual detections.

Each object detection structure contains these properties.

Property Definition
Time Measurement time
Measurement Object measurements
MeasurementNoise Measurement noise covariance matrix

Radar Detection Generator

Property Definition
SensorIndex Unique ID of the sensor
ObjectClassID Object classification
ObjectAttributes Additional information passed to tracker

MeasurementParameters

Parameters used by initialization functions of
nonlinear Kalman tracking filters

» For Cartesian coordinates, Measurement and MeasurementNoise are reported in the coordinate
system specified by the Coordinate system used to report detections parameter.

» For spherical coordinates, Measurement and MeasurementNoise are reported in the spherical
coordinate system based on the sensor Cartesian coordinate system.

Measurement and Measurement Noise

Coordinate System Used to Report
Detections

Measurement and Measurement Noise
Coordinates

'Ego Cartesian'

'Sensor Cartesian'

Coordinate dependence on Enable range
rate measurements

Enable range rate Coordinates
measurements

true [X;y;z;vX;vy;vz]
false [x;y;2]

'Sensor spherical'’

Coordinate dependence on Enable elevation
angle measurements and Enable range rate
measurements

Enable range (Enable Coordinates
rate elevation
measurement |angle
S measurement

S
true true [az;el; rng;

rri

true false [az;rng;rr]
false true [az;el;rng]
false false [az; rng]

2-59

2 Blocks

2-60

MeasurementParameters

Parameter

Definition

Frame

Enumerated type indicating the frame used to
report measurements. When Frame is set to
"rectangular’, detections are reported in
Cartesian coordinates. When Frame is set
'spherical’, detections are reported in
spherical coordinates.

OriginPosition

3-D vector offset of the sensor origin from the ego
vehicle origin. The vector is derived from the
SensorLocation and Height properties
specified in the radarDetectionGenerator.

Orientation

Orientation of the radar sensor coordinate system
with respect to the ego vehicle coordinate
system. The orientation is derived from the Yaw,
Pitch, and Rol1l properties of the
radarDetectionGenerator.

HasVelocity

Indicates whether measurements contain velocity
or range rate components.

HasElevation

Indicates whether measurements contain
elevation components.

The ObjectAttributes property of each detection is a structure with these fields.

Field Definition

TargetIndex Identifier of the actor, ActorID, that generated
the detection. For false alarms, this value is
negative.

SNR Signal-to-noise ratio of the detection. Units are in
dB.

Parameters

Parameters

Sensor Identification

Unique identifier of sensor — Unique sensor identifier

1 (default) | positive integer

Unique sensor identifier, specified as a positive integer. The sensor identifier distinguishes detections
that come from different sensors in a multisensor system. If a model contains multiple sensor blocks
with the same sensor identifier, the Bird's-Eye Scope displays an error.

Example: 5

Required interval between sensor updates (s) — Required time interval

0.1 (default) | positive real scalar

Radar Detection Generator

Required time interval between sensor updates, specified as a positive real scalar. The value of this
parameter must be an integer multiple of the Actors input port data interval. Updates requested
from the sensor between update intervals contain no detections. Units are in seconds.

Sensor Extrinsics

Sensor's (x,y) position (m) — Location of the radar sensor center
[3.4 0] (default) | real-valued 1-by-2 vector

Location of the radar sensor center, specified as a real-valued 1-by-2 vector. The Sensor's (x,y)
position (m) and Sensor's height (m) parameters define the coordinates of the radar sensor with
respect to the ego vehicle coordinate system. The default value corresponds to a radar mounted at
the center of the front grill of a sedan. Units are in meters.

Sensor's height (m) — Radar sensor height above the ground plane
0.2 (default) | positive real scalar

Radar sensor height above the ground plane, specified as a positive real scalar. The height is defined
with respect to the vehicle ground plane. The Sensor's (x,y) position (m) and Sensor's height (m)
parameters define the coordinates of the radar sensor with respect to the ego vehicle coordinate
system. The default value corresponds to a radar mounted at the center of the front grill of a sedan.
Units are in meters.

Example: 0.25

Yaw angle of sensor mounted on ego vehicle (deg) — Yaw angle of sensor
0 (default) | real scalar

Yaw angle of radar sensor, specified as a real scalar. Yaw angle is the angle between the center line of
the ego vehicle and the downrange axis of the radar sensor. A positive yaw angle corresponds to a
clockwise rotation when looking in the positive direction of the z-axis of the ego vehicle coordinate
system. Units are in degrees.

Example: -4.0

Pitch angle of sensor mounted on ego vehicle (deg) — Pitch angle of sensor
0 (default) | real scalar

Pitch angle of sensor, specified as a real scalar. The pitch angle is the angle between the downrange
axis of the radar sensor and the x-y plane of the ego vehicle coordinate system. A positive pitch angle
corresponds to a clockwise rotation when looking in the positive direction of the y-axis of the ego
vehicle coordinate system. Units are in degrees.

Example: 3.0

Roll angle of sensor mounted on ego vehicle (deg) — Roll angle of sensor
0 (default) | real scalar

Roll angle of the radar sensor, specified as a real scalar. The roll angle is the angle of rotation of the
downrange axis of the radar around the x-axis of the ego vehicle coordinate system. A positive roll
angle corresponds to a clockwise rotation when looking in the positive direction of the x-axis of the
coordinate system. Units are in degrees.

Port Settings

Source of output bus name — Source of output bus name
Auto (default) | Property

2-61

2 Blocks

2-62

Source of output bus name, specified as Auto or Property. If you choose Auto, the block will
automatically create a bus name. If you choose Property, specify the bus name using the Specify
an output bus name parameter.

Example: Property

Specify an output bus name — Name of output bus
no default

Name of output bus.

Dependencies

To enable this parameter, set the Source of output bus name parameter to Property.

Detection Reporting

Maximum number of reported detections — Maximum number of reported detections
50 (default) | positive integer

Maximum number of detections reported by the sensor, specified as a positive integer. Detections are
reported in order of increasing distance from the sensor until the maximum number is reached.

Example: 100

Coordinate system used to report detections — Coordinate system of reported
detections
Ego Cartesian (default) | Sensor Cartesian | Sensor Spherical

Coordinate system of reported detections, specified as one of these values:

* Ego Cartesian — Detections are reported in the ego vehicle Cartesian coordinate system.
* Sensor Cartesian— Detections are reported in the sensor Cartesian coordinate system.

* Sensor spherical — Detections are reported in a spherical coordinate system. This coordinate
system is centered at the radar and aligned with the orientation of the radar on the ego vehicle.

Simulate using — Type of simulation to run
Interpreted execution (default) | Code generation

* Interpreted execution — Simulate the model using the MATLAB interpreter. This option
shortens startup time. In Interpreted execution mode, you can debug the source code of the
block.

* Code generation — Simulate the model using generated C/C++ code. The first time you run a
simulation, Simulink generates C/C++ code for the block. The C code is reused for subsequent
simulations as long as the model does not change. This option requires additional startup time.

Measurements
Accuracy Settings

Azimuthal resolution of radar (deg) — Azimuth resolution of radar
4.0 (default) | positive real scalar

Azimuth resolution of the radar, specified as a positive real scalar. The azimuth resolution defines the
minimum separation in azimuth angle at which the radar can distinguish two targets. The azimuth

Radar Detection Generator

resolution is typically the 3dB-downpoint in azimuth angle beamwidth of the radar. Units are in
degrees.

Example: 6.5

Elevation resolution of radar (deg) — Elevation resolution of radar
10.0 (default) | positive real scalar

Elevation resolution of the radar, specified as a positive real scalar. The elevation resolution defines
the minimum separation in elevation angle at which the radar can distinguish two targets. The
elevation resolution is typically the 3dB-downpoint in elevation angle beamwidth of the radar. Units
are in degrees.

Example: 3.5

Dependencies
To enable this parameter, select the Enable elevation angle measurements check box.

Range resolution of radar (m) — Range resolution of radar
2.5 (default) | positive real scalar

Range resolution of the radar, specified as a positive real scalar. The range resolution defines the
minimum separation in range at which the radar can distinguish between two targets. Units are in
meters.

Example: 5.0

Range rate resolution of radar (m/s) — Range rate resolution of the radar
0.5 (default) | positive real scalar

Range rate resolution of the radar, specified as a positive real scalar. The range rate resolution
defines the minimum separation in range rate at which the radar can distinguish between two
targets. Units are in meters per second.

Example: 0.75
Dependencies
To enable this parameter, select the Enable range rate measurements check box.

Bias Settings

Fractional azimuthal bias component of radar — Azimuth bias fraction
0.1 (default) | nonnegative real scalar

Azimuth bias fraction of the radar, specified as a nonnegative real scalar. The azimuth bias is
expressed as a fraction of the azimuth resolution specified in the Azimuthal resolution of radar
(deg) parameter. Units are dimensionless.

Example: 0.3

Fractional elevation bias component of radar — Elevation bias fraction
0.1 (default) | nonnegative real scalar

Elevation bias fraction of the radar, specified as a nonnegative real scalar. The elevation bias is
expressed as a fraction of the elevation resolution specified in the Elevation resolution of radar
(deg) parameter. Units are dimensionless.

2-63

2 Blocks

2-64

Example: 0.2

Dependencies
To enable this parameter, select the Enable elevation angle measurements check box.

Fractional range bias component of radar — Range bias fraction
0.05 (default) | nonnegative real scalar

Range bias fraction of the radar, specified as a nonnegative real scalar. Range bias is expressed as a
fraction of the range resolution specified in the Range resolution of radar (m) parameter. Units are
dimensionless.

Example: 0.15
Fractional range rate bias component of radar — Range rate bias fraction of the

radar
0.05 (default) | nonnegative real scalar

Range rate bias fraction of the radar, specified as a nonnegative real scalar. Range rate bias is
expressed as a fraction of the range rate resolution specified in Range rate resolution of radar (m)
parameter. Units are dimensionless.

Example: 0.2

Dependencies

To enable this parameter, select the Enable range rate measurements check box.

Detector Settings

Total angular field of view for radar (deg) — Field of view of radar sensor
[20 5] (default) | real-valued 1-by-2 vector of positive values

Field of view of radar sensor, specified as a real-valued 1-by-2 vector of positive values, [azfov
elfov]. The field of view defines the angular extent spanned by the sensor. Each component must lie
in the interval (0,180]. Targets outside of the field of view of the radar are not detected. Units are in
degrees.

Example: [14 7]

Maximum detection range (m) — Maximum detection range
150 (default) | positive real scalar

Maximum detection range, specified as a positive real scalar. The radar cannot detect a target beyond
this range. Units are in meters.

Example: 250

Minimum and maximum range rates that can be reported — Minimum and maximum

detection range rates
[-100 100] (default)

real-valued 1-by-2 vector

Minimum and maximum detection range rates, specified as a real-valued 1-by-2 vector. The radar
cannot detect a target outside of this range rate interval. Units are in meters per second.

Example: [-200 200]

Radar Detection Generator

Dependencies
To enable this parameter, select the Enable range rate measurements check box.

Detection probability — Probability of detecting a target
0.9 (default) | positive real scalar less than or equal to 1

Probability of detecting a target, specified as a positive real scalar less than or equal to one. This
quantity defines the probability of detecting target that has a radar cross-section specified by the
Radar cross section at which detection probability is achieved (dBsm) parameter at the
reference detection range specified by the Range where detection probability is achieved (m)
parameter.

Example: 0.95

Rate at which false alarms are reported — False alarm rate
le-6 (default) | positive real scalar

False alarm rate within a radar resolution cell, specified as a positive real scalar in the range [1077,
10-3]. Units are dimensionless.

Example: 1e-5

Range where detection probability is achieved (m): — Reference range for given

probability of detection
100 (default) | positive real scalar

Reference range for a given probability of detection, specified as a positive real scalar. The reference
range is the range when a target having a radar cross-section specified by Radar cross section at
which detection probability is achieved (dBsm) is detected with a probability of specified by
Detection probability. Units are in meters.

Example: 150

Radar cross section at which detection probability is achieved (dBsm) —
Reference radar cross-section for given probability of detection
0.0 (default) | nonnegative real scalar

Reference radar cross-section (RCS) for given probability of detection, specified as a nonnegative real

scalar. The reference RCS is the value at which a target is detected with probability specified by
Detection probability. Units are in dBsm.

Example: 2.0

Measurement Settings

Enable elevation angle measurements — Enable radar to measure elevation
off (default) | on

Select this check box to model a radar that can measure target elevation angles.

Enable range rate measurements — Enable radar to measure range rate
on (default) | off | on

Select this check box to model a radar that can measure target range rate.

2-65

2 Blocks

2-66

Add noise to measurements — Enable adding noise to radar sensor measurements
on (default) | of f

Select this check box to add noise to radar sensor measurements. Otherwise, the measurements are
noise-free. The MeasurementNoise property of each detection is always computed and is not
affected by the value you specify for the Add noise to measurements parameter. By leaving this
check box of f, you can pass the sensor's ground truth measurements into a Multi-Object Tracker
block.

Enable false detections — Enable creating false alarm radar detections
on (default) | of f

Select this check box to enable reporting false alarm radar measurements. Otherwise, only actual
detections are reported.

Random Number Generator Settings

Select method to specify initial seed — Method to specify random number generator
seed
Repeatable (default) | Specify seed | Not repeatable

Method to set the random number generator seed, specified as one of the options in the table.

Option Description

Repeatable The block generates a random initial seed for the
first simulation and reuses this seed for all
subsequent simulations. Select this parameter to
generate repeatable results from the statistical
sensor model. To change this initial seed, at the
MATLAB command prompt, enter: clear all.

Specify seed Specify your own random initial seed for
reproducible results by using the Specify seed
parameter.

Not repeatable The block generates a new random initial seed

after each simulation run. Select this parameter
to generate nonrepeatable results from the
statistical sensor model.

Initial seed — Random number generator seed
0 (default) | nonnegative integer less than 232

Random number generator seed, specified as a nonnegative integer less than 232,
Example: 2001

Dependencies

To enable this parameter, set the Random Number Generator Settings parameter to Specify
seed.

Actor Profiles

Select method to specify actor profiles — Method to specify actor profiles
Parameters (default) | MATLAB expression

Radar Detection Generator

Method to specify actor profiles, specified as Parameters or MATLAB expression. When you select
Parameters, you set the actor profiles using the parameters in the Actor Profiles tab. When you
select MATLAB expression, set the actor profiles using the MATLAB expression for actor
profiles parameter.

MATLAB expression for actor profiles — MATLAB expression for actor profiles
struct('ClassID',0, 'Length',4.7,'Width',1.8, 'Height',1.4, '0OriginOffset’,
[-1.35,0,0]) (default) | MATLAB structure | MATLAB structure array | valid MATLAB expression

MATLAB expression for actor profiles, specified as a MATLAB structure, a MATLAB structure array,
or a valid MATLAB expression that produces such a structure or structure array.

If your Scenario Reader block reads data from a drivingScenario object, to obtain the actor
profiles directly from this object, set this expression to call the actorProfiles function on the
object. For example: actorProfiles(scenario).

Example: struct('ClassID',5, 'Length',5.0, 'Width',2, 'Height',2, 'OriginOffset’,
[_1'551010])

Dependencies

To enable this parameter, set the Select method to specify actor profiles parameter to MATLAB
expression.

Unique identifier for actors — Scenario-defined actor identifier
[] (default) | positive integer | length-L vector of unique positive integers

Scenario-defined actor identifier, specified as a positive integer or length-L vector of unique positive
integers. L must equal the number of actors input into the Actor input port. The vector elements
must match ActorID values of the actors. You can specify Unique identifier for actors as []. In
this case, the same actor profile parameters apply to all actors.

Example: [1,2]

Dependencies

To enable this parameter, set the Select method to specify actor profiles parameter to
Parameters.

User-defined integer to classify actors — User-defined classification identifier
0 (default) | integer | length-L vector of integers

User-defined classification identifier, specified as an integer or length-L vector of integers. When
Unique identifier for actors is a vector, this parameter is a vector of the same length with elements
in one-to-one correspondence to the actors in Unique identifier for actors. When Unique
identifier for actors is empty, [], you must specify this parameter as a single integer whose value
applies to all actors.

Example: 2

Dependencies

To enable this parameter, set the Select method to specify actor profiles parameter to
Parameters.

Length of actors cuboids (m) — Length of cuboid
4.7 (default) | positive real scalar | length-L vector of positive values

2-67

2 Blocks

2-68

Length of cuboid, specified as a positive real scalar or length-L vector of positive values. When
Unique identifier for actors is a vector, this parameter is a vector of the same length with elements
in one-to-one correspondence to the actors in Unique identifier for actors. When Unique
identifier for actors is empty, [], you must specify this parameter as a positive real scalar whose
value applies to all actors. Units are in meters.

Example: 6.3

Dependencies

To enable this parameter, set the Select method to specify actor profiles parameter to
Parameters.

Width of actors cuboids (m) — Width of cuboid
4.7 (default) | positive real scalar | length-L vector of positive values

Width of cuboid, specified as a positive real scalar or length-L vector of positive values. When Unique
identifier for actors is a vector, this parameter is a vector of the same length with elements in one-
to-one correspondence to the actors in Unique identifier for actors. When Unique identifier for
actors is empty, [1, you must specify this parameter as a positive real scalar whose value applies to
all actors. Units are in meters.

Example: 4.7

Dependencies

To enable this parameter, set the Select method to specify actor profiles parameter to
Parameters.

Height of actors cuboids (m) — Height of cuboid
4.7 (default) | positive real scalar | length-L vector of positive values

Height of cuboid, specified as a positive real scalar or length-L vector of positive values. When
Unique identifier for actors is a vector, this parameter is a vector of the same length with elements
in one-to-one correspondence to the actors in Unique identifier for actors. When Unique
identifier for actors is empty, [], you must specify this parameter as a positive real scalar whose
value applies to all actors. Units are in meters.

Example: 2.0

Dependencies

To enable this parameter, set the Select method to specify actor profiles parameter to
Parameters.

Rotational center of actors from bottom center (m) — Rotational center of the actor
{[-1.35,0,01]} (default) | length-L cell array of real-valued 1-by-3 vectors

Rotational center of the actor, specified as a length-L cell array of real-valued 1-by-3 vectors. Each
vector represents the offset of the rotational center of the actor from the bottom-center of the actor.
For vehicles, the offset corresponds to the point on the ground beneath the center of the rear axle.
When Unique identifier for actors is a vector, this parameter is a cell array of vectors with cells in
one-to-one correspondence to the actors in Unique identifier for actors. When Unique identifier
for actors is empty, [], you must specify this parameter as a cell array of one element containing the
offset vector whose values apply to all actors. Units are in meters.

Example: [-1.35, .2, .3]

Radar Detection Generator

Dependencies

To enable this parameter, set the Select method to specify actor profiles parameter to
Parameters.

Radar cross section pattern (dBsm) — Radar cross-section
{[10,10;10,10]} (default) | real-valued Q-by-P matrix | length-L cell array of real-valued Q-by-P
matrices

Radar cross-section (RCS) of actor, specified as a real-valued Q-by-P matrix or length-L cell array of
real-valued Q-by-P matrices. Q is the number of elevation angles specified by the corresponding cell
in the Elevation angles defining RCSPattern (deg) parameter. P is the number of azimuth angles
specified by the corresponding cell in Azimuth angles defining RCSPattern (deg) property. When
Unique identifier for actors is a vector, this parameter is a cell array of matrices with cells in one-
to-one correspondence to the actors in Unique identifier for actors. Q and P can vary in the cell
array. When Unique identifier for actors is empty, [], you must specify this parameter as a cell
array with one element containing a matrix whose values apply to all actors. Units are in dBsm.

Example: [10 14 10; 9 13 9]

Dependencies

To enable this parameter, set the Select method to specify actor profiles parameter to
Parameters.

Azimuth angles defining RCSPattern (deg) — Azimuth angles of radar cross-section
pattern
{[-180 180]} (default) | length-L cell array of real-valued P-length vectors

Azimuth angles of radar cross-section pattern, specified as a length-L cell array of real-valued P-
length vectors . Each vector represents the azimuth angles of the P-columns of the radar cross
section specified in Radar cross section pattern (dBsm). When Unique identifier for actors is a
vector, this parameter is a cell array of vectors with cells in one-to-one correspondence to the actors
in Unique identifier for actors. P can vary in the cell array. When Unique identifier for actors is
empty, [], you must specify this parameter as a cell array with one element containing a vector
whose values apply to all actors. Units are in degrees. Azimuth angles lie in the range -180° to 180°
and must be in strictly increasing order.

When the radar cross sections specified in the cells of Radar cross section pattern (dBsm) all have
the same dimensions, you need only specify a cell array with one element containing the azimuth
angle vector.

Example: [-90:90]

Dependencies

To enable this parameter, set the Select method to specify actor profiles parameter to
Parameters.

Elevation angles defining RCSPattern (deg) — Elevation angles of radar cross-section
pattern
{[-90 901} (default) | length-L cell array of real-valued Q-length vectors

Elevation angles of radar cross-section pattern, specified as a length-L cell array of real-valued Q-
length vectors . Each vector represent the elevation angles of the Q-columns of the radar cross
section specified in Radar cross section pattern (dBsm). When Unique identifier for actors is a

2-69

2 Blocks

2-70

vector, this parameter is a cell array of vectors with cells in one-to-one correspondence to the actors
in Unique identifier for actors. Q can vary in the cell array. When Unique identifier for actors is
empty, [], you must specify this parameter as a cell array with one element containing a vector
whose values apply to all actors. Units are in degrees. Elevation angles lie in the range -90° to 90°
and must be in strictly increasing order.

When the radar cross sections that are specified in the cells of Radar cross section pattern
(dBsm) all have the same dimensions, you need only specify a cell array with one element containing
an elevation angle vector.

Example: [-25:25]

Dependencies

To enable this parameter, set the Select method to specify actor profiles parameter to
Parameters.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also

Apps
Bird's-Eye Scope

Blocks
Detection Concatenation | Lidar Point Cloud Generator | Multi-Object Tracker | Scenario Reader |
Vision Detection Generator

Objects
radarDetectionGenerator

Topics
“Create Nonvirtual Buses” (Simulink)

Introduced in R2017b

Scenario Reader

Scenario Reader

Read driving scenario into model
Library: Automated Driving Toolbox / Driving Scenario and Sensor
Modeling

EgovehiceGoesStraiaht aciors
(Vehicle Coord.}

Description

The Scenario Reader block reads the roads and actors from a scenario file created using the Driving
Scenario Designer app or from a drivingScenario object. The block outputs the poses of actors
in either the coordinate system of the ego vehicle or the world coordinates of the scenario. You can
also output the lane boundaries or output the ego vehicle pose for use in the 3D simulation
environment.

To generate object and lane boundary detections from output actor poses and lane boundaries, pass
the pose and boundary outputs to sensor blocks. Use the synthetic detections generated from these
sensors to test the performance of sensor fusion algorithms, tracking algorithms, and other
automated driving assistance system (ADAS) algorithms. To visualize the performance of these
algorithms, use the Bird's-Eye Scope.

You can read the ego vehicle from the scenario or specify an ego vehicle defined in your model as an
input to the Scenario Reader block. Use this option to test closed-loop vehicle controller algorithms,
such as autonomous emergency braking (AEB), lane keeping assist (LKA), or adaptive cruise control
(ACC).

Limitations

* The Scenario Reader block does not read sensor data from scenario files saved from the Driving
Scenario Designer app. To reproduce sensors in Simulink, in the app, open the scenario file that
contains the sensors. Then, from the app toolstrip, select Export > Export Sensor Simulink
Model. Copy the generated sensor blocks into an existing model. Alternatively, select Export >
Export Simulink Model and start a new model from the generated Scenario Reader block and
sensor blocks.

» Large road networks, including OpenDRIVE road networks, can take up to several minutes to read
into models.

Ports
Input

Ego Vehicle — Ego vehicle pose
Simulink bus containing MATLAB structure

Ego vehicle pose, specified as a Simulink bus containing a MATLAB structure.

The structure must have these fields.

2-71

2 Blocks

2-72

Field Description

ActorID Scenario-defined actor identifier, specified as a
positive integer.

Position Position of actor, specified as a real-valued vector
of the form [x, y, z]. Units are in meters.

Velocity Velocity (v) of actor in the x-, y-, and z-direction,
specified as a real-valued vector of the form [v,,
Vy, V.]. Units are in meters per second.

Roll Roll angle of actor, specified as a real-valued
scalar. Units are in degrees.

Pitch Pitch angle of actor, specified as a real-valued
scalar. Units are in degrees.

Yaw Yaw angle of actor, specified as a real-valued
scalar. Units are in degrees.

AngularVelocity Angular velocity (w) of actor in the x-, y-, and 2-

direction, specified as a real-valued vector of the
form [w,, wy, w,]. Units are in degrees per second.

Output the ego vehicle pose when you are converting actors from ego vehicle coordinates to world
coordinates for use in the 3D simulation environment. For example, see “Visualize Sensor Data from

Unreal Engine Simulation Environment”.

Dependencies

To enable this port, set these parameters in this order:

1 Set Coordinate system of actors output to Vehicle coordinates.

2 Set Source of ego vehicle to Input port.
Output

Actors — Scenario actor poses
Simulink bus containing MATLAB structure

Scenario actor poses, returned as a Simulink bus containing a MATLAB structure.

The structure has these fields.

Field Description Type

NumActors Number of actors Nonnegative integer

Time Current simulation time Real-valued scalar

Actors Actor poses NumActors-length array of
actor pose structures

Each actor pose structure in Actors has these fields.

Field

Description

ActorID

Scenario-defined actor identifier, specified as a
positive integer.

Scenario Reader

Field Description

Position Position of actor, specified as a real-valued vector
of the form [x, y, z]. Units are in meters.

Velocity Velocity (v) of actor in the x-, y-, and z-direction,
specified as a real-valued vector of the form [v,,
vy, V.. Units are in meters per second.

Roll Roll angle of actor, specified as a real-valued
scalar. Units are in degrees.

Pitch Pitch angle of actor, specified as a real-valued
scalar. Units are in degrees.

Yaw Yaw angle of actor, specified as a real-valued
scalar. Units are in degrees.

AngularVelocity Angular velocity (w) of actor in the x-, y-, and 2-
direction, specified as a real-valued vector of the
form [w,, wy, w,]. Units are in degrees per second.

The pose of the ego vehicle is excluded from the Actors array.

To return actor poses from the block, you must run the entire driving scenario simulation to

completion.

Lane Boundaries — Scenario lane boundaries

Simulink bus containing MATLAB structure

Scenario lane boundaries, returned as a Simulink bus containing a MATLAB structure.

The structure has these fields.

Field Description Type

NumLaneBoundaries Number of lane boundaries Nonnegative integer

Time Current simulation time Real scalar

LaneBoundaries Lane boundaries NumLaneBoundaries-length
array of lane boundary
structures

Each lane boundary structure in LaneBoundaries has these fields.

Field

Description

2-73

2 Blocks

Coordinates

Lane boundary coordinates, specified as a real-
valued N-by-3 matrix, where N is the number of
lane boundary coordinates. Lane boundary
coordinates define the position of points on the
boundary at specified longitudinal distances away
from the ego vehicle, along the center of the
road.

* In MATLAB, specify these distances by using
the 'XDistance' name-value pair argument
of the laneBoundaries function.

* In Simulink, specify these distances by using
the Distances from ego vehicle for
computing boundaries (m) parameter of
the Scenario Reader block or the Distance
from parent for computing lane
boundaries parameter of the Simulation 3D
Vision Detection Generator block.

This matrix also includes the boundary
coordinates at zero distance from the ego vehicle.
These coordinates are to the left and right of the
ego-vehicle origin, which is located under the
center of the rear axle. Units are in meters.

Curvature

Lane boundary curvature at each row of the
Coordinates matrix, specified as a real-valued
N-by-1 vector. N is the number of lane boundary
coordinates. Units are in radians per meter.

CurvatureDerivative

Derivative of lane boundary curvature at each
row of the Coordinates matrix, specified as a
real-valued N-by-1 vector. N is the number of lane
boundary coordinates. Units are in radians per
square meter.

HeadingAngle

Initial lane boundary heading angle, specified as
a real scalar. The heading angle of the lane
boundary is relative to the ego vehicle heading.
Units are in degrees.

LateralOffset

Distance of the lane boundary from the ego
vehicle position, specified as a real scalar. An
offset to a lane boundary to the left of the ego
vehicle is positive. An offset to the right of the
ego vehicle is negative. Units are in meters.

2-74

Scenario Reader

BoundaryType Type of lane boundary marking, specified as one
of these values:

* 'Unmarked' — No physical lane marker

exists

*+ 'Solid' — Single unbroken line

* 'Dashed' — Single line of dashed lane
markers

* 'DoubleSolid' — Two unbroken lines
* 'DoubleDashed' — Two dashed lines

 'SolidDashed' — Solid line on the left and a
dashed line on the right

 'DashedSolid' — Dashed line on the left
and a solid line on the right

Strength Saturation strength of the lane boundary
marking, specified as a real scalar from 0 to 1. A
value of @ corresponds to a marking whose color
is fully unsaturated. The marking is gray. A value
of 1 corresponds to a marking whose color is fully
saturated.

Width Lane boundary width, specified as a positive real
scalar. In a double-line lane marker, the same
width is used for both lines and for the space
between lines. Units are in meters.

Length Length of dash in dashed lines, specified as a
positive real scalar. In a double-line lane marker,
the same length is used for both lines.

Space Length of space between dashes in dashed lines,
specified as a positive real scalar. In a dashed
double-line lane marker, the same space is used
for both lines.

The number of returned lane boundary structures depends on the Lane boundaries to output
parameter value.

Dependencies

To enable this port, set these parameters in this order:

1 Set Coordinate system of actors output to Vehicle coordinates.
2 Set Lane boundaries to output to Ego lane boundaries or ALl lane boundaries.

Ego Vehicle — Ego vehicle pose
Simulink bus containing MATLAB structure

Ego vehicle pose, returned as a Simulink bus containing a MATLAB structure.

The structure must contain these fields.

2-75

2 Blocks

2-76

Field Description

ActorID Scenario-defined actor identifier, specified as a
positive integer.

Position Position of actor, specified as a real-valued vector
of the form [x, y, z]. Units are in meters.

Velocity Velocity (v) of actor in the x-, y-, and z-direction,
specified as a real-valued vector of the form [v,,
Vy, V.]. Units are in meters per second.

Roll Roll angle of actor, specified as a real-valued
scalar. Units are in degrees.

Pitch Pitch angle of actor, specified as a real-valued
scalar. Units are in degrees.

Yaw Yaw angle of actor, specified as a real-valued
scalar. Units are in degrees.

AngularVelocity Angular velocity (w) of actor in the x-, y-, and 2-
direction, specified as a real-valued vector of the

form [w,, wy, w,]. Units are in degrees per second.

Dependencies
To enable this port, set these parameters in this order:

1 Set Coordinate system of actors output to Vehicle coordinates.
2 Set Source of ego vehicle to Scenario.
3 Select Output ego vehicle pose.

Parameters

Source of driving scenario — Source of driving scenario
From file (default) | From workspace

Source of driving scenario, specified as one of these options:

* From file — In the Driving Scenario Designer file name parameter, specify the name of a
scenario file that was saved from the Driving Scenario Designer app.

* From workspace — In the MATLAB or model workspace variable name parameter, specify
the name of a MATLAB or model workspace variable that contains a drivingScenario object.

Driving Scenario Designer file name — Scenario file name
EgoVehicleGoesStraight.mat (default) | scenario file on MATLAB search path | path to scenario
file

Scenario file name, specified as a scenario file on the MATLAB search path or as the full path to a
scenario file. A scenario file must be a MAT-file saved from the Driving Scenario Designer app. If
the Source of ego vehicle parameter is set to Scenario, then the scenario must contain an ego
vehicle. Otherwise, the block returns an error during simulation.

If the specified scenario file contains sensors, the block ignores them. To include sensors from the
scenario in your model, see “Tips” on page 2-83.

Scenario Reader

The default scenario file shows an ego vehicle traveling north on a straight, two-lane road, with
another vehicle traveling south in the opposite lane.

To add a scenario file to the MATLAB search path, use the addpath function. For example, this code
adds the set of folders containing prebuilt Euro NCAP scenarios to the MATLAB search path.

path = fullfile(matlabroot, 'toolbox', 'driving', 'drivingdata’,
'"PrebuiltScenarios', '"EuroNCAP');
addpath(genpath(path))

In the Driving Scenario Designer file name parameter, you can then specify the name of any
scenario located in these folders, without having to specify the full file path. For example:
AEB PedestrianChild Nearside 50width.mat.

When you are done using the scenario in your models, you can remove any added folders from the
MATLAB search path by using the rmpath function.

rmpath(genpath(path))

Dependencies
To enable this parameter, set Source of driving scenario to From file.

MATLAB or model workspace variable name — Scenario variable name
scenario (default) | drivingScenario object variable name

Scenario variable name, specified as the name of a MATLAB or model workspace variable that
contains a valid drivingScenario object. If a scenario variable with the same name appears in both
the MATLAB and model workspace, the block uses the variable defined in the model workspace.

If the Source of ego vehicle parameter is set to Scenario, then the drivingScenario object
must contain an ego vehicle. To designate which actor in the object is the ego vehicle, in the Ego
vehicle ActorID parameter, specify the ActorID property value of that actor.

When connecting the Actors output port to Radar Detection Generator and Vision Detection
Generator blocks, update these blocks to obtain the actor profiles directly from the
drivingScenario object. On the Actor Profiles tab of each block, set the Select method to
specify actor profiles parameter to MATLAB expression. Then, set the MATLAB expression for
actor profiles parameter to call the actorProfiles function on the object. For example:
actorProfiles(scenario).

When connecting the Actors output port to Lidar Point Cloud Generator blocks, leave the Source of
actor profiles parameter in these blocks set to the default From Scenario Reader block. With
this option selected, the lidar sensors obtain the actor profiles directly from the scenario read by the
Scenario Reader block.

The default variable name, scenario, is the default name of drivingScenario objects produced by
the MATLAB functions that are exported from the Driving Scenario Designer app. By default, this
variable is not included in the MATLAB or model workspace.

Dependencies
To enable this parameter, set Source of driving scenario to From workspace.

Coordinate system of actors output — Coordinate system of actors output
Vehicle coordinates (default) | World coordinates

2-77

2 Blocks

2-78

Coordinate system of the output actors, specified as one of these values:

* Vehicle coordinates — Coordinates are defined with respect to the ego vehicle. Select this
value when your scenario has only one ego vehicle.

* World coordinates — Coordinates are defined with respect to the driving scenario. Select this
value in multi-agent scenarios that contain more than one ego vehicle. If you select this value,
model visualization using the Bird's-Eye Scope is not supported.

For more details on the vehicle and world coordinate systems, see “Coordinate Systems in Automated
Driving Toolbox”.

Source of ego vehicle — Source of ego vehicle
Scenario (default) | Input port

Source of ego vehicle, specified as one of these options:

* Scenario — Use the ego vehicle defined in the scenario that is specified by the Driving
Scenario Designer file name or MATLAB or model workspace variable name parameter. The
pose of the ego vehicle is excluded from the Actors output port. Actor positions are in vehicle
coordinates, meaning that they are relative to the world coordinate position of the ego vehicle in
the scenario.

Select this option to test open-loop ADAS algorithms, where the ego vehicle behavior is predefined
and does not change as the scenario advances. For an example, see “Test Open-Loop ADAS
Algorithm Using Driving Scenario”.

* Input port — Specify the ego vehicle by using the Ego Vehicle input port. The pose of the ego
vehicle is not included in the Actors output port.

With this option, the ego vehicle in your model must include a starting position that is in world
coordinates. All other actor poses are in vehicle coordinates and are positioned relative to the ego
vehicle. For an example of an ego vehicle with defined position information, see “Lane Keeping
Assist with Lane Detection”. When defining the starting position of the ego vehicle, consider using
the position that is already defined in the scenario. By using this position, if you set Source of
ego vehicle to Scenario and then back to Input port, you do not have to manually change the
starting position.

Select this option to test closed-loop ADAS algorithms, where the ego vehicle reacts to changes as
the scenario advances. For an example, see “Test Closed-Loop ADAS Algorithm Using Driving
Scenario”.

Dependencies
To enable this parameter, set Coordinate system of actors output to Vehicle coordinates.

Ego vehicle ActorID — Actor ID of ego vehicle
1 (default) | positive integer

Actor ID of ego vehicle, specified as a positive integer. Use this parameter to simulate using the ego
vehicle that is read from a drivingScenario object.

* When Source of ego vehicle is set to Scenario, set this parameter to an ActorID value that is
stored in the Actors property of the specified drivingScenario object. To check valid ActorID
values, use this syntax, where scenario is the name of the drivingScenario variable name.

actorIDs = [scenario.Actors.ActorID]

Scenario Reader

* When Source of ego vehicle is set to Input Port, you must set this parameter to the ActorID
value at the Ego Vehicle input port of the block.

Dependencies
To enable this parameter, set these parameters in this order:

1 Set Source of driving scenario to From workspace.
2 Set Coordinate system of actors output to Vehicle coordinates.

Output ego vehicle pose — Output pose of ego vehicle
off (default) | on

Select this parameter to output the pose of the ego vehicle at the Ego Vehicle port.

Dependencies

To enable this parameter, set Coordinate system of actors output to Vehicle coordinates and
Source of ego vehicle to Scenario.

Ego vehicle follows ground — Orient ego vehicle to follow road surface
off (default) | on

Select this parameter to orient the ego vehicle to follow the elevation of the road surface. The block
updates the elevation, roll, pitch, and yaw of the ego vehicle and outputs actors and lane boundaries
relative to the updated ego vehicle coordinates. The block does not update the velocity or angular
velocity of the ego vehicle.

Use this parameter in closed-loop simulations where the elevation of the road network varies.

Note At the junctions of roads that have different elevations and banking angles, the updated ego
vehicle values might not be accurate.

In open-loop simulations, where Source of ego vehicle is set to Scenario, the ego vehicle follows
the elevation specified in the driving scenario.

Dependencies

To enable this parameter, set Coordinate system of actors output to Vehicle coordinates and
Source of ego vehicle to Input port.

Sample time (s) — Sample time of simulation
0.1 (default) | positive real scalar

Sample time of simulation, in seconds, specified as a positive real scalar. Inherited and continuous
sample times are not supported. This sample time is separate from the sample times that the Driving
Scenario Designer app and drivingScenario object use for simulations.

Lane boundaries to output — Lane boundaries to output
None (default) | Ego vehicle lane boundaries | All lane boundaries

Lane boundaries to output, specified as one of these options:

* None — Do not output any lane boundaries.

2-79

2 Blocks

2-80

* Ego vehicle lane boundaries — Output the left and right lane boundaries of the ego vehicle.
* All lane boundaries — Output all lane boundaries of the road on which the ego vehicle is
traveling.

If you select Ego vehicle lane boundaries or ALl lane boundaries, then the block returns
the lane boundaries in the Lane Boundaries output port.

Dependencies
To enable this parameter, set Coordinate system of actors output to Vehicle coordinates.

Distances from ego vehicle for computing boundaries (m) — Distances from ego
vehicle at which to compute lane boundaries
linspace(-150,150,101) (default) | N-element real-valued vector

Distances from the ego vehicle at which to compute the lane boundaries, specified as an N-element
real-valued vector. N is the number of distance values. When detecting lanes from rear-facing
cameras, specify negative distances. When detecting lanes from front-facing cameras, specify positive
distances. Units are in meters.

By default, the block computes 101 lane boundaries over the range from 150 meters behind the ego
vehicle to 150 meters ahead of the ego vehicle. These distances are linearly spaced 3 meters apart.

Example: 1:0.1:10 computes a lane boundary every 0.1 meters over the range from 1 to 10 meters
ahead of the ego vehicle.

Dependencies

To enable this parameter, set Lane boundaries to output to Ego vehicle lane boundaries or
All lane boundaries.

Location of boundaries on lane markings — Lane boundary location
Center of lane markings (default) | Inner edge of lane markings

Lane boundary location on the lane markings, specified as one of the options in this table.

Lane Boundary Location Description Example
Center of lane markings |Lane boundaries are centered |A three-lane road has four lane
on the lane markings. boundaries: one per lane
marking.

Scenario Reader

Lane Boundary Location Description Example

Inner edge of lane Lane boundaries are placed at |A three-lane road has six lane

markings the inner edges of the lane boundaries: two per lane.
markings.

Dependencies

To enable this parameter, set Lane boundaries to output to Ego vehicle lane boundaries or
A1l lane boundaries.

Source of actors bus name — Source of name for actor poses bus
Auto (default) | Property

Source of the name for the actor poses bus returned in the Actors output port, specified as one of
these options:

* Auto — The block automatically creates an actor poses bus name.
* Property — Specify the actor poses bus name by using the Actors bus name parameter.

Actors bus name — Name of actor poses bus
valid bus name

Name of the actor poses bus returned in the Actors output port, specified as a valid bus name.
Dependencies
To enable this parameter, set Source of actors bus name to Property.

Source of lane boundaries bus name — Source of name for lane boundaries bus
Auto (default) | Property

Source of the name for the lane boundaries bus returned in the Lane Boundaries output port,
specified as one of these options:

* Auto — The block automatically creates a lane boundaries bus name.

* Property — Specify the lane boundaries bus name by using the Lane boundaries bus name
parameter.

Dependencies

To enable this parameter, set Lane boundaries to output to Ego vehicle lane boundaries or
All lane boundaries.

Lane boundaries bus name — Name of lane boundaries bus
valid bus name

2-81

2 Blocks

2-82

Name of the lane boundaries bus returned in the Lane Boundaries output port, specified as a valid
bus name.

Dependencies
To enable this parameter:

1 Set Lane boundaries to output to Ego vehicle lane boundaries or All lane
boundaries.
2 Set Source of lane boundaries bus name to Property.

Source of ego vehicle bus name — Source of name for ego vehicle pose bus
Auto (default) | Property

Source of the name for the ego vehicle pose bus returned in the Ego Vehicle output port, specified as
one of these options:
* Auto — The block automatically creates an ego vehicle pose bus name.

* Property — Specify the ego vehicle pose bus name by using the Ego vehicle bus name
parameter.

Dependencies
To enable this parameter, select the Output ego vehicle pose parameter.

Ego vehicle bus name — Name of ego vehicle pose bus
valid bus name

Name of the ego vehicle pose bus returned in the Ego Vehicle output port, specified as a valid bus
name.

Dependencies

To enable this parameter, select the Output ego vehicle pose parameter and set Source of ego
vehicle bus name to Property.

Show coordinate labels — Display coordinate system of inputs and outputs
on (default) | of f

Select this parameter to display the coordinate system of block inputs and outputs on the Scenario
Reader block in the block diagram.

* The Ego Vehicle input and output are always in world coordinates.

* The Lane Boundaries output is always in vehicle coordinates.

* You can return the Actors output in either vehicle or world coordinates, depending on the
Coordinate system of actors output parameter selection.

Simulate using — Type of simulation to run
Interpreted execution (default) | Code generation

* Interpreted execution — Simulate the model using the MATLAB interpreter. This option

shortens startup time. In Interpreted execution mode, you can debug the source code of the
block.

Scenario Reader

* Code generation — Simulate the model using generated C/C++ code. The first time you run a
simulation, Simulink generates C/C++ code for the block. The C code is reused for subsequent
simulations as long as the model does not change. This option requires additional startup time.

Tips

» For best results, use only one active Scenario Reader block per model. To use multiple Scenario
Reader blocks in one model, switch between the blocks by specifying them in a variant subsystem.

* To test your algorithm on variations of a driving scenario, you can update the scenario between
simulations.

« Ifthe source of the scenario is a scenario file, open the scenario file in the Driving Scenario
Designer app, update the parameters, and resave the file.

« Ifthe source of the scenario is a drivingScenario object, update the object in the MATLAB
or model workspace. Alternatively, import the object into the app, modify the scenario in the
app, and then generate a new object from the app. For more details, see “Create Driving
Scenario Variations Programmatically”.

» To switch between scenarios with different parameter settings, you can use Simulink Test™
software. For an example, see “Automate Testing for Highway Lane Following”.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Usage notes and limitations:

* When a model is in rapid accelerator mode, the Scenario Reader block does not automatically
regenerate code based on changes made to the driving scenario between simulations. To
regenerate these changes, manually delete the Simulink project folder, slprj, that was generated
from the previous simulation. Then, rerun the simulation. Alternatively, either change modes or
disable code generation by setting the Simulate using parameter to Interpreted execution.

* The Driving Scenario Designer file name and MATLAB or model workspace variable name
parameters are character vectors. The limitations described in “Encoding of Characters in Code
Generation” (Simulink) apply to these parameters.

See Also

Apps
Bird's-Eye Scope | Driving Scenario Designer

Blocks

Cuboid To 3D Simulation | Detection Concatenation | Lidar Point Cloud Generator | Multi-Object
Tracker | Radar Detection Generator | Vehicle To World | Vision Detection Generator | World To
Vehicle

Topics

“Coordinate Systems in Automated Driving Toolbox”
“Create Nonvirtual Buses” (Simulink)

2-83

2 Blocks

Introduced in R2019a

2-84

Simulation 3D Scene Configuration

Simulation 3D Scene Configuration

Scene configuration for 3D simulation environment
Library: Automated Driving Toolbox / Simulation 3D

Vehicle Dynamics Blockset / Vehicle Scenarios / Sim3D /

Sim3D Core
Description

The Simulation 3D Scene Configuration block implements a 3D simulation environment that is
rendered by using the Unreal Engine from Epic Games. Automated Driving Toolbox integrates the 3D
simulation environment with Simulink so that you can query the world around the vehicle and
virtually test perception, control, and planning algorithms.

You can simulate from a set of prebuilt scenes or from your own custom scenes. Scene customization
requires the Automated Driving Toolbox Interface for Unreal Engine 4 Projects support package. For
more details, see “Customize Unreal Engine Scenes for Automated Driving”.

Note The Simulation 3D Scene Configuration block must execute after blocks that send data to the
3D environment and before blocks that receive data from the 3D environment. To verify the execution
order of such blocks, right-click the blocks and select Properties. Then, on the General tab, confirm
these Priority settings:

» For blocks that send data to the 3D environment, such as Simulation 3D Vehicle with Ground
Following blocks, Priority must be set to - 1. That way, these blocks prepare their data before the
3D environment receives it.

* For the Simulation 3D Scene Configuration block in your model, Priority must be set to 0.

» For blocks that receive data from the 3D environment, such as Simulation 3D Camera blocks,
Priority must be set to 1. That way, the 3D environment can prepare the data before these blocks
receive it.

For more information about execution order, see “How Unreal Engine Simulation for Automated
Driving Works”.

Parameters
Scene Selection

Scene source — Source of scene
Default Scenes (default) | Unreal Executable|Unreal Editor

Source of the scene in which to simulate, specified as one of the options in the table.

2-85

2 Blocks

Option Description

Default Scenes Simulate in one of the default, prebuilt scenes
specified in the Scene name parameter.

Unreal Executable Simulate in a scene that is part of an Unreal
Engine executable file. Specify the executable file
in the File name parameter. Specify the scene in
the Scene parameter.

Select this option to simulate in custom scenes
that have been packaged into an executable for
faster simulation.

Unreal Editor Simulate in a scene that is part of an Unreal
Engine project (.uproject) file and is open in
the Unreal® Editor. Specify the project file in the
Project parameter.

Select this option when developing custom
scenes. By clicking Open Unreal Editor, you can
co-simulate within Simulink and the Unreal
Editor and modify your scenes based on the
simulation results.

Scene name — Name of prebuilt 3D scene
Straight road (default) | Curved road | Parking lot | Double lane change | Open
surface |US city block |US highway |Virtual Mcity | Large parking lot

Name of the prebuilt 3D scene in which to simulate, specified as one of these options. For details
about a scene, see its listed corresponding reference page.

* Straight road — Straight Road

* Curved road — Curved Road

* Parking lot — Parking Lot

* Double lane change — Double Lane Change

* Open surface — Open Surface

* US city block — US City Block

* US highway — US Highway

* Virtual Mcity — Virtual Mcity

* Large parking lot — Large Parking Lot

The Automated Driving Toolbox Interface for Unreal Engine 4 Projects contains customizable versions

of these scenes. For details about customizing scenes, see “Customize Unreal Engine Scenes for
Automated Driving”.

Dependencies
To enable this parameter, set Scene source to Default Scenes.

File name — Name of Unreal Engine executable file
VehicleSimulation.exe (default) | valid executable file name

2-86

Simulation 3D Scene Configuration

Name of the Unreal Engine executable file, specified as a valid executable file name. You can either
browse for the file or specify the full path to the file, using backslashes. To specify a scene from this
file to simulate in, use the Scene parameter.

By default, File name is set to VehicleSimulation.exe, which is on the MATLAB search path.
Example: C:\Local\WindowsNoEditor\AutoVrtlEnv.exe

Dependencies
To enable this parameter, set Scene source to Unreal Executable.

Scene — Name of scene from executable file
/Game/Maps/HwStrght (default) | path to valid scene name

Name of a scene from the executable file specified by the File name parameter, specified as a path to
a valid scene name.

When you package scenes from an Unreal Engine project into an executable file, the Unreal Editor
saves the scenes to an internal folder within the executable file. This folder is located at the path /
Game/Maps. Therefore, you must prepend /Game/Maps to the scene name. You must specify this
path using forward slashes. For the file name, do not specify the . umap extension. For example, if the
scene from the executable in which you want to simulate is named myScene. umap, specify Scene

as /Game/Maps/myScene.

Alternatively, you can browse for the scene in the corresponding Unreal Engine project. These scenes
are typically saved to the Content/Maps subfolder of the project. This subfolder contains all the
scenes in your project. The scenes have the extension . umap. Select one of the scenes that you
packaged into the executable file specified by the File name parameter. Use backward slashes and
specify the .umap extension for the scene.

By default, Scene is set to /Game/Maps/HwStrght, which is a scene from the default
VehicleSimulation.exe executable file specified by the File name parameter. This scene
corresponds to the prebuilt Straight Road scene.

Example: /Game/Maps/scenel
Example: C:\Local\myProject\Content\Maps\scenel.umap

Dependencies
To enable this parameter, set Scene source to Unreal Executable.

Project — Name of Unreal Engine project file
valid project file name

Name of the Unreal Engine project file, specified as a valid project file name. You can either browse
for the file or specify the full path to the file, using backslashes. The file must contain no spaces. To
simulate scenes from this project in the Unreal Editor, click Open Unreal Editor. If you have an
Unreal Editor session open already, then this button is disabled.

To run the simulation, in Simulink, click Run. Before you click Play in the Unreal Editor, wait until
the Diagnostic Viewer window displays this confirmation message:

In the Simulation 3D Scene Configuration block, you set the scene source to 'Unreal Editor'.
In Unreal Editor, select 'Play' to view the scene.

This message confirms that Simulink has instantiated the scene actors, including the vehicles and
cameras, in the Unreal Engine 3D environment. If you click Play before the Diagnostic Viewer

2-87

2 Blocks

window displays this confirmation message, Simulink might not instantiate the actors in the Unreal
Editor.

Dependencies
To enable this parameter, set Scene source to Unreal Editor.
Scene Parameters

Scene view — Configure placement of virtual camera that displays scene
Scene 0rigin (default) | vehicle name

Configure the placement of the virtual camera that displays the scene during simulation.

» If your model contains no Simulation 3D Vehicle with Ground Following blocks, then during
simulation, you view the scene from a camera positioned at the scene origin.

» If your model contains at least one vehicle block, then by default, you view the scene from behind
the first vehicle that was placed in your model. To change the view to a different vehicle, set
Scene view to the name of that vehicle. The Scene view parameter list is populated with all the
Name parameter values of the vehicle blocks contained in your model.

If you add a Simulation 3D Scene Configuration block to your model before adding any vehicle blocks,
the virtual camera remains positioned at the scene. To reposition the camera to follow a vehicle,
update this parameter.

When Scene view is set to a vehicle name, during simulation, you can change the location of the
camera around the vehicle.

To smoothly change the camera views, use these key commands.

Key Camera View
Back left
Back

Back right
Left

Internal

Right

Front left
Front

OO IO | WN| -~

Front right

2-88

Simulation 3D Scene Configuration

Key

Camera View

Overhead

View Animated GIF

For additional camera controls, use these key commands.

Key

Camera Control

Tab

Cycle the view between all vehicles in the scene.

View Animated GIF

2-89

2 Blocks

2-90

Key

Camera Control

Mouse scroll wheel

Control the camera distance from the vehicle.

View Animated GIF

Toggle a camera lag effect on or off. When you enable the lag effect, the
camera view includes:

» Position lag, based on the vehicle translational acceleration
* Rotation lag, based on the vehicle rotational velocity

This lag enables improved visualization of overall vehicle acceleration and
rotation.

View Animated GIF

Simulation 3D Scene Configuration

Key Camera Control

F Toggle the free camera mode on or off. When you enable the free camera
mode, you can use the mouse to change the pitch and yaw of the camera.
This mode enables you to orbit the camera around the vehicle.

View Animated GIF

Sample time — Sample time of visualization engine
1/60 (default) | scalar greater than or equal to 0.01

Sample time, T, of the visualization engine, specified as a scalar greater than or equal to 0.01. Units
are in seconds.

The graphics frame rate of the visualization engine is the inverse of the sample time. For example, if

Sample time is 1/60, then the visualization engine solver tries to achieve a frame rate of 60 frames

per second. However, the real-time graphics frame rate is often lower due to factors such as graphics
card performance and model complexity.

By default, blocks that receive data from the visualization engine, such as Simulation 3D Camera
blocks, inherit this sample rate.

Display 3D simulation window — Unreal Engine visualization
on (default) | of f

Select whether to run simulations in the 3D visualization environment without visualizing the results,
that is, in headless mode.

Consider running in headless mode in these cases:

* You want to run multiple 3D simulations in parallel to test models in different Unreal Engine
scenarios.

* You want to capture sensor data to analyze in MATLAB but do not need to watch the visualization.

Dependencies

To enable this parameter, set Scene source to Default Scenes or Unreal Executable.

2-91

2 Blocks

See Also

Simulation 3D Camera | Simulation 3D Fisheye Camera | Simulation 3D Lidar | Simulation 3D
Probabilistic Radar | Simulation 3D Vehicle with Ground Following | Simulation 3D Vision Detection
Generator

Topics

“Unreal Engine Simulation for Automated Driving”

“Unreal Engine Simulation Environment Requirements and Limitations”
“How Unreal Engine Simulation for Automated Driving Works”
“Customize Unreal Engine Scenes for Automated Driving”

Introduced in R2019b

2-92

Simulation 3D Vehicle with Ground Following

Simulation 3D Vehicle with Ground Following

Implement vehicle that follows ground in 3D environment

Library: Automated Driving Toolbox / Simulation 3D
Vehicle Dynamics Blockset / Vehicle Scenarios / Sim3D /
Sim3D Vehicle / Components

X

_ T
A

T
T R
Oy

Yaw

Description

The Simulation 3D Vehicle with Ground Following block implements a vehicle with four wheels in a
3D simulation environment. This environment is rendered using the Unreal Engine from Epic Games.
The block uses the input (X, Y) position and yaw angle of the vehicle to adjust the elevation, roll
angle, and pitch angle of the vehicle so that it follows the ground terrain. The block determines the
vehicle velocity and heading and adjusts the steering angle and rotation for each wheel. Use this
block for automated driving applications.

To use this block, ensure that the Simulation 3D Scene Configuration block is in your model. If you
set the Sample time parameter of the Simulation 3D Vehicle with Ground Following block to -1, the
block inherits the sample time specified in the Simulation 3D Scene Configuration block.

The block input uses the vehicle Z-up right-handed (RH) Cartesian coordinate system defined in SAE
J670 [1] and ISO 8855 [2]. The coordinate system is inertial and initially aligned with the vehicle
geometric center:

* The X-axis is along the longitudinal axis of the vehicle and points forward.

» The Y-axis is along the lateral axis of the vehicle and points to the left.

* The Z-axis points upward.

The yaw, pitch, and roll angles of the Z-axis, Y-axis, and X-axis, respectively, are positive in the
clockwise directions, when looking in the positive directions of these axes. Vehicles are placed in the

world coordinate system of the scenes. For more details, see “Coordinate Systems for Unreal Engine
Simulation in Automated Driving Toolbox”.

Note The Simulation 3D Vehicle with Ground Following block must execute before the Simulation 3D
Scene Configuration block. That way, the Simulation 3D Vehicle with Ground Following block
prepares the signal data before the Unreal Engine 3D visualization environment receives it. To check
the block execution order, right-click the blocks and select Properties. On the General tab, confirm
these Priority settings:

» Simulation 3D Scene Configuration — 0
* Simulation 3D Vehicle with Ground Following — -1

For more information about execution order, see “How Unreal Engine Simulation for Automated
Driving Works”.

2-93

2 Blocks

2-94

Limitations

* The Bird's-Eye Scope is unable to find ground truth signals, such as roads, lanes, and actors,
from the Simulation 3D Scene Configuration block.

Ports
Input

X — Longitudinal position of vehicle
scalar

Longitudinal position of the vehicle along the X-axis of the scene. X is in the inertial Z-up coordinate
system. Units are in meters.

The X value of the Initial position [X, Y, Z] (im) parameter must match the value of this port at the
start of simulation.

To specify multiple positions at port X along an entire vehicle path, first define a time series of X
waypoints in MATLAB. Then, feed these waypoints to X by using a From Workspace block. To learn
how to select and specify waypoints, see the “Select Waypoints for Unreal Engine Simulation”
example.

Y — Lateral position of vehicle
scalar

Lateral position of the vehicle along the Y-axis of the scene. Y is in the inertial Z-up coordinate
system. Units are in meters.

The Y value of the Initial position [X, Y, Z] (m) parameter must match the value of this port at the
start of simulation.

To specify multiple positions at port Y along an entire vehicle path, first define a time series of Y
waypoints in MATLAB. Then, feed these waypoints to Y by using a From Workspace block. To learn
how to select and specify waypoints, see the “Select Waypoints for Unreal Engine Simulation”
example.

Yaw — Yaw orientation angle of vehicle
scalar

Yaw orientation angle of the vehicle along the Z-axis of the scene. Yaw is in the Z-up coordinate
system. Units are in degrees.

The yaw value of the Initial rotation [Roll, Pitch, Yaw] (deg) parameter must match the value of
this port at the start of simulation.

To specify multiple orientation angles at port Yaw along an entire vehicle path, first define a time
series of yaw waypoints in MATLAB. Then, feed these waypoints to Yaw by using a From Workspace
block. To learn how to select and specify waypoints, see the “Select Waypoints for Unreal Engine
Simulation” example.

Output

Location — Location of vehicle
real-valued 1-by-3 vector

Simulation 3D Vehicle with Ground Following

(X, Y, Z) location of the vehicle in the scene, returned as a real-valued 1-by-3 vector. This location is
based on the vehicle origin, which is on the ground, at the geometric center of the vehicle. Location
values are in the inertial Z-up world coordinate system. Units are in meters.

Dependencies

To enable this port, on the Ground Truth tab, select OQutput location (m) and orientation (rad).

Data Types: double

Orientation — Orientation of vehicle
real-valued 1-by-3 vector

Yaw, pitch, and roll orientation angles of the vehicle about the Z-axis, Y-axis, and X-axes of the scene,
respectively, returned as a real-valued 1-by-3 vector. This orientation is based on the vehicle origin,
which is on the ground, at the geometric center of the vehicle. Orientation values are in the inertial
Z-up coordinate system. Units are in radians.

Dependencies

To enable this port, on the Ground Truth tab, select OQutput location (m) and orientation (rad).

Data Types: double

Parameters
Vehicle Parameters

Type — Type of vehicle
Muscle car (default) | Sedan | Sport utility vehicle|Small pickup truck |Hatchback |
Box truck

Select the type of vehicle. To obtain the dimensions of each vehicle type, see these reference pages:

* Muscle car — Muscle Car

* Sedan — Sedan

* Sport utility vehicle — Sport Utility Vehicle
* Small pickup truck — Small Pickup Truck

* Hatchback — Hatchback

* Box truck —Box Truck

Color — Color of vehicle
Red (default) | Orange | Yellow | Green | Blue | Black | White | Silver

Select the color of the vehicle.

Initial position [X, Y, Z] (m) — Initial vehicle position
[0, 0, O] (default) | real-valued 1-by-3 vector

Initial vehicle position along the X-axis, Y-axis, and Z-axis of the scene. This position is in the inertial
Z-up coordinate system. Units are in meters.

Set the X and Y values of this parameter to match the X and Y input port values at the start of
simulation.

2-95

2 Blocks

2-96

Initial rotation [Roll, Pitch, Yaw] (deg) — Initial angle of vehicle rotation
[0, O, O] (default) | real-valued 1-by-3 vector

Initial angle of vehicle rotation. The angle of rotation is defined by the roll, pitch, and yaw of the
vehicle. Units are in degrees.

Set the yaw value of this parameter to match the Yaw input port value at the start of simulation.

Name — Name of vehicle
SimulinkVehiclel (default) | vehicle name

Name of vehicle. By default, when you use the block in your model, the block sets the Name
parameter to SimulinkVehicleX. The value of X depends on the number of Simulation 3D Vehicle
with Ground Following blocks that you have in your model.

The vehicle name appears as a selection in the Parent name parameter of any Automated Driving
Toolbox Simulation 3D sensor blocks within the same model as the vehicle. With the Parent name
parameter, you can select the vehicle on which to mount the sensor.

Sample time — Sample time
-1 (default) | positive scalar

Sample time, T, in seconds. The graphics frame rate is the inverse of the sample time.

If you set the sample time to -1, the block uses the sample time specified in the Simulation 3D Scene
Configuration block.

Ground Truth

Output location (m) and orientation (rad) — Output location and orientation of
vehicle
off (default) | on

Select this parameter to output the location and orientation of the vehicle at the Location and
Orientation ports, respectively.

References

[1] Vehicle Dynamics Standards Committee. Vehicle Dynamics Terminology. SAE J670. Warrendale,
PA: Society of Automotive Engineers, 2008.

[2] Technical Committee. Road vehicles — Vehicle dynamics and road-holding ability — Vocabulary.
ISO 8855:2011. Geneva, Switzerland: International Organization for Standardization, 2011.

See Also
Simulation 3D Camera | Simulation 3D Fisheye Camera | Simulation 3D Lidar | Simulation 3D
Probabilistic Radar | Simulation 3D Scene Configuration | Simulation 3D Vision Detection Generator

Topics

“How Unreal Engine Simulation for Automated Driving Works”
“Coordinate Systems for Unreal Engine Simulation in Automated Driving Toolbox”

Introduced in R2019b

Simulation 3D Camera

Simulation 3D Camera

Camera sensor model with lens in 3D simulation environment
Library: Automated Driving Toolbox / Simulation 3D

m

Description

The Simulation 3D Camera block provides an interface to a camera with a lens in a 3D simulation
environment. This environment is rendered using the Unreal Engine from Epic Games. The sensor is
based on the ideal pinhole camera model, with a lens added to represent a full camera model,
including lens distortion. For more details, see “Algorithms” on page 2-108.

If you set Sample time to -1, the block uses the sample time specified in the Simulation 3D Scene
Configuration block. To use this sensor, you must include a Simulation 3D Scene Configuration block
in your model.

The block outputs images captured by the camera during simulation. You can use these images to
visualize and verify your driving algorithms. In addition, on the Ground Truth tab, you can select
options to output the ground truth data for developing depth estimation and semantic segmentation
algorithms. You can also output the location and orientation of the camera in the world coordinate
system of the scene. The image shows the block with all ports enabled.

Image [»
Depth }
Labals [¢
P
P

Location

Orientation

The table summarizes the ports and how to enable them.

2-97

2 Blocks

2-98

Port Description Parameter for Sample
Enabling Port Visualization
Image Outputs an RGB image captured by [n/a
the camera ﬂﬂl
Depth Outputs a depth map with values Output depth
from 0 m to 1000 meters
Labels Outputs a semantic segmentation Output semantic
map of label IDs that correspond to |segmentation
objects in the scene
Location Outputs the location of the camera |Output location |n/a
in the world coordinate system (m) and
orientation (rad)
Orientation Outputs the orientation of the Output location |n/a

camera in the world coordinate
system

(m) and
orientation (rad)

Simulation 3D Camera

Note The Simulation 3D Scene Configuration block must execute before the Simulation 3D Camera
block. That way, the Unreal Engine 3D visualization environment prepares the data before the
Simulation 3D Camera block receives it. To check the block execution order, right-click the blocks and
select Properties. On the General tab, confirm these Priority settings:

* Simulation 3D Scene Configuration — 0
* Simulation 3D Camera — 1

For more information about execution order, see “How Unreal Engine Simulation for Automated
Driving Works”.

Ports
Output

Image — 3D output camera image
m-by-n-by-3 array of RGB triplet values

3D output camera image, returned as an m-by-n-by-3 array of RGB triplet values. m is the vertical
resolution of the image, and n is the horizontal resolution of the image.

Data Types: int8 | uint8

Depth — Object depth from 0 m to 1000 m
m-by-n array of object depths

Object depth for each pixel in the image, output as an m-by-n array. m is the vertical resolution of the
image, and n is the horizontal resolution of the image. Depth is in the range from 0 to 1000 meters.

Dependencies

To enable this port, on the Ground Truth tab, select Output depth.
Data Types: double

Labels — Label identifiers
m-by-n array of label identifiers

Label identifier for each pixel in the image, output as an m-by-n array. m is the vertical resolution of
the image, and n is the horizontal resolution of the image.

The table shows the object IDs used in the default scenes that are selectable from the Simulation 3D
Scene Configuration block. If you are using a custom scene, in the Unreal Editor, you can assign new
object types to unused IDs. If a scene contains an object that does not have an assigned ID, that
object is assigned an ID of 0. The detection of lane markings is not supported.

ID Type

0 None/default
1 Building

2 Not used

3 Other

4 Not used

2-99

2 Blocks

2-100

ID Type

5 Pole

6 Not used

7 Road

8 Sidewalk

9 Vegetation

10 Vehicle

11 Not used

12 Generic traffic sign

13 Stop sign

14 Yield sign

15 Speed limit sign

16 Weight limit sign

17-18 Not used

19 Left and right arrow warning sign
20 Left chevron warning sign
21 Right chevron warning sign
22 Not used

23 Right one-way sign

24 Not used

25 School bus only sign
26-38 Not used

39 Crosswalk sign

40 Not used

41 Traffic signal

42 Curve right warning sign
43 Curve left warning sign
44 Up right arrow warning sign
45-47 Not used

48 Railroad crossing sign

49 Street sign

50 Roundabout warning sign
51 Fire hydrant

52 Exit sign

53 Bike lane sign

54-56 Not used

57 Sky

Simulation 3D Camera

ID Type

58 Curb

59 Flyover ramp
60 Road guard rail
61-66 Not used

67 Deer

68-70 Not used

71 Barricade

72 Motorcycle
73-255 Not used

Dependencies
To enable this port, on the Ground Truth tab, select Output semantic segmentation.

Data Types: uint8

Location — Sensor location
real-valued 1-by-3 vector

Sensor location along the X-axis, Y-axis, and Z-axis of the scene. The Location values are in the world
coordinates of the scene. In this coordinate system, the Z-axis points up from the ground. Units are in
meters.

Dependencies

To enable this port, on the Ground Truth tab, select Output location (m) and orientation (rad).

Data Types: double

Orientation — Sensor orientation
real-valued 1-by-3 vector

Roll, pitch, and yaw sensor orientation about the X-axis, Y-axis, and Z-axis of the scene. The
Orientation values are in the world coordinates of the scene. These values are positive in the
clockwise direction when looking in the positive directions of these axes. Units are in radians.

Dependencies

To enable this port, on the Ground Truth tab, select Output location (m) and orientation (rad).

Data Types: double

Parameters
Mounting

Sensor identifier — Unique sensor identifier
1 (default) | positive integer

Unique sensor identifier, specified as a positive integer. In a multisensor system, the sensor identifier
distinguishes between sensors. When you add a new sensor block to your model, the Sensor

2-101

2 Blocks

2-102

identifier of that block is N + 1. N is the highest Sensor identifier value among existing sensor
blocks in the model.

Example: 2

Parent name — Name of parent to which sensor is mounted
Scene 0Origin (default) | vehicle name

Name of the parent to which the sensor is mounted, specified as Scene 0Origin or as the name of a
vehicle in your model. The vehicle names that you can select correspond to the Name parameters of
the Simulation 3D Vehicle with Ground Following blocks in your model. If you select Scene 0Origin,
the block places a sensor at the scene origin.

Example: SimulinkVehiclel

Mounting location — Sensor mounting location
Origin (default) | Front bumper | Rear bumper |Right mirror |Left mirror |Rearview
mirror | Hood center | Roof center

Sensor mounting location.

* When Parent name is Scene 0rigin, the block mounts the sensor to the origin of the scene.
You can set the Mounting location to 0rigin only. During simulation, the sensor remains
stationary.

* When Parent name is the name of a vehicle (for example, SimulinkVehiclel) the block mounts
the sensor to one of the predefined mounting locations described in the table. During simulation,
the sensor travels with the vehicle.

Vehicle Mounting Location Description Orientation Relative to
Vehicle Origin [Roll, Pitch,
Yaw] (deg)

Origin Forward-facing sensor mounted ([0, 0, 0]

to the vehicle origin, which is on
the ground, at the geometric
center of the vehicle (see
“Coordinate Systems for Unreal
Engine Simulation in Automated
Driving Toolbox”)

Simulation 3D Camera

Vehicle Mounting Location

Description Orientation Relative to
Vehicle Origin [Roll, Pitch,
Yaw] (deg)

Front bumper

to the front bumper

Forward-facing sensor mounted ([0, 0, 0]

Rear bumper Backward-facing sensor [0, 0, 180]
mounted to the rear bumper
——
Downward-facing sensor [0, -90, 0]

Right mirror

mounted to the right side-view
mirror

2-103

2 Blocks

Vehicle Mounting Location Description Orientation Relative to
Vehicle Origin [Roll, Pitch,
Yaw] (deg)
Left mirror Downward-facing sensor [0, -90, 0]
mounted to the left side-view
mirror
|
Rearview mirror Forward-facing sensor mounted |[0, 0, 0]

to the rearview mirror, inside
the vehicle

Hood center Forward-facing sensor mounted ([0, 0, 0]
to the center of the hood

2-104

Simulation 3D Camera

Vehicle Mounting Location Description Orientation Relative to
Vehicle Origin [Roll, Pitch,
Yaw] (deg)

Roof center Forward-facing sensor mounted ([0, 0, 0]

to the center of the roof

Roll, pitch, and yaw are clockwise-positive when looking in the positive direction of the X-axis, Y-axis,
and Z-axis, respectively. When looking at a vehicle from the top down, the yaw angle (that is, the
orientation angle) is counterclockwise-positive, because you are looking in the negative direction of
the axis.

The (X, Y, Z) mounting location of the sensor relative to the vehicle depends on the vehicle type. To
specify the vehicle type, use the Type parameter of the Simulation 3D Vehicle with Ground Following
block to which you are mounting the sensor. To obtain the (X, Y, Z) mounting locations for a vehicle
type, see the reference page for that vehicle.

To determine the location of the sensor in world coordinates, open the sensor block. Then, on the
Ground Truth tab, select Output location (m) and orientation (rad) and inspect the data from
the Location output port.

Specify offset — Specify offset from mounting location
off (default) | on

Select this parameter to specify an offset from the mounting location by using the Relative
translation [X, Y, Z] (m) and Relative rotation [Roll, Pitch, Yaw] (deg) parameters.

Relative translation [X, Y, Z] (m) — Translation offset relative to mounting location
[0, 0, O] (default) | real-valued 1-by-3 vector

Translation offset relative to the mounting location of the sensor, specified as a real-valued 1-by-3
vector of the form [X, Y, Z]. Units are in meters.

If you mount the sensor to a vehicle by setting Parent name to the name of that vehicle, then X, Y,
and Z are in the vehicle coordinate system, where:
* The X-axis points forward from the vehicle.

» The Y-axis points to the left of the vehicle, as viewed when looking in the forward direction of the
vehicle.

* The Z-axis points up.

2-105

2 Blocks

The origin is the mounting location specified in the Mounting location parameter. This origin is
different from the vehicle origin, which is the geometric center of the vehicle.

If you mount the sensor to the scene origin by setting Parent name to Scene Origin, then X, Y,
and Z are in the world coordinates of the scene.

For more details about the vehicle and world coordinate systems, see “Coordinate Systems for Unreal
Engine Simulation in Automated Driving Toolbox”.
Example: [0,0,0.01]

Dependencies
To enable this parameter, select Specify offset.

Relative rotation [Roll, Pitch, Yaw] (deg) — Rotational offset relative to mounting
location
[0, 0, O] (default) | real-valued 1-by-3 vector

Rotational offset relative to the mounting location of the sensor, specified as a real-valued 1-by-3
vector of the form [Roll, Pitch, Yaw] . Roll, pitch, and yaw are the angles of rotation about the X-, Y-,
and Z-axes, respectively. Units are in degrees.

If you mount the sensor to a vehicle by setting Parent name to the name of that vehicle, then X, Y,
and Z are in the vehicle coordinate system, where:
* The X-axis points forward from the vehicle.

* The Y-axis points to the left of the vehicle, as viewed when looking in the forward direction of the
vehicle.

* The Z-axis points up.

* Roll, pitch, and yaw are clockwise-positive when looking in the forward direction of the X-axis, Y-
axis, and Z-axis, respectively. If you view a scene from a 2D top-down perspective, then the yaw
angle (also called the orientation angle) is counterclockwise-positive because you are viewing the
scene in the negative direction of the Z-axis.

The origin is the mounting location specified in the Mounting location parameter. This origin is
different from the vehicle origin, which is the geometric center of the vehicle.

If you mount the sensor to the scene origin by setting Parent name to Scene 0Origin, thenX, Y,
and Z are in the world coordinates of the scene.

For more details about the vehicle and world coordinate systems, see “Coordinate Systems for Unreal
Engine Simulation in Automated Driving Toolbox”.

Example: [0,0,10]

Dependencies
To enable this parameter, select Specify offset.

Sample time — Sample time
-1 (default) | positive scalar

Sample time of the block in seconds, specified as a positive scalar. The 3D simulation environment
frame rate is the inverse of the sample time.

2-106

Simulation 3D Camera

If you set the sample time to -1, the block inherits its sample time from the Simulation 3D Scene
Configuration block.

Parameters

These intrinsic camera parameters are equivalent to the properties of a cameraIntrinsics object.
To obtain the intrinsic parameters for your camera, use the Camera Calibrator app.

Focal length (pixels) — Focal length of camera
[1109, 1109] (default) | 1-by-2 positive integer vector

Focal length of the camera, specified as a 1-by-2 positive integer vector of the form [fx, fy]. Units are

in pixels.
fx=F X sx
fy=Fxsy
where:

* Fis the focal length in world units, typically millimeters.
* [sx, sy] are the number of pixels per world unit in the x and y direction, respectively.

This parameter is equivalent to the FocalLength property of a cameraIntrinsics object.

Optical center (pixels) — Optical center of camera
[640, 360] (default) | 1-by-2 positive integer vector

Optical center of the camera, specified as a 1-by-2 positive integer vector of the form [cx,cy]. Units
are in pixels.

This parameter is equivalent to the PrincipalPoint property of a cameraIntrinsics object.

Image size (pixels) — Image size produced by camera
[720, 1280] (default) | 1-by-2 positive integer vector

Image size produced by the camera, specified as a 1-by-2 positive integer vector of the form
[mrows,ncols]. Units are in pixels.

This parameter is equivalent to the ImageSize property of a cameralntrinsics object.

Radial distortion coefficients — Radial distortion coefficients
[0, O] (default) | real-valued 1-by-2 nonnegative vector | real-valued 1-by-3 nonnegative vector

Radial distortion coefficients, specified as a real-valued 1-by-2 or 1-by-3 nonnegative vector. Radial
distortion occurs when light rays bend more than the edges of a lens than they do at its optical
center. The distortion is greater when the lens is smaller. The block calculates the radial-distorted
location of a point. Units are dimensionless.

This parameter is equivalent to the RadialDistortion property of a cameraIntrinsics object.

Tangential distortion coefficients — Tangential distortion coefficients
[0, O] (default) | real-valued 1-by-2 nonnegative vector

Tangential distortion coefficients, specified as a real-valued 1-by-2 nonnegative vector. Tangential

distortion occurs when the lens and the image plane are not parallel. The coordinates are expressed
in world units. Units are dimensionless.

2-107

2 Blocks

2-108

This parameter is equivalent to the TangentialDistortion property of a cameralntrinsics
object.

Axis skew — Skew angle of camera axes
0 (default) | nonnegative scalar

Skew angle of the camera axes, specified as a nonnegative scalar. If the X-axis and Y-axis are exactly

perpendicular, then the skew must be 0. Units are dimensionless.
This parameter is equivalent to the Skew property of a cameraIntrinsics object.
Ground Truth

Output depth — Output depth map
off (default) | on

Select this parameter to output a depth map at the Depth port.

Output semantic segmentation — Output semantic segmentation map of label IDs
off (default) | on

Select this parameter to output a semantic segmentation map of label IDs at the Labels port.
Output location (m) and orientation (rad) — Output location and orientation of
sensor

off (default) | on

Select this parameter to output the location and orientation of the sensor at the Location and
Orientation ports, respectively.

Tips

» To visualize the camera images that are output by the Image port, use a Video Viewer or To Video

Display block.

To learn how to visualize the depth and semantic segmentation maps that are output by the Depth
and Labels ports, see the “Depth and Semantic Segmentation Visualization Using Unreal Engine

Simulation” example.

* Because the Unreal Engine can take a long time to start between simulations, consider logging
the signals that the sensors output. You can then use this data to develop perception algorithms in

MATLAB. See “Configure a Signal for Logging” (Simulink).

You can also save image data as a video by using a To Multimedia File block. For an example of

this setup, see “Design Lane Marker Detector Using Unreal Engine Simulation Environment”.

Algorithms

The block uses the camera model proposed by Jean-Yves Bouguet [1]. The model includes:

* The pinhole camera model [2]
* Lens distortion [3]

Simulation 3D Camera

The pinhole camera model does not account for lens distortion because an ideal pinhole camera does
not have a lens. To accurately represent a real camera, the full camera model used by the block
includes radial and tangential lens distortion.

For more details, see “What Is Camera Calibration?” (Computer Vision Toolbox)

References

[1] Bouguet, J. Y. Camera Calibration Toolbox for Matlab. http://www.vision.caltech.edu/bouguetj/
calib doc

[2] Zhang, Z. "A Flexible New Technique for Camera Calibration." IEEE Transactions on Pattern
Analysis and Machine Intelligence. Vol. 22, No. 11, 2000, pp. 1330-1334.

[3] Heikkila, J., and O. Silven. “A Four-step Camera Calibration Procedure with Implicit Image
Correction.” IEEE International Conference on Computer Vision and Pattern Recognition.
1997.

See Also

Blocks

Simulation 3D Lidar | Simulation 3D Probabilistic Radar | Simulation 3D Fisheye Camera | Simulation
3D Scene Configuration | Simulation 3D Vehicle with Ground Following | Simulation 3D Vision
Detection Generator

Apps
Camera Calibrator

Objects
cameralntrinsics

Topics

“Unreal Engine Simulation for Automated Driving”

“Coordinate Systems for Unreal Engine Simulation in Automated Driving Toolbox”
“Choose a Sensor for Unreal Engine Simulation”

“What Is Camera Calibration?” (Computer Vision Toolbox)

“Depth Estimation From Stereo Video” (Computer Vision Toolbox)

“Semantic Segmentation Using Deep Learning” (Computer Vision Toolbox)

Introduced in R2019b

2-109

2 Blocks

2-110

Simulation 3D Fisheye Camera

Fisheye camera sensor model in 3D simulation environment

Library: Automated Driving Toolbox / Simulation 3D
@
Description

The Simulation 3D Fisheye Camera block provides an interface to a camera with a fisheye lens in a
3D simulation environment. This environment is rendered using the Unreal Engine from Epic Games.
The sensor is based on the fisheye camera model proposed by Scaramuzza [1] on page 2-117. The
block outputs an image with the specified camera distortion and size. You can also output the location
and orientation of the camera in the world coordinate system of the scene.

If you set Sample time to -1, the block uses the sample time specified in the Simulation 3D Scene
Configuration block. To use this sensor, you must include a Simulation 3D Scene Configuration block
in your model.

Note The Simulation 3D Scene Configuration block must execute before the Simulation 3D Fisheye
Camera block. That way, the Unreal Engine 3D visualization environment prepares the data before
the Simulation 3D Fisheye Camera block receives it. To check the block execution order, right-click
the blocks and select Properties. On the General tab, confirm these Priority settings:

* Simulation 3D Scene Configuration — 0
* Simulation 3D Fisheye Camera — 1

For more information about execution order, see “How Unreal Engine Simulation for Automated
Driving Works”.

Ports

Output

Image — 3D output camera image
m-by-n-by-3 array of RGB triplet values

3D output camera image, returned as an m-by-n-by-3 array of RGB triplet values. m is the vertical
resolution of the image, and n is the horizontal resolution of the image.

Data Types: int8 | uint8

Location — Sensor location
real-valued 1-by-3 vector

Sensor location along the X-axis, Y-axis, and Z-axis of the scene. The Location values are in the world
coordinates of the scene. In this coordinate system, the Z-axis points up from the ground. Units are in
meters.

Simulation 3D Fisheye Camera

Dependencies

To enable this port, on the Ground Truth tab, select Output location (m) and orientation (rad).
Data Types: double

Orientation — Sensor orientation
real-valued 1-by-3 vector

Roll, pitch, and yaw sensor orientation about the X-axis, Y-axis, and Z-axis of the scene. The
Orientation values are in the world coordinates of the scene. These values are positive in the
clockwise direction when looking in the positive directions of these axes. Units are in radians.

Dependencies

To enable this port, on the Ground Truth tab, select Output location (m) and orientation (rad).

Data Types: double

Parameters
Mounting

Sensor identifier — Unique sensor identifier
1 (default) | positive integer

Unique sensor identifier, specified as a positive integer. In a multisensor system, the sensor identifier
distinguishes between sensors. When you add a new sensor block to your model, the Sensor
identifier of that block is N + 1. N is the highest Sensor identifier value among existing sensor
blocks in the model.

Example: 2

Parent name — Name of parent to which sensor is mounted
Scene 0rigin (default) | vehicle name

Name of the parent to which the sensor is mounted, specified as Scene 0Origin or as the name of a
vehicle in your model. The vehicle names that you can select correspond to the Name parameters of
the Simulation 3D Vehicle with Ground Following blocks in your model. If you select Scene 0Origin,
the block places a sensor at the scene origin.

Example: SimulinkVehiclel
Mounting location — Sensor mounting location

Origin (default) | Front bumper | Rear bumper |Right mirror | Left mirror |Rearview
mirror | Hood center | Roof center

Sensor mounting location.

* When Parent name is Scene 0rigin, the block mounts the sensor to the origin of the scene.
You can set the Mounting location to Origin only. During simulation, the sensor remains
stationary.

* When Parent name is the name of a vehicle (for example, SimulinkVehiclel) the block mounts
the sensor to one of the predefined mounting locations described in the table. During simulation,
the sensor travels with the vehicle.

2-111

2 Blocks

2-112

Vehicle Mounting Location

Description

Orientation Relative to
Vehicle Origin [Roll, Pitch,
Yaw] (deg)

Origin

Forward-facing sensor mounted
to the vehicle origin, which is on
the ground, at the geometric
center of the vehicle (see
“Coordinate Systems for Unreal
Engine Simulation in Automated
Driving Toolbox”)

[0, 0, 0]

Front bumper

Forward-facing sensor mounted
to the front bumper

[0, 0, 0]

Simulation 3D Fisheye Camera

Vehicle Mounting Location

Description

Orientation Relative to
Vehicle Origin [Roll, Pitch,
Yaw] (deg)

Rear bumper

Backward-facing sensor
mounted to the rear bumper

[0, 0, 180]

Right mirror

Downward-facing sensor
mounted to the right side-view

mirror

[0, -90, 0]

Left mirror

Downward-facing sensor
mounted to the left side-view

mirror

[0, -90, 0]

2-113

2 Blocks

Vehicle Mounting Location Description Orientation Relative to
Vehicle Origin [Roll, Pitch,
Yaw] (deg)

Rearview mirror Forward-facing sensor mounted ([0, 0, 0]

to the rearview mirror, inside
the vehicle

Hood center Forward-facing sensor mounted |[0, 0, 0]
to the center of the hood

Roof center Forward-facing sensor mounted |[0, 0, 0]
to the center of the roof

Roll, pitch, and yaw are clockwise-positive when looking in the positive direction of the X-axis, Y-axis,
and Z-axis, respectively. When looking at a vehicle from the top down, the yaw angle (that is, the

2-114

Simulation 3D Fisheye Camera

orientation angle) is counterclockwise-positive, because you are looking in the negative direction of
the axis.

The (X, Y, Z) mounting location of the sensor relative to the vehicle depends on the vehicle type. To
specify the vehicle type, use the Type parameter of the Simulation 3D Vehicle with Ground Following
block to which you are mounting the sensor. To obtain the (X, Y, Z) mounting locations for a vehicle
type, see the reference page for that vehicle.

To determine the location of the sensor in world coordinates, open the sensor block. Then, on the
Ground Truth tab, select Output location (m) and orientation (rad) and inspect the data from
the Location output port.

Specify offset — Specify offset from mounting location
off (default) | on

Select this parameter to specify an offset from the mounting location by using the Relative
translation [X, Y, Z] (m) and Relative rotation [Roll, Pitch, Yaw] (deg) parameters.

Relative translation [X, Y, Z] (m) — Translation offset relative to mounting location
[0, 0, O] (default) | real-valued 1-by-3 vector

Translation offset relative to the mounting location of the sensor, specified as a real-valued 1-by-3
vector of the form [X, Y, Z]. Units are in meters.

If you mount the sensor to a vehicle by setting Parent name to the name of that vehicle, then X, Y,
and Z are in the vehicle coordinate system, where:
* The X-axis points forward from the vehicle.

* The Y-axis points to the left of the vehicle, as viewed when looking in the forward direction of the
vehicle.

* The Z-axis points up.

The origin is the mounting location specified in the Mounting location parameter. This origin is
different from the vehicle origin, which is the geometric center of the vehicle.

If you mount the sensor to the scene origin by setting Parent name to Scene 0Origin, then X, Y,
and Z are in the world coordinates of the scene.

For more details about the vehicle and world coordinate systems, see “Coordinate Systems for Unreal
Engine Simulation in Automated Driving Toolbox”.

Example: [0,0,0.01]

Dependencies

To enable this parameter, select Specify offset.

Relative rotation [Roll, Pitch, Yaw] (deg) — Rotational offset relative to mounting
location

[0, 0, O] (default) | real-valued 1-by-3 vector

Rotational offset relative to the mounting location of the sensor, specified as a real-valued 1-by-3
vector of the form [Roll, Pitch, Yaw] . Roll, pitch, and yaw are the angles of rotation about the X-, Y-,
and Z-axes, respectively. Units are in degrees.

2-115

2 Blocks

2-116

If you mount the sensor to a vehicle by setting Parent name to the name of that vehicle, then X, Y,
and Z are in the vehicle coordinate system, where:
* The X-axis points forward from the vehicle.

* The Y-axis points to the left of the vehicle, as viewed when looking in the forward direction of the
vehicle.

* The Z-axis points up.

* Roll, pitch, and yaw are clockwise-positive when looking in the forward direction of the X-axis, Y-
axis, and Z-axis, respectively. If you view a scene from a 2D top-down perspective, then the yaw
angle (also called the orientation angle) is counterclockwise-positive because you are viewing the
scene in the negative direction of the Z-axis.

The origin is the mounting location specified in the Mounting location parameter. This origin is
different from the vehicle origin, which is the geometric center of the vehicle.

If you mount the sensor to the scene origin by setting Parent name to Scene Origin, then X, Y,
and Z are in the world coordinates of the scene.

For more details about the vehicle and world coordinate systems, see “Coordinate Systems for Unreal
Engine Simulation in Automated Driving Toolbox”.

Example: [0,0,10]

Dependencies
To enable this parameter, select Specify offset.

Sample time — Sample time
-1 (default) | positive scalar

Sample time of the block in seconds, specified as a positive scalar. The 3D simulation environment
frame rate is the inverse of the sample time.

If you set the sample time to -1, the block inherits its sample time from the Simulation 3D Scene
Configuration block.

Parameters

These intrinsic camera parameters are equivalent to the properties of a fisheyeIntrinsics object.
To obtain the intrinsic parameters for your camera, use the Camera Calibrator app.

Distortion center (pixels) — Center of distortion
[640, 360] (default) | real-valued 1-by-2 vector

Center of distortion, specified as real-valued 2-element vector. Units are in pixels.

Image size (pixels) — Image size produced by camera
[720, 1280] (default) | real-valued 1-by-2 vector of positive integers

Image size produced by the camera, specified as a real-valued 1-by-2 vector of positive integers of the
form [mrows,ncols]. Units are in pixels.

Mapping coefficients — Polynomial coefficients for projection function
[320, 0, 0, O] (default) | real-valued 1-by-4 vector

Simulation 3D Fisheye Camera

Polynomial coefficients for the projection function described by Scaramuzza's Taylor model [1],
specified as a real-valued 1-by-4 vector of the form [a@ a2 a3 a4].

Example: [320, -0.001, 0, 0]

Stretch matrix — Transforms point from sensor plane to camera plane
[1, O; O, 1] (default) | real-valued 2-by-2 matrix

Transforms a point from the sensor plane to a pixel in the camera image plane. The misalignment
occurs during the digitization process when the lens is not parallel to sensor.

Example: [0, 1; 0, 1]
Ground Truth

Output location (m) and orientation (rad) — Output location and orientation of
sensor
of f (default) | on

Select this parameter to output the location and orientation of the sensor at the Location and
Orientation ports, respectively.

Tips
» To visualize the camera images that are output by the Image port, use a Video Viewer or To Video
Display block.

* Because the Unreal Engine can take a long time to start up between simulations, consider logging
the signals that the sensors output. You can then use this data to develop perception algorithms in
MATLAB. See “Configure a Signal for Logging” (Simulink).

You can also save image data as a video by using a To Multimedia File block. For an example of
this setup, see “Design Lane Marker Detector Using Unreal Engine Simulation Environment”.

References

[1] Scaramuzza, D., A. Martinelli, and R. Siegwart. "A Toolbox for Easy Calibrating Omindirectional
Cameras." Proceedings to IEEE International Conference on Intelligent Robots and Systems
(IROS 2006). Beijing, China, October 7-15, 2006.

See Also

Blocks

Simulation 3D Camera | Simulation 3D Lidar | Simulation 3D Probabilistic Radar | Simulation 3D
Scene Configuration | Simulation 3D Vehicle with Ground Following | Simulation 3D Vision Detection
Generator

Apps
Camera Calibrator

Objects
fisheyelIntrinsics

Topics
“Unreal Engine Simulation for Automated Driving”

2-117

2 Blocks

“Coordinate Systems for Unreal Engine Simulation in Automated Driving Toolbox”
“Choose a Sensor for Unreal Engine Simulation”
“Fisheye Calibration Basics” (Computer Vision Toolbox)

Introduced in R2019b

2-118

Simulation 3D Lidar

Simulation 3D Lidar

Lidar sensor model in 3D simulation environment
Library: Automated Driving Toolbox / Simulation 3D

Description

The Simulation 3D Lidar block provides an interface to the lidar sensor in a 3D simulation
environment. This environment is rendered using the Unreal Engine from Epic Games. The block
returns a point cloud with the specified field of view and angular resolution. You can also output the
distances from the sensor to object points. In addition, you can output the location and orientation of
the sensor in the world coordinate system of the scene.

If you set Sample time to -1, the block uses the sample time specified in the Simulation 3D Scene
Configuration block. To use this sensor, ensure that the Simulation 3D Scene Configuration block is in
your model.

Note The Simulation 3D Scene Configuration block must execute before the Simulation 3D Lidar
block. That way, the Unreal Engine 3D visualization environment prepares the data before the
Simulation 3D Lidar block receives it. To check the block execution order, right-click the blocks and
select Properties. On the General tab, confirm these Priority settings:

» Simulation 3D Scene Configuration — 0
* Simulation 3D Lidar — 1

For more information about execution order, see “How Unreal Engine Simulation for Automated
Driving Works”.

Ports

Output

Point cloud — Point cloud data
m-by-n-by-3 array of positive real-valued [x, y, z] points

Point cloud data, returned as an m-by-n-by 3 array of positive, real-valued [x, y, z] points. m and n
define the number of points in the point cloud, as shown in this equation:

Vrov _ Hrov
X
Vres = Hges

where:

* Vgov is the vertical field of view of the lidar, in degrees, as specified by the Vertical field of view
(deg) parameter.

2-119

2 Blocks

2-120

* Vges is the vertical angular resolution of the lidar, in degrees, as specified by the Vertical
resolution (deg) parameter.

* Hrgoy is the horizontal field of view of the lidar, in degrees, as specified by the Horizontal field of
view (deg) parameter.

* Hpggs is the horizontal angular resolution of the lidar, in degrees, as specified by the Horizontal
resolution (deg) parameter.

Each m-by-n entry in the array specifies the x, y, and z coordinates of a detected point in the sensor
coordinate system. If the lidar does not detect a point at a given coordinate, then x, y, and z are
returned as NaN.

You can create a point cloud from these returned points by using point cloud functions in a MATLAB
Function block. For a list of point cloud processing functions, see “Lidar Processing”. For an example
that uses these functions, see “Design Lidar SLAM Algorithm Using Unreal Engine Simulation
Environment”.

Data Types: single

Distance — Distance to object points
m-by-n positive real-valued matrix

Distance to object points measured by the lidar sensor, returned as an m-by-n positive real-valued
matrix. Each m-by-n value in the matrix corresponds to an [, y, z] coordinate point returned by the
Point cloud output port.

Dependencies

To enable this port, on the Parameters tab, select Distance outport.

Data Types: single

Location — Sensor location
real-valued 1-by-3 vector

Sensor location along the X-axis, Y-axis, and Z-axis of the scene. The Location values are in the world
coordinates of the scene. In this coordinate system, the Z-axis points up from the ground. Units are in
meters.

Dependencies

To enable this port, on the Ground Truth tab, select OQutput location (m) and orientation (rad).

Data Types: double

Orientation — Sensor orientation
real-valued 1-by-3 vector

Roll, pitch, and yaw sensor orientation about the X-axis, Y-axis, and Z-axis of the scene. The
Orientation values are in the world coordinates of the scene. These values are positive in the
clockwise direction when looking in the positive directions of these axes. Units are in radians.

Dependencies

To enable this port, on the Ground Truth tab, select Output location (m) and orientation (rad).

Data Types: double

Simulation 3D Lidar

Parameters
Mounting

Sensor identifier — Unique sensor identifier
1 (default) | positive integer

Unique sensor identifier, specified as a positive integer. In a multisensor system, the sensor identifier
distinguishes between sensors. When you add a new sensor block to your model, the Sensor
identifier of that block is N + 1. N is the highest Sensor identifier value among existing sensor
blocks in the model.

Example: 2

Parent name — Name of parent to which sensor is mounted
Scene 0rigin (default) | vehicle name

Name of the parent to which the sensor is mounted, specified as Scene 0Origin or as the name of a
vehicle in your model. The vehicle names that you can select correspond to the Name parameters of
the Simulation 3D Vehicle with Ground Following blocks in your model. If you select Scene 0Origin,
the block places a sensor at the scene origin.

Example: SimulinkVehiclel

Mounting location — Sensor mounting location
Origin (default) | Front bumper | Rear bumper |Right mirror | Left mirror |Rearview
mirror | Hood center | Roof center

Sensor mounting location.

* When Parent name is Scene 0rigin, the block mounts the sensor to the origin of the scene.
You can set the Mounting location to 0rigin only. During simulation, the sensor remains
stationary.

* When Parent name is the name of a vehicle (for example, SimulinkVehiclel) the block mounts
the sensor to one of the predefined mounting locations described in the table. During simulation,
the sensor travels with the vehicle.

2-121

2 Blocks

2-122

Vehicle Mounting Location

Description

Orientation Relative to
Vehicle Origin [Roll, Pitch,
Yaw] (deg)

Origin

Forward-facing sensor mounted
to the vehicle origin, which is on
the ground, at the geometric
center of the vehicle (see
“Coordinate Systems for Unreal
Engine Simulation in Automated
Driving Toolbox”)

[0, 0, 0]

Front bumper

Forward-facing sensor mounted
to the front bumper

[0, 0, 0]

Simulation 3D Lidar

Vehicle Mounting Location

Description

Orientation Relative to
Vehicle Origin [Roll, Pitch,
Yaw] (deg)

Rear bumper

Backward-facing sensor
mounted to the rear bumper

[0, 0, 180]

Right mirror

Downward-facing sensor
mounted to the right side-view

mirror

[0, -90, 0]

Left mirror

Downward-facing sensor
mounted to the left side-view

mirror

[0, -90, 0]

2-123

2 Blocks

Vehicle Mounting Location Description Orientation Relative to
Vehicle Origin [Roll, Pitch,
Yaw] (deg)

Rearview mirror Forward-facing sensor mounted ([0, 0, 0]

to the rearview mirror, inside
the vehicle

Hood center Forward-facing sensor mounted |[0, 0, 0]
to the center of the hood

Roof center Forward-facing sensor mounted |[0, 0, 0]
to the center of the roof

Roll, pitch, and yaw are clockwise-positive when looking in the positive direction of the X-axis, Y-axis,
and Z-axis, respectively. When looking at a vehicle from the top down, the yaw angle (that is, the

2-124

Simulation 3D Lidar

orientation angle) is counterclockwise-positive, because you are looking in the negative direction of
the axis.

The (X, Y, Z) mounting location of the sensor relative to the vehicle depends on the vehicle type. To
specify the vehicle type, use the Type parameter of the Simulation 3D Vehicle with Ground Following
block to which you are mounting the sensor. To obtain the (X, Y, Z) mounting locations for a vehicle
type, see the reference page for that vehicle.

To determine the location of the sensor in world coordinates, open the sensor block. Then, on the
Ground Truth tab, select Output location (m) and orientation (rad) and inspect the data from
the Location output port.

Specify offset — Specify offset from mounting location
off (default) | on

Select this parameter to specify an offset from the mounting location by using the Relative
translation [X, Y, Z] (m) and Relative rotation [Roll, Pitch, Yaw] (deg) parameters.

Relative translation [X, Y, Z] (m) — Translation offset relative to mounting location
[0, 0, O] (default) | real-valued 1-by-3 vector

Translation offset relative to the mounting location of the sensor, specified as a real-valued 1-by-3
vector of the form [X, Y, Z]. Units are in meters.

If you mount the sensor to a vehicle by setting Parent name to the name of that vehicle, then X, Y,
and Z are in the vehicle coordinate system, where:
* The X-axis points forward from the vehicle.

* The Y-axis points to the left of the vehicle, as viewed when looking in the forward direction of the
vehicle.

* The Z-axis points up.

The origin is the mounting location specified in the Mounting location parameter. This origin is
different from the vehicle origin, which is the geometric center of the vehicle.

If you mount the sensor to the scene origin by setting Parent name to Scene 0Origin, then X, Y,
and Z are in the world coordinates of the scene.

For more details about the vehicle and world coordinate systems, see “Coordinate Systems for Unreal
Engine Simulation in Automated Driving Toolbox”.

Example: [0,0,0.01]

Dependencies

To enable this parameter, select Specify offset.

Relative rotation [Roll, Pitch, Yaw] (deg) — Rotational offset relative to mounting
location

[0, 0, O] (default) | real-valued 1-by-3 vector

Rotational offset relative to the mounting location of the sensor, specified as a real-valued 1-by-3

vector of the form [Roll, Pitch, Yaw] . Roll, pitch, and yaw are the angles of rotation about the X-, Y-,
and Z-axes, respectively. Units are in degrees.

2-125

2 Blocks

2-126

If you mount the sensor to a vehicle by setting Parent name to the name of that vehicle, then X, Y,
and Z are in the vehicle coordinate system, where:

* The X-axis points forward from the vehicle.

» The Y-axis points to the left of the vehicle, as viewed when looking in the forward direction of the
vehicle.

* The Z-axis points up.

* Roll, pitch, and yaw are clockwise-positive when looking in the forward direction of the X-axis, Y-
axis, and Z-axis, respectively. If you view a scene from a 2D top-down perspective, then the yaw
angle (also called the orientation angle) is counterclockwise-positive because you are viewing the
scene in the negative direction of the Z-axis.

The origin is the mounting location specified in the Mounting location parameter. This origin is
different from the vehicle origin, which is the geometric center of the vehicle.

If you mount the sensor to the scene origin by setting Parent name to Scene 0Origin, then X, Y,
and Z are in the world coordinates of the scene.

For more details about the vehicle and world coordinate systems, see “Coordinate Systems for Unreal

Engine Simulation in Automated Driving Toolbox”.
Example: [0,0,10]

Dependencies
To enable this parameter, select Specify offset.

Sample time — Sample time
-1 (default) | positive scalar

Sample time of the block in seconds, specified as a positive scalar. The 3D simulation environment
frame rate is the inverse of the sample time.

If you set the sample time to -1, the block inherits its sample time from the Simulation 3D Scene
Configuration block.

Parameters

Detection range (m) — Maximum distance measured by lidar sensor
120 (default) | positive scalar

Maximum distance measured by the lidar sensor, specified as a positive scalar. Points outside this
range are ignored. Units are in meters.

Range resolution (m) — Resolution of lidar sensor range
0.002 (default) | positive real scalar

Resolution of the lidar sensor range, in meters, specified as a positive real scalar. The range
resolution is also known as the quantization factor. The minimal value of this factor is Dyapge / 2%,
where D ;4. is the maximum distance measured by the lidar sensor, as specified in the Detection
range (m) parameter.

Vertical field of view (deg) — Vertical field of view
40 (default) | positive scalar

Simulation 3D Lidar

Vertical field of view of the lidar sensor, specified as a positive scalar. Units are in degrees.

Vertical resolution (deg) — Vertical angular resolution
1.25 (default) | positive scalar

Vertical angular resolution of the lidar sensor, specified as a positive scalar. Units are in degrees.

Horizontal field of view (deg) — Horizontal field of view
360 (default) | positive scalar

Horizontal field of view of the lidar sensor, specified as a positive scalar. Units are in degrees.

Horizontal resolution (deg) — Horizontal angular (azimuth) resolution
0.16 (default) | positive scalar

Horizontal angular (azimuth) resolution of the lidar sensor, specified as a positive scalar. Units are in
degrees.

Distance outport — Output distance to measured object points
off (default) | on

Select this parameter to output the distance to measured object points at the Distance port.
Ground Truth

Output location (m) and orientation (rad) — Output location and orientation of
sensor
off (default) | on

Select this parameter to output the location and orientation of the sensor at the Location and
Orientation ports, respectively.

Tips
» To visualize point clouds that are output by the Point cloud port, you can either:
* Use a pcplayer object in a MATLAB Function block. For an example of this visualization

setup, see “Design Lidar SLAM Algorithm Using Unreal Engine Simulation Environment”.

+ Use the Bird's-Eye Scope. For more details, see “Visualize Sensor Data from Unreal Engine
Simulation Environment”.

* The Unreal Engine can take a long time to start up between simulations, consider logging the
signals that the sensors output. You can then use this data to develop perception algorithms in
MATLAB. See “Configure a Signal for Logging” (Simulink).

See Also

Apps
Bird's-Eye Scope

Objects
pcplayer | pointCloud

Topics
“Unreal Engine Simulation for Automated Driving”

2-127

2 Blocks

“Coordinate Systems for Unreal Engine Simulation in Automated Driving Toolbox”
“Choose a Sensor for Unreal Engine Simulation”
“Lidar Processing”

Introduced in R2019b

2-128

Simulation 3D Probabilistic Radar

Simulation 3D Probabilistic Radar

Probabilistic radar sensor model in 3D simulation environment
Library: Automated Driving Toolbox / Simulation 3D

D))

Detections [

B

Description

The Simulation 3D Probabilistic Radar block provides an interface to the probabilistic radar sensor in
a 3D simulation environment. This environment is rendered using the Unreal Engine from Epic
Games. You can specify the radar model and accuracy, bias, and detection parameters. The block uses
the sample time to capture the radar detections and outputs a list of object detection reports. To
configure the probabilistic radar signatures of actors in the 3D environment across all radars in your
model, use a Simulation 3D Probabilistic Radar Configuration block.

If you set Sample time to -1, the block uses the sample time specified in the Simulation 3D Scene
Configuration block. To use this sensor, you must include a Simulation 3D Scene Configuration block
in your model.

Note The Simulation 3D Scene Configuration block must execute before the Simulation 3D
Probabilistic Radar block. That way, the Unreal Engine 3D visualization environment prepares the
data before the Simulation 3D Probabilistic Radar block receives it. To check the block execution
order, right-click the blocks and select Properties. On the General tab, confirm these Priority
settings:

* Simulation 3D Scene Configuration — 0
* Simulation 3D Probabilistic Radar — 1

For more information about execution order, see “How Unreal Engine Simulation for Automated
Driving Works”.

Ports
Output

Detections — Object detections
Simulink bus containing MATLAB structure

Object detections, returned as a Simulink bus containing a MATLAB structure. For more details about
buses, “Create Nonvirtual Buses” (Simulink). The structure has this form.

Field Description Type

NumDetections Number of detections integer

2-129

2 Blocks

Field Description Type

IsValidTime False when updates are Boolean
requested at times that are
between block invocation
intervals

Detections Object detections Array of object detection
structures of length set by the
Maximum reported parameter.
Only NumDetections of these
detections are actual detections.

Each object detection structure contains these properties.

Property Definition
Time Measurement time
Measurement Object measurements
MeasurementNoise Measurement noise covariance matrix
SensorIndex Unique ID of the sensor
ObjectClassID Object classification
ObjectAttributes Additional information passed to tracker
MeasurementParameters Parameters used by initialization functions of
nonlinear Kalman tracking filters

* For Cartesian coordinates, Measurement and MeasurementNoise are reported in the coordinate
system specified by the Coordinate system parameter.

» For spherical coordinates, Measurement and MeasurementNoise are reported in the spherical
coordinate system based on the sensor Cartesian coordinate system. MeasurementParameters
is reported in sensor Cartesian coordinates.

2-130

Simulation 3D Probabilistic Radar

Measurement and MeasurementNoise

Coordinate System Used to Report
Detections

Measurement and MeasurementNoise
Coordinates

'Ego Cartesian'

'Sensor Cartesian'

This table shows the coordinate dependence
when you enable or disable range rate
measurements using the Enable range rate
measurements parameter.

Range rate Coordinates
measurements

Enabled [X;y;z;vXx;vy;vz]
Disabled [x;y;z]

'Sensor spherical'

This table shows the coordinate dependence
when you enable or disable the range rate and
elevation angle measurements, by using the
Enable range rate measurements and Enable
elevation angle measurements parameters,

respectively.
Range rate Elevation Coordinates
measurement |angle
S measurement

s
Enabled Enabled [az;el;rng;

rrl

Enabled Disabled [az;rng;rr]
Disabled Enabled [az;el;rng]
Disabled Disabled [az; rng]

2-131

2 Blocks

2-132

Measurement Parameters

Parameter

Definition

Frame

Enumerated type that indicates the frame used to
report measurements. When Frame is set to
'rectangular’, detections are reported in
Cartesian coordinates. When Frame is set to
'spherical’, detections are reported in
spherical coordinates.

OriginPosition

3D vector offset of the sensor origin from the ego
vehicle origin. The vector is derived from the
location and height of the sensor, as specified by
the Mounting location parameter and the Z
value of the Relative translation [X, Y, Z] (m)
parameter, respectively.

Orientation

Orientation of the radar sensor coordinate system
with respect to the ego vehicle coordinate
system. The orientation is derived from the roll,
pitch, and yaw values specified in the Relative
rotation [Roll, Pitch, Yaw] (deg) parameter.

HasVelocity

Indicates whether measurements contain velocity
or range rate components.

HasElevation

Indicates whether measurements contain
elevation components.

The ObjectAttributes property of each detection is a structure with these fields.

Field Definition

TargetIndex Identifier of the actor, ActorID, that generated
the detection. For false alarms, this value is
negative.

SNR Signal-to-noise ratio of the detection. Units are in

decibels.

The ObjectClassID property of each detection has a value that corresponds to an object ID. The
table shows the object IDs used in the default scenes that are selectable from the Simulation 3D
Scene Configuration block. If you are using a custom scene, in the Unreal Editor, you can assign new
object types to unused IDs. If a scene contains an object that does not have an assigned ID, that
object is assigned an ID of 0. The detection of lane markings is not supported.

ID

Type

None/default

Building

Not used

Other

Not used

U WIN|IRO

Pole

Simulation 3D Probabilistic Radar

ID Type

6 Not used

7 Road

8 Sidewalk

9 Vegetation

10 Vehicle

11 Not used

12 Generic traffic sign

13 Stop sign

14 Yield sign

15 Speed limit sign

16 Weight limit sign

17-18 Not used

19 Left and right arrow warning sign
20 Left chevron warning sign
21 Right chevron warning sign
22 Not used

23 Right one-way sign

24 Not used

25 School bus only sign
26-38 Not used

39 Crosswalk sign

40 Not used

41 Traffic signal

42 Curve right warning sign
43 Curve left warning sign
44 Up right arrow warning sign
45-47 Not used

48 Railroad crossing sign

49 Street sign

50 Roundabout warning sign
51 Fire hydrant

52 Exit sign

53 Bike lane sign

54-56 Not used

57 Sky

58 Curb

2-133

2 Blocks

2-134

ID Type

59 Flyover ramp
60 Road guard rail
61-66 Not used

67 Deer

68-70 Not used

71 Barricade

72 Motorcycle
73-255 Not used
Parameters

Mounting

Sensor identifier — Unique sensor identifier
1 (default) | positive integer

Unique sensor identifier, specified as a positive integer. In a multisensor system, the sensor identifier
distinguishes between sensors. When you add a new sensor block to your model, the Sensor
identifier of that block is N + 1. N is the highest Sensor identifier value among existing sensor
blocks in the model.

Example: 2

Parent name — Name of parent to which sensor is mounted
Scene 0rigin (default) | vehicle name

Name of the parent to which the sensor is mounted, specified as Scene 0rigin or as the name of a
vehicle in your model. The vehicle names that you can select correspond to the Name parameters of
the Simulation 3D Vehicle with Ground Following blocks in your model. If you select Scene 0rigin,
the block places a sensor at the scene origin.

Example: SimulinkVehiclel

Mounting location — Sensor mounting location
Origin (default) | Front bumper | Rear bumper |Right mirror |Left mirror |Rearview
mirror | Hood center | Roof center

Sensor mounting location.

* When Parent name is Scene 0rigin, the block mounts the sensor to the origin of the scene.
You can set the Mounting location to 0rigin only. During simulation, the sensor remains
stationary.

* When Parent name is the name of a vehicle (for example, SimulinkVehiclel) the block mounts
the sensor to one of the predefined mounting locations described in the table. During simulation,
the sensor travels with the vehicle.

Simulation 3D Probabilistic Radar

Vehicle Mounting Location

Description

Orientation Relative to
Vehicle Origin [Roll, Pitch
Yaw] (deg)

Origin

Forward-facing sensor mounted
to the vehicle origin, which is on
the ground, at the geometric
center of the vehicle (see
“Coordinate Systems for Unreal
Engine Simulation in Automated
Driving Toolbox”)

[0, 0, 0]

Front bumper

Forward-facing sensor mounted
to the front bumper

[0, 0, 0]

2-135

2 Blocks

Vehicle Mounting Location Description Orientation Relative to
Vehicle Origin [Roll, Pitch,
Yaw] (deg)

Rear bumper Backward-facing sensor [0, 0, 180]

mounted to the rear bumper

Right mirror Downward-facing sensor [0, -90, 0]
mounted to the right side-view

mirror

Left mirror Downward-facing sensor [0, -90, 0]
mounted to the left side-view

mirror

2-136

Simulation 3D Probabilistic Radar

Vehicle Mounting Location

Description

Orientation Relative to
Vehicle Origin [Roll, Pitch,
Yaw] (deg)

Rearview mirror

Forward-facing sensor mounted
to the rearview mirror, inside
the vehicle

[0, 0, 0]

Hood center

Forward-facing sensor mounted
to the center of the hood

[0, 0, 0]

Roof center

Forward-facing sensor mounted
to the center of the roof

[0, 0, 0]

Roll, pitch, and yaw are clockwise-positive when looking in the positive direction of the X-axis, Y-axis,
and Z-axis, respectively. When looking at a vehicle from the top down, the yaw angle (that is, the

2-137

2 Blocks

orientation angle) is counterclockwise-positive, because you are looking in the negative direction of
the axis.

The (X, Y, Z) mounting location of the sensor relative to the vehicle depends on the vehicle type. To
specify the vehicle type, use the Type parameter of the Simulation 3D Vehicle with Ground Following
block to which you are mounting the sensor. To obtain the (X, Y, Z) mounting locations for a vehicle
type, see the reference page for that vehicle.

To determine the location of the sensor in world coordinates, open the sensor block. Then, on the
Ground Truth tab, select Output location (m) and orientation (rad) and inspect the data from
the Location output port.

Specify offset — Specify offset from mounting location
off (default) | on

Select this parameter to specify an offset from the mounting location by using the Relative
translation [X, Y, Z] (m) and Relative rotation [Roll, Pitch, Yaw] (deg) parameters.

Relative translation [X, Y, Z] (m) — Translation offset relative to mounting location
[0, 0, O] (default) | real-valued 1-by-3 vector

Translation offset relative to the mounting location of the sensor, specified as a real-valued 1-by-3
vector of the form [X, Y, Z]. Units are in meters.

If you mount the sensor to a vehicle by setting Parent name to the name of that vehicle, then X, Y,
and Z are in the vehicle coordinate system, where:
* The X-axis points forward from the vehicle.

* The Y-axis points to the left of the vehicle, as viewed when looking in the forward direction of the
vehicle.

* The Z-axis points up.

The origin is the mounting location specified in the Mounting location parameter. This origin is
different from the vehicle origin, which is the geometric center of the vehicle.

If you mount the sensor to the scene origin by setting Parent name to Scene 0Origin, then X, Y,
and Z are in the world coordinates of the scene.

For more details about the vehicle and world coordinate systems, see “Coordinate Systems for Unreal
Engine Simulation in Automated Driving Toolbox”.

Example: [0,0,0.01]

Dependencies

To enable this parameter, select Specify offset.

Relative rotation [Roll, Pitch, Yaw] (deg) — Rotational offset relative to mounting
location

[0, 0, O] (default) | real-valued 1-by-3 vector

Rotational offset relative to the mounting location of the sensor, specified as a real-valued 1-by-3

vector of the form [Roll, Pitch, Yaw] . Roll, pitch, and yaw are the angles of rotation about the X-, Y-,
and Z-axes, respectively. Units are in degrees.

2-138

Simulation 3D Probabilistic Radar

If you mount the sensor to a vehicle by setting Parent name to the name of that vehicle, then X, Y,
and Z are in the vehicle coordinate system, where:
* The X-axis points forward from the vehicle.

» The Y-axis points to the left of the vehicle, as viewed when looking in the forward direction of the
vehicle.

* The Z-axis points up.

* Roll, pitch, and yaw are clockwise-positive when looking in the forward direction of the X-axis, Y-
axis, and Z-axis, respectively. If you view a scene from a 2D top-down perspective, then the yaw
angle (also called the orientation angle) is counterclockwise-positive because you are viewing the
scene in the negative direction of the Z-axis.

The origin is the mounting location specified in the Mounting location parameter. This origin is
different from the vehicle origin, which is the geometric center of the vehicle.

If you mount the sensor to the scene origin by setting Parent name to Scene Origin, thenX, Y,
and Z are in the world coordinates of the scene.

For more details about the vehicle and world coordinate systems, see “Coordinate Systems for Unreal
Engine Simulation in Automated Driving Toolbox”.

Example: [0,0,10]

Dependencies
To enable this parameter, select Specify offset.

Sample time — Sample time
-1 (default) | positive scalar

Sample time of the block in seconds, specified as a positive scalar. The 3D simulation environment
frame rate is the inverse of the sample time.

If you set the sample time to - 1, the block inherits its sample time from the Simulation 3D Scene
Configuration block.

Parameters
Accuracy Settings

Azimuthal resolution of radar (deg) — Azimuth resolution of radar
4 (default) | positive real scalar

Azimuth resolution of the radar, specified as a positive real scalar. The azimuth resolution defines the
minimum separation in azimuth angle at which the radar can distinguish between two targets. The
azimuth resolution is typically the 3dB-downpoint in azimuth angle beamwidth of the radar. Units are
in degrees.

Example: 6.5

Elevation resolution of radar (deg) — Elevation resolution of radar
10 (default) | positive real scalar

Elevation resolution of the radar, specified as a positive real scalar. The elevation resolution defines
the minimum separation in elevation angle at which the radar can distinguish between two targets.

2-139

2 Blocks

The elevation resolution is typically the 3dB-downpoint in elevation angle beamwidth of the radar.
Units are in degrees.

Example: 3.5

Dependencies

To enable this parameter, on the Parameters tab, in the Radar model section, select Enable
elevation angle measurements.

Range resolution of radar (m) — Range resolution of radar
2.5 (default) | positive real scalar

Range resolution of the radar, specified as a positive real scalar. The range resolution defines the
minimum separation in range at which the radar can distinguish between two targets. Units are in
meters.

Example: 5.0

Range rate resolution of radar (m/s) — Range rate resolution of the radar
0.5 (default) | positive real scalar

Range rate resolution of the radar, specified as a positive real scalar. The range rate resolution
defines the minimum separation in range rate at which the radar can distinguish between two
targets. Units are in meters per second.

Example: 0.75

Dependencies

To enable this parameter, on the Parameters tab, in the Radar model section, select Enable range
rate measurements.

Bias Settings

Fractional azimuthal bias component — Azimuth bias fraction
0.1 (default) | nonnegative real scalar

Azimuth bias fraction of the radar, specified as a nonnegative real scalar. The azimuth bias is
expressed as a fraction of the azimuth resolution specified in the Azimuthal resolution of radar
(deg) parameter. Units are dimensionless.

Example: 0.3

Fractional elevation bias component — Elevation bias fraction
0.1 (default) | nonnegative real scalar

Elevation bias fraction of the radar, specified as a nonnegative real scalar. The elevation bias is
expressed as a fraction of the elevation resolution specified in the Elevation resolution of radar
(deg) parameter. Units are dimensionless.

Example: 0.2

Dependencies

To enable this parameter, on the Parameters tab, in the Radar model section, select Enable
elevation angle measurements.

2-140

Simulation 3D Probabilistic Radar

Fractional range bias component — Range bias fraction
0.05 (default) | nonnegative real scalar

Range bias fraction of the radar, specified as a nonnegative real scalar. Range bias is expressed as a
fraction of the range resolution specified in the Range resolution of radar (m) parameter. Units are
dimensionless.

Example: 0.15

Fractional range rate bias component — Range rate bias fraction
0.05 (default) | nonnegative real scalar

Range rate bias fraction of the radar, specified as a nonnegative real scalar. Range rate bias is
expressed as a fraction of the range rate resolution specified in the Range rate resolution of radar
(m/s) parameter. Units are dimensionless.

Example: 0.2

Dependencies

To enable this parameter, on the Parameters tab, in the Radar model section, select Enable range
rate measurements.

Detector Settings

Field of view (deg) — Field of view
[20, 5] (default) | positive real-valued 1-by-2 vector

Field of view of the radar, specified as a positive real-valued 1-by-2 vector of the form [azfov,
elfov]. azfov is the azimuth angle field of view. el fov is the elevation angle field of view. The field
of view defines the angular extent spanned by the sensor. Each component must lie in the interval
(0,180]. Targets outside of the field of view of the radar are not detected. Units are in degrees.

Example: [14 7]

Detection ranges (m) — Detection range
[1, 150] (default) | positive real-valued 1-by-2 vector

Detection range, in meters, at which the radar can detect a target.

* To set only a maximum detection range, specify this parameter as a positive real scalar. By default,
the minimum detection range is 0.

* To set both a minimum and maximum detection range, specify this parameter as a positive real-
valued 1-by-2 vector of the form [min, max].

Example: 250

Range rates (m/s) — Minimum and maximum detection range rates
[-100, 100] (default) | real-valued 1-by-2 vector

Minimum and maximum detection range rates, specified as a real-valued 1-by-2 vector. The radar can
detect targets only within this range rate interval. Units are in meters per second.

Example: [-200 200]

2-141

2 Blocks

2-142

Dependencies

To enable this parameter, on the Parameters tab, in the Radar model section, select Enable range
rate measurements.

Detection probability — Probability that radar detects a target
0.9 (default) | real scalar in the range (0, 1]

Probability that the radar detects a target, specified as a real scalar in the range (0, 1]. This quantity
defines the probability of detecting a target that has a radar cross section specified by the Reference
radar cross section (dBsm) parameter, at the reference detection range specified by the Detection
ranges (m) parameter.

Example: 0.95

False alarm rate — False alarm rate
le-6 (default) | positive real scalar in range [10-7, 10-3]

False alarm rate within a radar resolution cell, specified as a positive real scalar in the range [1077,
10-3]. Units are dimensionless.

Example: 1e-5

Detection probability range (m): — Reference range for given probability of detection
100 (default) | positive real scalar

Reference range for a given probability of detection, specified as a positive real scalar. The reference
range is the range at which the radar detects targets that have a radar cross section specified by
Reference radar cross section (dBsm), given a detection probability specified by Detection
probability. Units are in meters.

Example: 150

Reference radar cross section (dBsm) — Reference radar cross section for given
probability of detection
0 (default) | nonnegative real scalar

Reference radar cross section (RCS) for a given probability of detection, specified as a nonnegative
real scalar. A radar with the detection probability specified by Detection probability detects targets
at this reference RCS value. Units are in decibels per square meter.

Example: 2.0

Radar Model

Enable elevation angle measurements — Enable radar to measure elevation
on (default) | of f

Select this parameter to model a radar that can measure target elevation angles. This parameter
enables the Elevation resolution of radar (deg) and Fractional elevation bias component
parameters.

Enable range rate measurements — Enable radar to measure range rate
on (default) | of f

Simulation 3D Probabilistic Radar

Select this parameter to model a radar that can measure target range rates. This parameter enables
the Range rate resolution of radar (m/s), Fractional range bias component, and Range rates
(m/s) parameters.

Enable measurement noise — Enable adding noise to radar sensor measurements
on (default) | of f

Select this parameter to add noise to radar sensor measurements. Otherwise, the measurements are
noise-free. The MeasurementNoise property of each detection is always computed and is not
affected by the value you specify for the Measurement noise parameter. By not selecting this
parameter, you can pass the sensor ground truth measurements into a Multi-Object Tracker block.

Enable false detections — Enable reporting false alarm radar detections
on (default) | of f

Select this parameter to enable reporting false alarm radar measurements. Otherwise, only actual
detections are reported.

Random number generator method — Method to set random number generator seed
Repeatable (default) | Specify seed | Not repeatable

Method to set the random number generator seed, specified as one of the options in the table.

Option Description

Repeatable The block generates a random initial seed for the
first simulation and reuses this seed for all
subsequent simulations. Select this parameter to
generate repeatable results from the statistical
sensor model. To change this initial seed, at the
MATLAB command prompt, enter clear all.

Specify seed Specify your own random initial seed for
reproducible results by using the Specify seed
parameter.

Not repeatable The block generates a new random initial seed

after each simulation run. Select this parameter
to generate nonrepeatable results from the
statistical sensor model.

Initial seed — Random number generator seed
0 (default) | scalar in range [0, 23?)

Random number generator seed, specified as a scalar in the range [0, 23?)
Example: 2001

Dependencies

To enable this parameter, set the Random number generator method parameter to Specify
seed.

Detection Reporting

Maximum reported — Maximum number of reported detections
50 (default) | positive integer

2-143

2 Blocks

2-144

Maximum number of reported detections, specified as a positive integer. Units are dimensionless.
Example: 35

Coordinate system — Coordinate system of reported detections
Ego Cartesian (default) | Sensor Cartesian | Sensor spherical

Coordinate system of reported detections, specified as one of these values:

* Ego Cartesian — The radar reports detections in the ego vehicle Cartesian coordinate system.
* Sensor Cartesian— The radar reports detections in the sensor Cartesian coordinate system.

* Sensor spherical — The radar reports detections in the spherical coordinate system. This
coordinate system is centered at the radar and aligned with the orientation of the radar on the ego
vehicle.

Specify output bus name — Specify name of output bus
off (default) | on

Select this parameter to specify the name of the bus that the block outputs to the base workspace.
Specify this name in the Output bus name parameter.

Output bus name — Name of output bus
BusSimulation3DRadarTruthSensor (default) | valid bus name
Name of the bus that the block outputs to the base workspace.

Dependencies

To enable this parameter, select the Specify output bus name parameter.

Tips

+ To visualize detections and sensor coverage areas, use the Bird's-Eye Scope. For more details,
see “Visualize Sensor Data from Unreal Engine Simulation Environment”.

* Because the Unreal Engine can take a long time to start between simulations, consider logging
the signals that the sensors output. For more details, see “Configure a Signal for Logging”
(Simulink).

References

[1] Blacksmith, P, R. E. Hiatt, and R. B. Mack. "Introduction to radar cross-section measurements."
Proceedings of the IEEE. Volume 53, No. 8, August 1965, pp. 901-920. doi: 10.1109/
PROC.1965.4069.

See Also

Apps
Bird's-Eye Scope

Blocks

Detection Concatenation | Multi-Object Tracker | Simulation 3D Probabilistic Radar Configuration |
Simulation 3D Scene Configuration | Simulation 3D Vehicle with Ground Following | Simulation 3D
Vision Detection Generator

Simulation 3D Probabilistic Radar

Topics
“Unreal Engine Simulation for Automated Driving”

“Coordinate Systems for Unreal Engine Simulation in Automated Driving Toolbox”
“Choose a Sensor for Unreal Engine Simulation”

“Visualize Sensor Data and Tracks in Bird's-Eye Scope”

Introduced in R2019b

2-145

2 Blocks

2-146

Simulation 3D Probabilistic Radar Configuration

Configure probabilistic radar signatures in 3D simulation environment
Library: Automated Driving Toolbox / Simulation 3D

) &

Description

The Simulation 3D Probabilistic Radar Configuration block configures the probabilistic radar
signatures for actors in a 3D simulation environment. This environment is rendered using the Unreal
Engine from Epic Games. To model the probabilistic radars, use Simulation 3D Probabilistic Radar
blocks. The configured radar signatures apply to all Simulation 3D Probabilistic Radar blocks in your
model.

Parameters

Radar targets — Identifiers corresponding to radar targets
[1 (default) | positive integer | L-length vector of unique positive integers

Identifiers that correspond to radar targets, specified as a positive integer or L-length vector of
unique positive integers. L equals the number of radar targets for which you want to specify a
nondefault radar cross section (RCS).

This table provides the identifiers and corresponding object types that radars can detect in the
default scenes that you can select from the Simulation 3D Scene Configuration block. For example, to
specify a nondefault RCS for a building and a road, set Radar targets to [1,7]. If you are using a
custom scene, in the Unreal Editor, you can assign new object types to unused IDs. If a scene
contains an object that does not have an assigned ID, that object is assigned an ID of 0. The detection
of lane markings is not supported.

o

Type

None/default

Building

Not used

Other

Not used

Pole

Not used

Road

Sidewalk

OO N|OO|U|B(W|IN|RFR|O

Vegetation

=
(o)

Vehicle

Simulation 3D Probabilistic Radar Configuration

ID Type

11 Not used

12 Generic traffic sign

13 Stop sign

14 Yield sign

15 Speed limit sign

16 Weight limit sign

17-18 Not used

19 Left and right arrow warning sign
20 Left chevron warning sign
21 Right chevron warning sign
22 Not used

23 Right one-way sign

24 Not used

25 School bus only sign
26-38 Not used

39 Crosswalk sign

40 Not used

41 Traffic signal

42 Curve right warning sign
43 Curve left warning sign
44 Up right arrow warning sign
45-47 Not used

48 Railroad crossing sign

49 Street sign

50 Roundabout warning sign
51 Fire hydrant

52 Exit sign

53 Bike lane sign

54-56 Not used

57 Sky

58 Curb

59 Flyover ramp

60 Road guard rail

61-66 Not used

67 Deer

68-70 Not used

2-147

2 Blocks

ID Type

71 Barricade
72 Motorcycle
73-255 Not used

Radar cross sections (dBsm) — Radar cross sections
{} (default) | real-valued Q-by-P matrix | L-length cell array of real-valued Q;-by-P;, ..., Q;-by-P;.
matrices

Radar cross sections of target actors, in decibels per square meter, specified as a matrix or cell array
of matrices. Each matrix defines the RCS for the corresponding target actor specified by Radar
targets.

If Radar targets is a scalar (that is, a single target actor), then specify Radar cross sections
(dBsm) as a real-valued Q-by-P matrix, where:

* Qs the number of elevation angle samples for the actor.
* P is the number of azimuth angle samples for the actor.

If Radar targets is a vector (that is, multiple target actors), then specify Radar cross sections
(dBsm) as a L-length cell array of real-valued Q;-by-P;, ..., Q;-by-P; matrices, where:

* L is the number of actors.
* @y, ..., Qp are the number of elevation angle samples per actor.

* Py, ..., P; are the number of azimuth angle samples per actor.

Q and P can vary for each actor. For each RCS matrix:

* The rows correspond to uniformly sampled elevation angles over the interval [0, 180].
* The columns correspond to uniformly sampled azimuth angles over the interval [0, 360].

For example, the number of elevation and azimuth samples for RCS matrix RCS are as follows:

el
az

linspace(0,180,size(RCS,1)

)i
linspace(0,360,size(RCS,2));

Default radar cross section (dBsm) — Default radar cross section
-20 (default) | real scalar

Default radar cross section, in decibels per square meter, specified as a real scalar. The block uses
this RCS value for actors whose RCS is not specified by Radar cross sections (dBsm).

Example: -10

See Also
Simulation 3D Probabilistic Radar

Introduced in R2019b

2-148

Simulation 3D Vision Detection Generator

Simulation 3D Vision Detection Generator

Detect objects and lanes from measurements in 3D simulation environment
Library: Automated Driving Toolbox / Simulation 3D

Object Detections [
@ | Lane Detections [

Description

The Simulation 3D Vision Detection Generator block generates detections from camera
measurements taken by a vision sensor mounted on an ego vehicle in a 3D simulation environment.
This environment is rendered using the Unreal Engine from Epic Games. The block derives detections
from simulated actor poses that are based on cuboid (box-shaped) representations of the actors in the
scenario. For more details, see “Algorithms” on page 2-167.

The block generates detections at intervals equal to the sensor update interval. Detections are
referenced to the coordinate system of the sensor. The block can simulate real detections that have
added random noise and also generate false positive detections. A statistical model generates the
measurement noise, true detections, and false positives. To control the random numbers that the
statistical model generates, use the random number generator settings on the Measurements tab of
the block.

If you set Sample time to -1, the block uses the sample time specified in the Simulation 3D Scene
Configuration block. To use this sensor, you must include a Simulation 3D Scene Configuration block
in your model.

Note The Simulation 3D Scene Configuration block must execute before the Simulation 3D Vision
Detection Generator block. That way, the Unreal Engine 3D visualization environment prepares the
data before the Simulation 3D Vision Detection Generator block receives it. To check the block
execution order, right-click the blocks and select Properties. On the General tab, confirm these
Priority settings:

* Simulation 3D Scene Configuration — 0
e Simulation 3D Vision Detection Generator — 1

For more information about execution order, see “How Unreal Engine Simulation for Automated
Driving Works”.

Ports
Output

Object Detections — Object detections
Simulink bus containing MATLAB structure

Object detections, returned as a Simulink bus containing a MATLAB structure. For more details about
buses, see “Create Nonvirtual Buses” (Simulink). The structure has the form shown in this table.

2-149

2 Blocks

2-150

Field Description Type
NumDetections Number of detections Integer
IsValidTime False when updates are Boolean
requested at times that are
between block invocation
intervals
Detections Object detections Array of object detection

structures of length set by the
Maximum number of
reported detections
parameter. Only
NumDetections of these
detections are actual detections.

The object detection structure contains these properties.

Property Definition
Time Measurement time
Measurement Object measurements
MeasurementNoise Measurement noise covariance matrix
SensorIndex Unique ID of the sensor
ObjectClassID Object classification
ObjectAttributes Additional information passed to tracker

MeasurementParameters

Parameters used by initialization functions of
nonlinear Kalman tracking filters

The Measurement field reports the position and velocity of a measurement in the coordinate system
of the sensor. This field is a real-valued column vector of the form [x; y; z; vx; vy; vz]. The
MeasurementNoise field is a 6-by-6 matrix that reports the measurement noise covariance for each
coordinate in the Measurement field.

The MeasurementParameters field is a structure that has these fields.

Parameter

Definition

Frame

Enumerated type indicating the frame used to
report measurements. The Simulation 3D Vision
Detection Generator block reports detections in
sensor Cartesian coordinates, which is a
rectangular coordinate frame. Therefore, for this
block, Frame is always set to ' rectangular'.

OriginPosition

Offset of the sensor origin from the ego vehicle
origin, returned as a vector of the form [x, y, z].
The block derives these values from the x, y, and
z mounting position of the sensor. For more
details, see the Mounting parameters of this
block.

Simulation 3D Vision Detection Generator

Parameter

Definition

Orientation

Orientation of the sensor coordinate frame with
respect to the ego vehicle coordinate frame,
returned as a 3-by-3 real-valued orthonormal
matrix. The block derives these values from the
yaw, pitch, and roll mounting orientation of the
sensor. For more details, see the Mounting
parameters of this block.

HasVelocity

Indicates whether measurements contain velocity.

The ObjectClassID property of each detection has a value that corresponds to an object ID. The
table shows the object IDs used in the default scenes that you can select from the Simulation 3D
Scene Configuration block. If you are using a custom scene, in the Unreal Editor, you can assign new
object types to unused IDs. If a scene contains an object that does not have an assigned ID, that
object is assigned an ID of 0. The block detects objects only of class Vehicle, such as vehicles
created by using Simulation 3D Vehicle with Ground Following blocks, or of class Road.

ID Type

0 None/default

1 Building

2 Not used

3 Other

4 Not used

5 Pole

6 Not used

7 Road

8 Sidewalk

9 Vegetation

10 Vehicle

11 Not used

12 Generic traffic sign

13 Stop sign

14 Yield sign

15 Speed limit sign

16 Weight limit sign

17-18 Not used

19 Left and right arrow warning sign
20 Left chevron warning sign
21 Right chevron warning sign
22 Not used

23 Right one-way sign

24 Not used

2-151

2 Blocks

ID Type

25 School bus only sign

26-38 Not used

39 Crosswalk sign

40 Not used

41 Traffic signal

42 Curve right warning sign

43 Curve left warning sign

44 Up right arrow warning sign

45-47 Not used

48 Railroad crossing sign

49 Street sign

50 Roundabout warning sign

51 Fire hydrant

52 Exit sign

53 Bike lane sign

54-56 Not used

57 Sky

58 Curb

59 Flyover ramp

60 Road guard rail

61-66 Not used

67 Deer

68-70 Not used

71 Barricade

72 Motorcycle

73-255 Not used

The ObjectAttributes property of each detection is a structure that has these fields.

Field Definition

TargetIndex Identifier of the actor, ActorID, that generated
the detection. For false alarms, this value is
negative.

Dependencies

To enable this output port, on the Parameters tab, set the Types of detections generated by
sensor parameter to Lanes and objects, Objects only, or Lanes with occlusion.

Lane Detections — Lane boundary detections
Simulink bus containing MATLAB structure

2-152

Simulation 3D Vision Detection Generator

Lane boundary detections, returned as a Simulink bus containing a MATLAB structure. The structure

has these fields.

detections

Field Description Type
Time Lane detection time Real scalar
IsValidTime False when updates are Boolean

requested at times that are

between block invocation

intervals
SensorIndex Unique identifier of sensor Positive integer
NumLaneBoundaries Number of lane boundary Nonnegative integer

LaneBoundaries

Lane boundary detections

Array of
clothoidLaneBoundary
objects

Dependencies

To enable this output port, on the Parameters tab, set the Types of detections generated by
sensor parameter to Lanes and objects, Lanes only, or Lanes with occlusion.

Actor Truth — Ground truth of actor poses
Simulink bus containing MATLAB structure

Ground truth of actor poses in the simulation environment, returned as a Simulink bus containing a

MATLAB structure.

The structure has these fields.

Field Description Type

NumActors Number of actors Nonnegative integer

Time Current simulation time Real-valued scalar

Actors Actor poses NumActors-length array of

actor pose structures

Each actor pose structure in Actors has these fields.

Field Description

ActorID Scenario-defined actor identifier, specified as a
positive integer.

Position Position of actor, specified as a real-valued vector
of the form [x, y, z]. Units are in meters.

Velocity Velocity (v) of actor in the x-, y-, and z-direction,
specified as a real-valued vector of the form [v,,
Vy, V.]. Units are in meters per second.

Roll Roll angle of actor, specified as a real-valued

scalar. Units are in degrees.

2-153

2 Blocks

2-154

Field Description

Pitch Pitch angle of actor, specified as a real-valued
scalar. Units are in degrees.

Yaw Yaw angle of actor, specified as a real-valued
scalar. Units are in degrees.

AngularVelocity Angular velocity (w) of actor in the x-, y-, and 2-
direction, specified as a real-valued vector of the
form [w,, wy, w,]. Units are in degrees per second.

The pose of the ego vehicle is excluded from the Actors array.

Dependencies

To enable this output port, on the Ground Truth tab, select the Output actor truth parameter.

Lane Truth — Ground truth of lane boundaries
Simulink bus containing MATLAB structure

Ground truth of lane boundaries in the simulation environment, returned as a Simulink bus

containing a MATLAB structure.

The structure has these fields.

Field Description Type

NumLaneBoundaries Number of lane boundaries Nonnegative integer

Time Current simulation time Real scalar

LaneBoundaries Lane boundaries NumLaneBoundaries-length
array of lane boundary
structures

Each lane boundary structure in LaneBoundaries has these fields.

Field

Description

Simulation 3D Vision Detection Generator

Coordinates

Lane boundary coordinates, specified as a real-
valued N-by-3 matrix, where N is the number of
lane boundary coordinates. Lane boundary
coordinates define the position of points on the
boundary at specified longitudinal distances away
from the ego vehicle, along the center of the
road.

* In MATLAB, specify these distances by using
the 'XDistance' name-value pair argument
of the laneBoundaries function.

* In Simulink, specify these distances by using
the Distances from ego vehicle for
computing boundaries (m) parameter of
the Scenario Reader block or the Distance
from parent for computing lane
boundaries parameter of the Simulation 3D
Vision Detection Generator block.

This matrix also includes the boundary
coordinates at zero distance from the ego vehicle.
These coordinates are to the left and right of the
ego-vehicle origin, which is located under the
center of the rear axle. Units are in meters.

Curvature

Lane boundary curvature at each row of the
Coordinates matrix, specified as a real-valued
N-by-1 vector. N is the number of lane boundary
coordinates. Units are in radians per meter.

CurvatureDerivative

Derivative of lane boundary curvature at each
row of the Coordinates matrix, specified as a
real-valued N-by-1 vector. N is the number of lane
boundary coordinates. Units are in radians per
square meter.

HeadingAngle

Initial lane boundary heading angle, specified as
a real scalar. The heading angle of the lane
boundary is relative to the ego vehicle heading.
Units are in degrees.

LateralOffset

Distance of the lane boundary from the ego
vehicle position, specified as a real scalar. An
offset to a lane boundary to the left of the ego
vehicle is positive. An offset to the right of the
ego vehicle is negative. Units are in meters.

2-155

2 Blocks

2-156

BoundaryType

Type of lane boundary marking, specified as one
of these values:

* 'Unmarked' — No physical lane marker
exists
*+ 'Solid' — Single unbroken line

* 'Dashed' — Single line of dashed lane
markers

* 'DoubleSolid' — Two unbroken lines
* 'DoubleDashed' — Two dashed lines

 'SolidDashed' — Solid line on the left and a
dashed line on the right

 'DashedSolid' — Dashed line on the left
and a solid line on the right

Strength

Saturation strength of the lane boundary
marking, specified as a real scalar from 0 to 1. A
value of @ corresponds to a marking whose color
is fully unsaturated. The marking is gray. A value
of 1 corresponds to a marking whose color is fully
saturated.

Width

Lane boundary width, specified as a positive real
scalar. In a double-line lane marker, the same
width is used for both lines and for the space
between lines. Units are in meters.

Length

Length of dash in dashed lines, specified as a
positive real scalar. In a double-line lane marker,
the same length is used for both lines.

Space

Length of space between dashes in dashed lines,
specified as a positive real scalar. In a dashed
double-line lane marker, the same space is used
for both lines.

The number of returned lane boundary structures depends on the Maximum number of reported

lanes parameter value.

Dependencies

To enable this output port, on the Ground Truth tab, select the Output lane truth parameter.

Parameters

Mounting

Sensor identifier — Unique sensor identifier

1 (default) | positive integer

Unique sensor identifier, specified as a positive integer. In a multisensor system, the sensor identifier
distinguishes between sensors. When you add a new sensor block to your model, the Sensor
identifier of that block is N + 1. N is the highest Sensor identifier value among existing sensor

blocks in the model.

Simulation 3D Vision Detection Generator

Example: 2

Parent name — Name of parent to which sensor is mounted
Scene 0Origin (default) | vehicle name

Name of the parent to which the sensor is mounted, specified as Scene 0Origin or as the name of a
vehicle in your model. The vehicle names that you can select correspond to the Name parameters of
the Simulation 3D Vehicle with Ground Following blocks in your model. If you select Scene 0Origin,
the block places a sensor at the scene origin.

Example: SimulinkVehiclel

Mounting location — Sensor mounting location
Origin (default) | Front bumper | Rear bumper |Right mirror |Left mirror |Rearview
mirror | Hood center | Roof center

Sensor mounting location.

* When Parent name is Scene 0rigin, the block mounts the sensor to the origin of the scene.
You can set the Mounting location to 0rigin only. During simulation, the sensor remains
stationary.

* When Parent name is the name of a vehicle (for example, SimulinkVehiclel) the block mounts
the sensor to one of the predefined mounting locations described in the table. During simulation,
the sensor travels with the vehicle.

Vehicle Mounting Location Description Orientation Relative to
Vehicle Origin [Roll, Pitch,
Yaw] (deg)

Origin Forward-facing sensor mounted ([0, 0, 0]

to the vehicle origin, which is on
the ground, at the geometric
center of the vehicle (see
“Coordinate Systems for Unreal
Engine Simulation in Automated
Driving Toolbox”)

2-157

2 Blocks

Vehicle Mounting Location

Description Orientation Relative to
Vehicle Origin [Roll, Pitch,
Yaw] (deg)

Front bumper

Forward-facing sensor mounted ([0, 0, 0]
to the front bumper

Rear bumper

Backward-facing sensor [0, 0, 180]
mounted to the rear bumper

Right mirror

Downward-facing sensor [0, -90, 0]
mounted to the right side-view
mirror

2-158

Simulation 3D Vision Detection Generator

Vehicle Mounting Location

Description

Orientation Relative to
Vehicle Origin [Roll, Pitch,
Yaw] (deg)

Left mirror

Downward-facing sensor
mounted to the left side-view
mirror

[0, -90, 0]

Rearview mirror

Forward-facing sensor mounted
to the rearview mirror, inside
the vehicle

[0, 0, 0]

Hood center

Forward-facing sensor mounted
to the center of the hood

[0, 0, 0]

2-159

2 Blocks

2-160

Vehicle Mounting Location Description Orientation Relative to
Vehicle Origin [Roll, Pitch,
Yaw] (deg)

Roof center Forward-facing sensor mounted ([0, 0, 0]

to the center of the roof

Roll, pitch, and yaw are clockwise-positive when looking in the positive direction of the X-axis, Y-axis,
and Z-axis, respectively. When looking at a vehicle from the top down, the yaw angle (that is, the
orientation angle) is counterclockwise-positive, because you are looking in the negative direction of
the axis.

The (X, Y, Z) mounting location of the sensor relative to the vehicle depends on the vehicle type. To
specify the vehicle type, use the Type parameter of the Simulation 3D Vehicle with Ground Following
block to which you are mounting the sensor. To obtain the (X, Y, Z) mounting locations for a vehicle
type, see the reference page for that vehicle.

To determine the location of the sensor in world coordinates, open the sensor block. Then, on the
Ground Truth tab, select Output location (m) and orientation (rad) and inspect the data from
the Location output port.

Specify offset — Specify offset from mounting location
off (default) | on

Select this parameter to specify an offset from the mounting location by using the Relative
translation [X, Y, Z] (m) and Relative rotation [Roll, Pitch, Yaw] (deg) parameters.

Relative translation [X, Y, Z] (m) — Translation offset relative to mounting location
[0, 0, O] (default) | real-valued 1-by-3 vector

Translation offset relative to the mounting location of the sensor, specified as a real-valued 1-by-3
vector of the form [X, Y, Z]. Units are in meters.

If you mount the sensor to a vehicle by setting Parent name to the name of that vehicle, then X, Y,
and Z are in the vehicle coordinate system, where:
* The X-axis points forward from the vehicle.

» The Y-axis points to the left of the vehicle, as viewed when looking in the forward direction of the
vehicle.

* The Z-axis points up.

Simulation 3D Vision Detection Generator

The origin is the mounting location specified in the Mounting location parameter. This origin is
different from the vehicle origin, which is the geometric center of the vehicle.

If you mount the sensor to the scene origin by setting Parent name to Scene Origin, then X, Y,
and Z are in the world coordinates of the scene.

For more details about the vehicle and world coordinate systems, see “Coordinate Systems for Unreal
Engine Simulation in Automated Driving Toolbox”.
Example: [0,0,0.01]

Dependencies
To enable this parameter, select Specify offset.

Relative rotation [Roll, Pitch, Yaw] (deg) — Rotational offset relative to mounting
location
[0, 0, O] (default) | real-valued 1-by-3 vector

Rotational offset relative to the mounting location of the sensor, specified as a real-valued 1-by-3
vector of the form [Roll, Pitch, Yaw] . Roll, pitch, and yaw are the angles of rotation about the X-, Y-,
and Z-axes, respectively. Units are in degrees.

If you mount the sensor to a vehicle by setting Parent name to the name of that vehicle, then X, Y,
and Z are in the vehicle coordinate system, where:
* The X-axis points forward from the vehicle.

* The Y-axis points to the left of the vehicle, as viewed when looking in the forward direction of the
vehicle.

* The Z-axis points up.

* Roll, pitch, and yaw are clockwise-positive when looking in the forward direction of the X-axis, Y-
axis, and Z-axis, respectively. If you view a scene from a 2D top-down perspective, then the yaw
angle (also called the orientation angle) is counterclockwise-positive because you are viewing the
scene in the negative direction of the Z-axis.

The origin is the mounting location specified in the Mounting location parameter. This origin is
different from the vehicle origin, which is the geometric center of the vehicle.

If you mount the sensor to the scene origin by setting Parent name to Scene 0Origin, thenX, Y,
and Z are in the world coordinates of the scene.

For more details about the vehicle and world coordinate systems, see “Coordinate Systems for Unreal
Engine Simulation in Automated Driving Toolbox”.

Example: [0,0,10]

Dependencies
To enable this parameter, select Specify offset.

Sample time — Sample time
-1 (default) | positive scalar

Sample time of the block in seconds, specified as a positive scalar. The 3D simulation environment
frame rate is the inverse of the sample time.

2-161

2 Blocks

2-162

If you set the sample time to -1, the block inherits its sample time from the Simulation 3D Scene
Configuration block.

Parameters
Detection Reporting

Types of detections generated by sensor — Types of detections generated by sensor
Lanes and objects (default) | Objects only | Lanes only | Lanes with occlusion

Types of detections generated by the sensor, specified as one of these options:

* Lanes and objects — Detect lanes and objects. No road information is used to occlude actors.
* Objects only — Detect objects only.
* Lanes only — Detection lanes only.

* Lanes with occlusion — Detect lane and objects. Objects in the camera field of view can
impair the ability of the sensor to detect lanes.

Maximum number of reported detections — Maximum number of reported detections
50 (default) | positive integer

Maximum number of detections reported by the sensor, specified as a positive integer. Detections are
reported in order of increasing distance from the sensor until the maximum number is reached.

Example: 100

Maximum number of reported lanes — Maximum number of reported lanes
30 (default) | positive integer

Maximum number of reported lanes, specified as a positive integer.

Example: 100

Distance from parent for computing lane boundaries — Distances from parent frame
at which to compute lane boundaries
0:0.5:9.5 (default) | N-element real-valued vector

Distances from the parent frame at which to compute the lane boundaries, specified as an N-element
real-valued vector. N is the number of distance values. Units are in meters.

The parent is the frame to which the sensor is mounted, such as the ego vehicle. The Parent name
parameter determines the parent frame. Distances are relative to the origin of the parent frame.

When detecting lanes from rear-facing cameras, specify negative distances. When detecting lanes
from front-facing cameras, specify positive distances.

By default, the block computes a lane boundary every 0.5 meters over the range from 0 to 9.5 meters
ahead of the parent.

Example: 1:0.1:10 computes a lane boundary every 0.1 meters over the range from 1 to 10 meters
ahead of the parent.

Output Port Settings

Source of object bus name — Source of object bus name
Auto (default) | Property

Simulation 3D Vision Detection Generator

Source of object bus name, specified as Auto or Property. If you select Auto, the block creates a
bus name. If you select Property, specify the bus name by using the Object bus name parameter.

Object bus name — Object bus name
BusObjectDetections | valid bus name

Object bus name, specified as a valid bus name.

Dependencies
To enable this parameter, set the Source of object bus name parameter to Property.

Source of output lane bus name — Source of output lane bus name
Auto (default) | Property

Source of output lane bus name, specified as Auto or Property. If you select Auto, the block creates
a bus name. If you select Property, specify the bus name by using the Specify an output lane bus
name parameter.

Specify an output lane bus name — Lane bus name
BusLaneDetections (default) | valid bus name

Lane bus name, specified as a valid bus name.

Dependencies
To enable this parameter, set the Source of output lane bus name parameter to Property.
Measurements

Maximum detection range (m) — Maximum detection range
150 (default) | positive real scalar

Maximum detection range, specified as a positive real scalar. The vision sensor cannot detect objects
beyond this range. Units are in meters.

Example: 250
Object Detector Settings

Bounding box accuracy (pixels) — Bounding box accuracy
5 (default) | positive real scalar

Bounding box accuracy, specified as a positive real scalar. This quantity defines the accuracy with
which the detector can match a bounding box to a target. Units are in pixels.

Example: 9

Smoothing filter noise intensity (m/s”2) — Noise intensity used for filtering position
and velocity measurements
5 (default) | positive real scalar

Noise intensity used for filtering position and velocity measurements, specified as a positive real
scalar. Noise intensity defines the standard deviation of the process noise of the internal constant-
velocity Kalman filter used in a vision sensor. The filter models the process noise by using a
piecewise-constant white noise acceleration model. Noise intensity is typically of the order of the
maximum acceleration magnitude expected for a target. Units are in meters per second squared.

2-163

2 Blocks

2-164

Example: 2

Maximum detectable object speed (m/s) — Maximum detectable object speed
50 (default) | nonnegative real scalar

Maximum detectable object speed, specified as a nonnegative real scalar. Units are in meters per
second.

Example: 20

Maximum allowed occlusion for detector — Maximum allowed occlusion of an object
0.5 (default) | real scalar in the range [0 1)

Maximum allowed occlusion of an object, specified as a real scalar in the range [0 1). Occlusion is the
fraction of the total surface area of an object that is not visible to the sensor. A value of 1 indicates
that the object is fully occluded. Units are dimensionless.

Example: 0.2

Minimum detectable image size of an object (pixels) — Minimum height and width
of an object
[15,15] (default) | 1-by-2 vector of positive values

Minimum height and width of an object that the vision sensor detects within an image, specified as a
[minHeight,minWidth] vector of positive values. The 2-D projected height of an object must be
greater than or equal to minHeight. The projected width of an object must be greater than or equal
to minWidth. Units are in pixels.

Example: [25 20]

Probability of detecting a target — Probability of detection
0.9 (default) | positive real scalar less than or equal to 1

Probability of detecting a target, specified as a positive real scalar less than or equal to 1. This
quantity defines the probability that the sensor detects a detectable object. A detectable object is an
object that satisfies the minimum detectable size, maximum range, maximum speed, and maximum
allowed occlusion constraints.

Example: 0.95

Number of false positives per image — Number of false detections generated by vision
sensor per image
0.1 (default) | nonnegative real scalar

Number of false detections generated by the vision sensor per image, specified as a nonnegative real
scalar.

Example: 1.0
Lane Detector Settings

Minimum lane size in image (pixels) — Maximum size of lane
[20,3] (default) | 1-by-2 real-valued vector

Minimum size of a projected lane marking in the camera image that the sensor can detect after
accounting for curvature, specified as a 1-by-2 real-valued vector of the form [minHeight,
minWidth]. Lane markings must exceed both of these values to be detected. Units are in pixels.

Simulation 3D Vision Detection Generator

Accuracy of lane boundary (pixels) — Accuracy of lane boundary
3 (default) | positive real scalar

Accuracy of lane boundaries, specified as a positive real scalar. This parameter defines the accuracy
with which the lane sensor can place a lane boundary. Units are in pixels.

Example: 2.5

Random Number Generator Settings

Add noise to measurements — Enable adding noise to vision sensor measurements
on (default) | of f

Select this parameter to add noise to vision sensor measurements. Otherwise, the measurements are
noise-free. The MeasurementNoise property of each detection is always computed and is not
affected by the value you specify for the Add noise to measurements parameter.

Select method to specify initial seed — Method to specify random number generator
seed
Repeatable (default) | Specify seed | Not repeatable

Method to set the random number generator seed, specified as one of the options in the table.

Option Description

Repeatable The block generates a random initial seed for the
first simulation and reuses this seed for all
subsequent simulations. Select this parameter to
generate repeatable results from the statistical
sensor model. To change this initial seed, at the
MATLAB command prompt, enter: clear all.

Specify seed Specify your own random initial seed for
reproducible results by using the Initial seed
parameter.

Not repeatable The block generates a new random initial seed

after each simulation run. Select this parameter
to generate nonrepeatable results from the
statistical sensor model.

Initial seed — Random number generator seed
1 (default) | nonnegative integer less than 232

Random number generator seed, specified as a nonnegative integer less than 232,
Example: 2001

Dependencies

To enable this parameter, set the Select method to specify initial seed parameter to Specify
seed.

Camera Intrinsics

Focal length (pixels) — Camera focal length
[800,800] (default) | two-element real-valued vector

2-165

2 Blocks

Camera focal length, in pixels, specified as a two-element real-valued vector. See also the
FocalLength property of cameraIntrinsics.

Example: [480,320]

Optical center (pixels) — Optical center of camera
[320,240] (default) | two-element real-valued vector

Optical center of the camera, in pixels, specified as a two-element real-valued vector. See also the
PrincipalPoint property of cameraIntrinsics.

Example: [480,320]

Image size (pixels) — Image size produced by camera
[480,640] (default) | two-element vector of positive integers

Image size produced by the camera, in pixels, specified as a two-element vector of positive integers.
See also the ImageSize property of cameraIntrinsics.

Example: [240,320]

Radial distortion coefficients — Radial distortion coefficients
[0,0] (default) | two-element real-valued vector | three-element real-valued vector

Radial distortion coefficients, specified as a two-element or three-element real-valued vector. For
details on setting these coefficients, see the RadialDistortion property of cameraIntrinsics.

Example: [1,1]

Tangential distortion coefficients — Tangential distortion coefficients
[0,0] (default) | two-element real-valued vector

Tangential distortion coefficients, specified as a two-element real-valued vector. For details on setting
these coefficients, see the TangentialDistortion property of cameraIntrinsics.

Example: [1,1]

Skew of the camera axes — Skew angle of camera axes
0 (default) | real scalar

Skew angle of the camera axes, specified as a real scalar. See also the Skew property of
cameralntrinsics.

Example: 0.1
Ground Truth

Output actor truth — Output ground truth of actors
off (default) | on

Select this parameter to output the ground truth of actors on the Actor Truth output port.

Output lane truth — Output ground truth of lane boundaries
off (default) | on

Select this parameter to output the ground truth of lane boundaries on the Lane Truth output port.

2-166

Simulation 3D Vision Detection Generator

Tips

* The sensor is unable to detect lanes and objects from vantage points too close to the ground. After
mounting the sensor block to a vehicle by using the Parent name parameter, set the Mounting
location parameter to one of the predefined mounting locations on the vehicle.

If you leave Mounting location set to 0rigin, which mounts the sensor on the ground below the
vehicle center, then specify an offset that is at least 0.1 meter above the ground. Select Specify
offset, and in the Relative translation [X, Y, Z] (m) parameter, set a Z value of at least 0. 1.

» To visualize detections and sensor coverage areas, use the Bird's-Eye Scope. See “Visualize
Sensor Data from Unreal Engine Simulation Environment”.

* Because the Unreal Engine can take a long time to start between simulations, consider logging
the signals that the sensors output. See “Configure a Signal for Logging” (Simulink).

Algorithms

To generate detections, the Simulation 3D Vision Detection Generator block feeds the actor and lane
ground truth data that is read from the Unreal Engine simulation environment to a Vision Detection
Generator block. This block returns detections that are based on cuboid, or box-shaped,
representations of the actors. The physical dimensions of detected actors are not based on their
dimensions in the Unreal Engine environment. Instead, they are based on the default values set in the
Actor Profiles parameter tab of the Vision Detection Generator block, where all actors are
approximately the size of a sedan. If you return detections that have occlusions, then the occlusions
are based on all actors being of this one size.

See Also

Apps
Bird's-Eye Scope

Blocks

Detection Concatenation | Multi-Object Tracker | Scenario Reader | Simulation 3D Probabilistic Radar
| Simulation 3D Scene Configuration | Simulation 3D Vehicle with Ground Following | Vision Detection
Generator

Objects
cameralntrinsics | visionDetectionGenerator

Topics

“Unreal Engine Simulation for Automated Driving”

“Coordinate Systems for Unreal Engine Simulation in Automated Driving Toolbox”
“Choose a Sensor for Unreal Engine Simulation”

“Visualize Sensor Data and Tracks in Bird's-Eye Scope”

Introduced in R2020b

2-167

2 Blocks

2-168

Vehicle To World

Convert actors from ego vehicle coordinates to world coordinates
Library: Automated Driving Toolbox / Driving Scenario and Sensor
Modeling

J Actors
VehicleToWorld Actors >

Ego Vehicle

Description

The Vehicle To World block converts actor poses from the vehicle coordinates of the input ego vehicle
to world coordinates. Use this block to convert non-ego actor poses output by the Scenario Reader
block into world coordinates for use with the 3D simulation environment. Before using these output
poses to specify vehicle positions in the 3D environment, first convert them from the cuboid to the 3D

simulation world coordinate system by using a Cuboid To 3D Simulation block. For an example of this
workflow, see the “Visualize Sensor Data from Unreal Engine Simulation Environment” example.

Ports
Input

Actors — Actor poses in vehicle coordinates
Simulink bus containing MATLAB structure

Actor poses in vehicle coordinates, specified as a Simulink bus containing a MATLAB structure.

The structure must contain these fields.

Field Description Type

NumActors Number of actors Nonnegative integer

Time Current simulation time Real-valued scalar

Actors Actor poses NumActors-length array of
actor pose structures

Each actor pose structure in Actors must contain these fields.

Field Description

ActorID Scenario-defined actor identifier, specified as a
positive integer.

Position Position of actor, specified as a real-valued vector
of the form [x, y, z]. Units are in meters.

Velocity Velocity (v) of actor in the x-, y-, and z-direction,
specified as a real-valued vector of the form [v,,
Vy, V.]. Units are in meters per second.

Vehicle To World

Field Description

Roll Roll angle of actor, specified as a real-valued
scalar. Units are in degrees.

Pitch Pitch angle of actor, specified as a real-valued
scalar. Units are in degrees.

Yaw Yaw angle of actor, specified as a real-valued
scalar. Units are in degrees.

AngularVelocity Angular velocity (w) of actor in the x-, y-, and z-

direction, specified as a real-valued vector of the
form [w,, wy, w,]. Units are in degrees per second.

Ego Vehicle — Ego vehicle pose
Simulink bus containing MATLAB structure

Ego vehicle pose, specified as a Simulink bus containing a MATLAB structure.

The structure must contain these fields.

Field Description

ActorID Scenario-defined actor identifier, specified as a
positive integer.

Position Position of actor, specified as a real-valued vector
of the form [x, y, z]. Units are in meters.

Velocity Velocity (v) of actor in the x-, y-, and z-direction,
specified as a real-valued vector of the form [v,,
vy, V.]. Units are in meters per second.

Roll Roll angle of actor, specified as a real-valued
scalar. Units are in degrees.

Pitch Pitch angle of actor, specified as a real-valued
scalar. Units are in degrees.

Yaw Yaw angle of actor, specified as a real-valued
scalar. Units are in degrees.

AngularVelocity Angular velocity (w) of actor in the x-, y-, and 2-
direction, specified as a real-valued vector of the
form [w,, wy, w,]. Units are in degrees per second.

Output

Actors — Actor poses in world coordinates

Simulink bus containing MATLAB structure

Actor poses in world coordinates, returned as a Simulink bus containing a MATLAB structure.

The structure has these fields.

Field

Description

Type

NumActors

Number of actors Nonnegative integer

2-169

2 Blocks

2-170

Field Description Type

Time Current simulation time Real-valued scalar

Actors Actor poses NumActors-length array of
actor pose structures

Each actor pose structure in Actors has these fields.

Field Description

ActorID Scenario-defined actor identifier, specified as a
positive integer.

Position Position of actor, specified as a real-valued vector
of the form [x, y, z]. Units are in meters.

Velocity Velocity (v) of actor in the x-, y-, and z-direction,
specified as a real-valued vector of the form [v,,
vy, V.]. Units are in meters per second.

Roll Roll angle of actor, specified as a real-valued
scalar. Units are in degrees.

Pitch Pitch angle of actor, specified as a real-valued
scalar. Units are in degrees.

Yaw Yaw angle of actor, specified as a real-valued
scalar. Units are in degrees.

AngularVelocity Angular velocity (w) of actor in the x-, y-, and 2-
direction, specified as a real-valued vector of the
form [w,, wy, w,]. Units are in degrees per second.

Parameters

Source of actors bus name — Source of name for actor poses bus

Auto (default) | Property

Source of the name for the actor poses bus returned in the Actors output port, specified as one of

these options:

* Auto — The block automatically creates an actor poses bus name.

* Property — Specify the actor poses bus name by using the Actors bus name parameter.

Actors bus name — Name of actor poses bus
valid bus name

Name of the actor poses bus returned in the Actors output port, specified as a valid bus name.

Dependencies

To enable this parameter, set Source of actors bus name to Property.

Simulate using — Type of simulation to run

Interpreted execution (default) | Code generation

Vehicle To World

* Interpreted execution — Simulate the model using the MATLAB interpreter. This option
shortens startup time. In Interpreted execution mode, you can debug the source code of the
block.

* Code generation — Simulate the model using generated C/C++ code. The first time you run a
simulation, Simulink generates C/C++ code for the block. The C code is reused for subsequent
simulations as long as the model does not change. This option requires additional startup time.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Cuboid To 3D Simulation | Scenario Reader | World To Vehicle

Topics
“Coordinate Systems in Automated Driving Toolbox”
“Coordinate Systems for Unreal Engine Simulation in Automated Driving Toolbox”

Introduced in R2020a

2-171

2 Blocks

2-172

Velocity Profiler

Generate velocity profile of vehicle path given kinematic constraints
Library: Automated Driving Toolbox

) Directions
CumlLengths
WVelocity >

Curvatures Profiler Velocities

Startvelocity

AV IR VIRV IR V]

End\elocity

Description

The Velocity Profiler block generates a velocity profile of a driving path that satisfies this set of
specified kinematic constraints:

* The maximum allowable speed of the vehicle

* The maximum longitudinal acceleration and deceleration of the vehicle

* The maximum longitudinal jerk on page 2-175 of the vehicle

* The maximum lateral acceleration on page 2-175 of the vehicle

Specify the cumulative lengths along the path and the driving directions and curvatures at each point

along the path. You can obtain these values from the output of a Path Smoother Spline block. Also
specify the longitudinal velocity of the vehicle at the start and end of the path.

Use the generated velocity profile as the input reference velocities of a longitudinal controller, as
shown in the “Automated Parking Valet in Simulink” example.

Ports
Input

Directions — Driving directions along path
M-by-1 vector of 1s (forward motion) and -1s (reverse motion)

Driving directions of the vehicle along the length of the path, specified as an M-by-1 vector of 1s
(forward motion) and -1s (reverse motion). Each vector element represents the driving direction of
the vehicle at the corresponding cumulative path length specified by the CumLengths input port. M
is the number of driving directions and must be equal to the lengths of the CumLengths and
Curvatures inputs.

You can obtain Directions from the output of a Path Smoother Spline block.

CumLengths — Cumulative path lengths
M-by-1 vector of monotonically increasing real-valued elements

Cumulative path lengths, in meters, specified as an M-by-1 vector of monotonically increasing real-
valued elements. Each vector element represents a point along the path. M is the number of
cumulative path lengths and must be equal to the lengths of the Directions and Curvatures inputs.

Velocity Profiler

You can obtain CumLengths from the output of a Path Smoother Spline block.

Curvatures — Signed path curvatures along path
M-by-1 real-valued vector

Signed path curvatures along the length of the path, in radians per meter, specified as an M-by-1 real-
valued vector. Each vector element represents the curvature of the path at the corresponding
cumulative path length specified by the CumLengths input port. M is the number of curvatures and
must be equal to the lengths of the Directions and CumLengths inputs.

You can obtain Curvatures from the output of a Path Smoother Spline block.

StartVelocity — Longitudinal velocity of vehicle at start of path
real scalar

Longitudinal velocity of the vehicle at the start of the path, in meters per second, specified as a real
scalar.

EndVelocity — Longitudinal velocity of vehicle at end of path
real scalar

Longitudinal velocity of the vehicle at the end of the path, in meters per second, specified as a real
scalar.

Output

Velocities — Velocity profile along path
M-by-1 real-valued vector

Velocity profile along the length of the path, in meters per second, returned as an M-by-1 real-valued
column vector. Each vector element represents a reference longitudinal velocity for the vehicle at the
corresponding cumulative path length specified by the CumLengths input port. M is the number of
velocities and is equal to the length of CumLengths.

The output velocity values satisfy the speed, acceleration, and jerk constraints specified in the
parameters of the Velocity Profiler block. You can use this output as the reference velocity for a
vehicle controller.

Velocities is a variable-size output with the limitations described in “Variable-Size Signal
Limitations” (Simulink).

Times — Vehicle times of arrival for velocity profile
M-by-1 real-valued vector

Vehicle times of arrival for the velocity profile specified in Velocities, returned as an M-by-1 real-
valued vector. M is the number of vehicle times of arrival and is equal to the length of Velocities.
Units are in seconds.

Each vector element represents the time that a vehicle traveling at velocity v arrives at cumulative
path length p, where:

* v is the corresponding velocity returned by the Velocities output port.

* pis the corresponding cumulative path length specified by the CumLengths input port.

2-173

2 Blocks

2-174

Use Times to visualize the velocity profile over time, as shown in the “Velocity Profile of Straight
Path” and “Velocity Profile of Path with Curve and Direction Change” examples.

Times is a variable-size output with the limitations described in “Variable-Size Signal Limitations”
(Simulink).

Dependencies

To enable this port, select the Show Times output port parameter.

Parameters

Maximum longitudinal acceleration (m/s”2) — Maximum longitudinal acceleration of
vehicle
3 (default) | positive real scalar

Maximum longitudinal acceleration of the vehicle, in meters per second squared, specified as a
positive real scalar.

When developing a longitudinal controller, this parameter must be equal to the corresponding
parameter in the Longitudinal Controller Stanley block. Otherwise, the vehicle is unable to run the
generated velocity profile.

Maximum longitudinal deceleration (m/s”2) — Maximum longitudinal deceleration of
vehicle
6 (default) | positive real scalar

Maximum longitudinal deceleration of the vehicle, in meters per second squared, specified as a
positive real scalar.

When developing a longitudinal controller, this parameter must be equal to the corresponding
parameter in the Longitudinal Controller Stanley block. Otherwise, the vehicle is unable to run the
generated velocity profile.

Maximum allowable speed (m/s) — Maximum allowable speed along path
10 (default) | positive real scalar

Maximum allowable speed of the vehicle along the path, in meters per second, specified as a positive
real scalar. Use this parameter to constrain the speed of the vehicle based on passenger comfort or
speed limit requirements.

When the path length is too short for the vehicle to reach this maximum speed, the block calculates a
smaller maximum speed that satisfies the path length constraint.

In the output velocity profile, the speed of the vehicle is constrained to [-Vax, Vinax), Where V., is the
value of this parameter.

Maximum longitudinal jerk (m/s”3) — Maximum longitudinal jerk
1 (default) | positive real scalar

Maximum longitudinal jerk of the vehicle along the path, in meters per second cubed, specified as a
positive real scalar.

In the output velocity profile, the longitudinal jerk of the vehicle is constrained to [~] . Jmax), Where
Jmax is the value of this parameter.

Velocity Profiler

Maximum lateral acceleration (m/s”2) — Maximum lateral acceleration
1 (default) | positive real scalar

Maximum lateral acceleration of the vehicle along the path, in meters per second squared, specified
as a positive real scalar.

In the output velocity profile, the lateral acceleration of the vehicle is constrained to [-Aax Amaxls
where A, is the value of this parameter.

Show Times output port — Output times of arrival for velocity profile
off (default) | on

Select this parameter to enable the Times output port.

Sample time — Sample time of block
-1 (default) | positive real scalar

Sample time of the block, in seconds, specified as - 1 or as a positive real scalar. The default of -1
means that the block inherits its sample time from upstream blocks.

Because the Velocity Profiler block outputs variable-size signals, the sample time of the block must be
discrete (nonzero). If the block inherits its sample time from upstream blocks, those blocks must also
have discrete sample times.

Simulate using — Type of simulation to run
Code Generation (default) | Interpreted Execution

* Code generation — Simulate the model using generated C/C++ code. The first time you run a
simulation, Simulink generates C/C++ code for the block. The C code is reused for subsequent
simulations as long as the model does not change. This option requires additional startup time.

* Interpreted execution — Simulate the model using the MATLAB interpreter. This option
shortens startup time. In Interpreted execution mode, you can debug the source code of the
block.

More About
Jerk

Jerk is the rate of change of acceleration in a vehicle. Jerk minimization is a key comfort requirement
for vehicle passengers. Rapid changes in acceleration or deceleration result in a "jerky" ride for
passengers. Jerk is measured in units of meters per second cubed.

Lateral Acceleration
Lateral acceleration is defined as aj,; = v?k, where:

* v is the longitudinal velocity of the vehicle.
* K is the curvature of the path. Units are in radians per meter.

Lateral acceleration is measured in units of meters per second squared.

Algorithms

To generate the velocity profile for a reference path, the Velocity Profiler block performs these steps:

2-175

2 Blocks

1 Generate a continuous velocity profile that satisfies all kinematic constraints (speed,

acceleration, and jerk) specified by the block parameters.

2 Discretize the velocity profile by mapping poses in the reference path to velocity values, based on
how far away the poses are from the starting pose. The cumulative path lengths specified in the
CumLengths input port contain these distances. The Path Smoother Spline block returns these
cumulative path lengths, along with the smooth path.

The generated velocity profile is a seven-interval curve. At each time interval within the curve, the
jerk, acceleration, and velocity of the vehicle change to satisfy the specified constraints. The figure
and table show how these values change for a vehicle traveling in forward motion along a path. For
simplicity, the starting and ending velocity of the vehicle, as specified by the StartVelocity and
EndVelocity input ports, are both 0.

MaxJerk

MaxAccel

MaxSpeed

-MaxDecel
-MaxJerk
1 2 3 4 5 6 7
Time Intervals
Time Interval Jerk Acceleration Velocity Notes
1 Set to MaxJerk Increases from 0 |Increases from -
to MaxAccel starting velocity
2 Setto 0 Held constant at |Keeps increasing |During the
MaxAccel previous interval,
if the vehicle
cannot reach
MaxAccel given
the MaxSpeed
constraint, then
interval 2 does not
ocCur.
3 Set to -MaxJerk |Decreases from Increases to -
MaxAccel to 0 MaxSpeed
4 Set to 0 Held constant at @ |Held constant at |-
MaxSpeed
5 Set to -MaxJerk |Decreases from @ |Starts decreasing |-
to -MaxDecel

2-176

Velocity Profiler

Time Interval

Jerk

Acceleration

Velocity

Notes

6

Setto 0

Held constant at -
MaxDecel

Keeps decreasing

During the
previous interval,
if the vehicle
cannot reach -
MaxDecel given
the MaxSpeed
constraint, then
interval 6 does not
occur.

Set to MaxJerk

Increases from -
MaxDecel to 0

Decreases to
ending velocity

In the figure and table:

* MaxJerk and -MaxJerk are set by the Maximum longitudinal jerk (m/s”3) parameter.

* MaxAccel and -MaxDecel are set by the Maximum longitudinal acceleration (m/s”2) and
Maximum longitudinal deceleration (m/s”2) parameters, respectively. You can specify
asymmetric values for these parameters.

* MaxSpeed is set by the Maximum allowable speed (m/s) parameter.

For a vehicle in reverse motion, the curves in the figure are reversed. The signs of the parameter
values shown in the figure and table are also reversed.

If the vehicle includes multiple changes in direction, the block generates separate velocity profiles for
each driving direction. Then the block concatenates these profiles in the final Velocities output. For
an example, see “Velocity Profile of Path with Curve and Direction Change”.

References

[1] Villagra, Jorge, Vicente Milanés, Joshué Pérez, and Jorge Godoy. "Smooth path and speed planning
for an automated public transport vehicle." Robotics and Autonomous Systems. Vol. 60,
Number 2, February 2012, pp. 252-265.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also

Lateral Controller Stanley | Longitudinal Controller Stanley | Path Smoother Spline

Introduced in R2019b

2-177

2 Blocks

2-178

Vision Detection Generator

Detect objects and lanes from visual measurements

Library: Automated Driving Toolbox / Driving Scenario and Sensor
Modeling
D\'Fiﬁjn Object
1 e
Description

The Vision Detection Generator block generates detections from camera measurements taken by a
vision sensor mounted on an ego vehicle.

The block derives detections from simulated actor poses and generates these detections at intervals
equal to the sensor update interval. By default, detections are referenced to the coordinate system of
the ego vehicle. The block can simulate real detections with added random noise and also generate
false positive detections. A statistical model generates the measurement noise, true detections, and
false positives. To control the random numbers that the statistical model generates, use the random
number generator settings on the Measurements tab of the block.

You can use the Vision Detection Generator to create input to a Multi-Object Tracker block. When
building scenarios and sensor models using the Driving Scenario Designer app, the camera sensors
exported to Simulink are output as Vision Detection Generator blocks.

Ports
Input

Actors — Scenario actor poses
Simulink bus containing MATLAB structure

Scenario actor poses in ego vehicle coordinates, specified as a Simulink bus containing a MATLAB
structure.

The structure must contain these fields.

Field Description Type

NumActors Number of actors Nonnegative integer

Time Current simulation time Real-valued scalar

Actors Actor poses NumActors-length array of
actor pose structures

Each actor pose structure in Actors must have these fields.

Vision Detection Generator

Field Description

ActorID Scenario-defined actor identifier, specified as a
positive integer.

Position Position of actor, specified as a real-valued vector
of the form [x, y, z]. Units are in meters.

Velocity Velocity (v) of actor in the x-, y-, and z-direction,
specified as a real-valued vector of the form [v,,
Vy, V.]. Units are in meters per second.

Roll Roll angle of actor, specified as a real-valued
scalar. Units are in degrees.

Pitch Pitch angle of actor, specified as a real-valued
scalar. Units are in degrees.

Yaw Yaw angle of actor, specified as a real-valued
scalar. Units are in degrees.

AngularVelocity Angular velocity (w) of actor in the x-, y-, and 2-

direction, specified as a real-valued vector of the
form [w,, wy, w,]. Units are in degrees per second.

Dependencies

To enable this input port, set the Types of detections generated by sensor parameter to Objects
only, Lanes with occlusion, or Lanes and objects.

Lane Boundaries — Lane boundaries
Simulink bus containing MATLAB structure

Lane boundaries in ego vehicle coordinates, specified as a Simulink bus containing a MATLAB

structure.

The structure must contain these fields.

Field Description Type

NumLaneBoundaries Number of lane boundaries Nonnegative integer

Time Current simulation time Real scalar

LaneBoundaries Lane boundaries NumLaneBoundaries-length
array of lane boundary
structures

Each lane boundary structure in LaneBoundaries must have these fields.

Field

Description

2-179

2 Blocks

Coordinates

Lane boundary coordinates, specified as a real-
valued N-by-3 matrix, where N is the number of
lane boundary coordinates. Lane boundary
coordinates define the position of points on the
boundary at specified longitudinal distances away
from the ego vehicle, along the center of the
road.

* In MATLAB, specify these distances by using
the 'XDistance' name-value pair argument
of the laneBoundaries function.

* In Simulink, specify these distances by using
the Distances from ego vehicle for
computing boundaries (m) parameter of
the Scenario Reader block or the Distance
from parent for computing lane
boundaries parameter of the Simulation 3D
Vision Detection Generator block.

This matrix also includes the boundary
coordinates at zero distance from the ego vehicle.
These coordinates are to the left and right of the
ego-vehicle origin, which is located under the
center of the rear axle. Units are in meters.

Curvature

Lane boundary curvature at each row of the
Coordinates matrix, specified as a real-valued
N-by-1 vector. N is the number of lane boundary
coordinates. Units are in radians per meter.

CurvatureDerivative

Derivative of lane boundary curvature at each
row of the Coordinates matrix, specified as a
real-valued N-by-1 vector. N is the number of lane
boundary coordinates. Units are in radians per
square meter.

HeadingAngle

Initial lane boundary heading angle, specified as
a real scalar. The heading angle of the lane
boundary is relative to the ego vehicle heading.
Units are in degrees.

LateralOffset

Distance of the lane boundary from the ego
vehicle position, specified as a real scalar. An
offset to a lane boundary to the left of the ego
vehicle is positive. An offset to the right of the
ego vehicle is negative. Units are in meters.

2-180

Vision Detection Generator

BoundaryType

Type of lane boundary marking, specified as one
of these values:

* 'Unmarked' — No physical lane marker
exists
*+ 'Solid' — Single unbroken line

* 'Dashed' — Single line of dashed lane
markers

* 'DoubleSolid' — Two unbroken lines
* 'DoubleDashed' — Two dashed lines

 'SolidDashed' — Solid line on the left and a
dashed line on the right

 'DashedSolid' — Dashed line on the left
and a solid line on the right

Strength

Saturation strength of the lane boundary
marking, specified as a real scalar from 0 to 1. A
value of @ corresponds to a marking whose color
is fully unsaturated. The marking is gray. A value
of 1 corresponds to a marking whose color is fully
saturated.

Width

Lane boundary width, specified as a positive real
scalar. In a double-line lane marker, the same
width is used for both lines and for the space
between lines. Units are in meters.

Length

Length of dash in dashed lines, specified as a
positive real scalar. In a double-line lane marker,
the same length is used for both lines.

Space

Length of space between dashes in dashed lines,
specified as a positive real scalar. In a dashed
double-line lane marker, the same space is used
for both lines.

Dependencies

To enable this input port, set the Types of detections generated by sensor parameter to Lanes
only, Lanes only, Lanes with occlusion, or Lanes and objects.

Output

Object Detections — Object detections
Simulink bus containing MATLAB structure

Object detections, returned as a Simulink bus containing a MATLAB structure. For more details about

buses, see “Create Nonvirtual Buses” (Simulink).

You can pass object detections from these sensors and other sensors to a tracker, such as a Multi-

Object Tracker block, and generate tracks.

The detections structure has this form:

2-181

2 Blocks

2-182

Field Description Type
NumDetections Number of detections Integer
IsValidTime False when updates are Boolean
requested at times that are
between block invocation
intervals
Detections Object detections Array of object detection

structures of length set by the
Maximum number of
reported detections
parameter. Only
NumDetections of these
detections are actual detections.

The object detection structure contains these properties.

Property Definition
Time Measurement time
Measurement Object measurements
MeasurementNoise Measurement noise covariance matrix
SensorIndex Unique ID of the sensor
ObjectClassID Object classification
ObjectAttributes Additional information passed to tracker

MeasurementParameters

Parameters used by initialization functions of
nonlinear Kalman tracking filters

The Measurement field reports the position and velocity of a measurement in the coordinate system
specified by Coordinate system used to report detections. This field is a real-valued column
vector of the form [x; y; z; vx; vy; vz]. Units are in meters per second.

The MeasurementNoise field is a 6-by-6 matrix that reports the measurement noise covariance for
each coordinate in the Measurement field.

The MeasurementParameters field is a structure with these fields.

Parameter

Definition

Frame

Enumerated type indicating the frame used to
report measurements. The Vision Detection
Generator block reports detections in either ego

and sensor Cartesian coordinates, which are both
rectangular coordinate frames. Therefore, for this
block, Frame is always set to ' rectangular’.

OriginPosition

3-D vector offset of the sensor origin from the ego
vehicle origin. The vector is derived from the
Sensor's (x,y) position (m) and Sensor's
height (m) parameters of the block.

Vision Detection Generator

Parameter

Definition

Orientation

Orientation of the vision sensor coordinate
system with respect to the ego vehicle coordinate
system. The orientation is derived from the Yaw
angle of sensor mounted on ego vehicle
(deg), Pitch angle of sensor mounted on ego

the block.

vehicle (deg), and Roll angle of sensor
mounted on ego vehicle (deg) parameters of

HasVelocity

Indicates whether measurements contain velocity.

The ObjectAttributes property of each detection is a structure with these fields.

Field

Definition

TargetIndex

negative.

Identifier of the actor, ActorID, that generated
the detection. For false alarms, this value is

Dependencies

To enable this output port, set the Types of detections generated by sensor parameter to Objects
only, Lanes with occlusion, or Lanes and objects.

Lane Detections — Lane boundary detections
Simulink bus containing MATLAB structure

Lane boundary detections, returned as a Simulink bus containing a MATLAB structure. The structure

had these fields:
Field Description Type
Time Lane detection time Real scalar
IsValidTime False when updates are Boolean
requested at times that are
between block invocation
intervals
SensorIndex Unique identifier of sensor Positive integer
NumLaneBoundaries Number of lane boundary Nonnegative integer
detections
LaneBoundaries Lane boundary detections Array of
clothoidLaneBoundary
objects

Dependencies

To enable this output port, set the Types of detections generated by sensor parameter to Lanes
only, Lanes with occlusion, or Lanes and objects.

2-183

2 Blocks

2-184

Parameters

Parameters

Sensor Identification

Unique identifier of sensor — Unique sensor identifier
1 (default) | positive integer

Unique sensor identifier, specified as a positive integer. The sensor identifier distinguishes detections
that come from different sensors in a multisensor system. If a model contains multiple sensor blocks
with the same sensor identifier, the Bird's-Eye Scope displays an error.

Example: 5

Types of detections generated by sensor — Select the types of detections
Objects only (default) | Lanes only | Lanes with occlusion | Lanes and objects

Types of detections generated by the sensor, specified as Objects only, Lanes only, Lanes with
occlusion, or Lanes and objects.

* When set to Objects only, no road information is used to occlude actors.
* When set to Lanes only, no actor information is used to detect lanes.

* When set to Lanes with occlusion, actors in the camera field of view can impair the sensor
ability to detect lanes.

* When set to Lanes and objects, the sensor generates object both object detections and
occluded lane detections.

Required interval between sensor updates (s) — Required time interval
0.1 (default) | positive real scalar

Required time interval between sensor updates, specified as a positive real scalar. The value of this
parameter must be an integer multiple of the Actors input port data interval. Updates requested
from the sensor between update intervals contain no detections. Units are in seconds.

Required interval between lane detections updates (s) — Time interval between
lane detection updates
0.1 (default) | positive real scalar

Required time interval between lane detection updates, specified as a positive real scalar. The vision
detection generator is called at regular time intervals. The vision detector generates new lane
detections at intervals defined by this parameter which must be an integer multiple of the simulation
time interval. Updates requested from the sensor between update intervals contain no lane
detections. Units are in seconds.

Sensor Extrinsics

Sensor's (x,y) position (m) — Location of the vision sensor center
[3.4 0] (default) | real-valued 1-by-2 vector

Location of the vision sensor center, specified as a real-valued 1-by-2 vector. The Sensor's (x,y)
position (m) and Sensor's height (m) parameters define the coordinates of the vision sensor with
respect to the ego vehicle coordinate system. The default value corresponds to a forward-facing
vision sensor mounted to a sedan dashboard. Units are in meters.

Vision Detection Generator

Sensor's height (m) — Vision sensor height above the ground plane
0.2 (default) | positive real scalar

Vision sensor height above the ground plane, specified as a positive real scalar. The height is defined
with respect to the vehicle ground plane. The Sensor's (x,y) position (m) and Sensor's height (m)
parameters define the coordinates of the vision sensor with respect to the ego vehicle coordinate
system. The default value corresponds to a forward-facing vision sensor mounted a sedan dashboard.
Units are in meters.

Example: 0. 25

Yaw angle of sensor mounted on ego vehicle (deg) — Yaw angle of sensor
0 (default) | real scalar

Yaw angle of vision sensor, specified as a real scalar. Yaw angle is the angle between the center line of
the ego vehicle and the optical axis of the camera. A positive yaw angle corresponds to a clockwise
rotation when looking in the positive direction of the z-axis of the ego vehicle coordinate system.
Units are in degrees.

Example: -4.0

Pitch angle of sensor mounted on ego vehicle (deg) — Pitch angle of sensor
0 (default) | real scalar

Pitch angle of sensor, specified as a real scalar. The pitch angle is the angle between the optical axis
of the camera and the x-y plane of the ego vehicle coordinate system. A positive pitch angle
corresponds to a clockwise rotation when looking in the positive direction of the y-axis of the ego
vehicle coordinate system. Units are in degrees.

Example: 3.0

Roll angle of sensor mounted on ego vehicle (deg) — Roll angle of sensor
0 (default) | real scalar

Roll angle of the vision sensor, specified as a real scalar. The roll angle is the angle of rotation of the
optical axis of the camera around the x-axis of the ego vehicle coordinate system. A positive roll angle
corresponds to a clockwise rotation when looking in the positive direction of the x-axis of the
coordinate system. Units are in degrees.

Output Port Settings

Source of object bus name — Source of object bus name
Auto (default) | Property

Source of ohject bus name, specified as Auto or Property. If you select Auto, the block
automatically creates a bus name. If you select Property, specify the bus name using the Specify
an object bus name parameter.

Example: Property

Source of output lane bus name — Source of lane bus name
Auto (default) | Property

Source of output lane bus name, specified as Auto or Property. If you choose Auto, the block will
automatically create a bus name. If you choose Property, specify the bus name using the Specify
an object bus name parameter.

2-185

2 Blocks

2-186

Example: Property

Object bus name — Name of object bus
valid bus name

Name of object bus, specified as a valid bus name.
Example: objectbus

Dependencies
To enable this parameter, set the Source of object bus name parameter to Property.

Specify an output lane bus name — Name of output lane bus
valid bus name

Namer of output lane bus, specified as a valid bus name.

Example: Lanebus

Dependencies

To enable this parameter, set the Source of output lane bus name parameter to Property.

Detection Reporting

Maximum number of reported detections — Maximum number of reported detections
50 (default) | positive integer

Maximum number of detections reported by the sensor, specified as a positive integer. Detections are
reported in order of increasing distance from the sensor until the maximum number is reached.

Example: 100

Dependencies

To enable this parameter, set the Types of detections generated by sensor parameter to Objects
only or Lanes and objects.

Maximum number of reported lanes — Maximum number of reported lanes
30 (default) | positive integer

Maximum number of reported lanes, specified as a positive integer.
Example: 100

Dependencies

To enable this parameter, set the Types of detections generated by sensor parameter to Lanes
only, Lanes with occlusion, or Lanes and objects.

Coordinate system used to report detections — Coordinate system of reported
detections
Ego Cartesian (default) | Sensor Cartesian

Coordinate system of reported detections, specified as one of these values:

* Ego Cartesian — Detections are reported in the ego vehicle Cartesian coordinate system.

Vision Detection Generator

* Sensor Cartesian— Detections are reported in the sensor Cartesian coordinate system.
Simulation

Simulate using — Type of simulation to run
Interpreted execution (default) | Code generation

* Interpreted execution — Simulate the model using the MATLAB interpreter. This option
shortens startup time. In Interpreted execution mode, you can debug the source code of the
block.

* Code generation — Simulate the model using generated C/C++ code. The first time you run a
simulation, Simulink generates C/C++ code for the block. The C code is reused for subsequent
simulations as long as the model does not change. This option requires additional startup time.

Measurements
Settings

Maximum detection range (m) — Maximum detection range
150 (default) | positive real scalar

Maximum detection range, specified as a positive real scalar. The vision sensor cannot detect objects
beyond this range. Units are in meters.

Example: 250
Object Detector Settings

Bounding box accuracy (pixels) — Bounding box accuracy
5 (default) | positive real scalar

Bounding box accuracy, specified as a positive real scalar. This quantity defines the accuracy with
which the detector can match a bounding box to a target. Units are in pixels.

Example: 9

Smoothing filter noise intensity (m/s”2) — Noise intensity used for filtering position
and velocity measurements
5 (default) | positive real scalar

Noise intensity used for filtering position and velocity measurements, specified as a positive real
scalar. Noise intensity defines the standard deviation of the process noise of the internal constant-
velocity Kalman filter used in a vision sensor. The filter models the process noise using a piecewise-
constant white noise acceleration model. Noise intensity is typically of the order of the maximum
acceleration magnitude expected for a target. Units are in meters per second squared.

Example: 2

Maximum detectable object speed (m/s) — Maximum detectable object speed
100 (default) | nonnegative real scalar

Maximum detectable object speed, specified as a nonnegative real scalar. Units are in meters per
second.

Example: 20

Maximum allowed occlusion for detector — Maximum allowed occlusion for detector
0.5 (default) | real scalar in the range [0 1)

2-187

2 Blocks

2-188

Maximum allowed occlusion of an object, specified as a real scalar in the range [0 1). Occlusion is the
fraction of the total surface area of an object that is not visible to the sensor. A value of 1 indicates
that the object is fully occluded. Units are dimensionless.

Example: 0.2

Minimum detectable image size of an object — Minimum height and width of an object
[15,15] (default) | 1-by-2 vector of positive values

Minimum height and width of an object that the vision sensor detects within an image, specified as a
[minHeight,minWidth] vector of positive values. The 2-D projected height of an object must be
greater than or equal to minHeight. The projected width of an object must be greater than or equal
to minWidth. Units are in pixels.

Example: [25 20]

Probability of detecting a target — Probability of detection
0.9 (default) | positive real scalar less than or equal to 1

Probability of detecting a target, specified as a positive real scalar less than or equal to 1. This
quantity defines the probability that the sensor detects a detectable object. A detectable object is an
object that satisfies the minimum detectable size, maximum range, maximum speed, and maximum
allowed occlusion constraints.

Example: 0.95
Number of false positives per image — Number of false detections generated by vision

sensor per image
0.1 (default) | nonnegative real scalar

Number of false detections generated by the vision sensor per image, specified as a nonnegative real
scalar.

Example: 1.0

Lane Detector Settings

Minimum lane size in image (pixels) — Maximum size of lane
[20,3] (default) | 1-by-2 real-valued vector

Minimum size of a projected lane marking in the camera image that can be detected by the sensor
after accounting for curvature, specified as a 1-by-2 real-valued vector, [minHeight minWidth].
Lane markings must exceed both of these values to be detected. Units are in pixels.

Dependencies

To enable this parameter, set the Types of detections generated by sensor parameter to Lanes
only, Lanes only, or Lanes and objects.

Accuracy of lane boundary (pixels) — Accuracy of lane boundary
3 (default) | positive real scalar

Accuracy of lane boundaries, specified as a positive real scalar. This parameter defines the accuracy
with which the lane sensor can place a lane boundary. Units are in pixels.

Example: 2.5

Vision Detection Generator

Dependencies

To enable this parameter, set the Types of detections generated by sensor parameter to Lanes
only, Lanes only, or Lanes and objects.

Random Number Generator Settings

Add noise to measurements — Enable adding noise to vision sensor measurements
on (default) | of f

Select this parameter to add noise to vision sensor measurements. Otherwise, the measurements are
noise-free. The MeasurementNoise property of each detection is always computed and is not
affected by the value you specify for the Add noise to measurements parameter.

Select method to specify initial seed — Method to specify random number generator
seed
Repeatable (default) | Specify seed |Not repeatable

Method to set the random number generator seed, specified as one of the options in the table.

Option Description

Repeatable The block generates a random initial seed for the
first simulation and reuses this seed for all
subsequent simulations. Select this parameter to
generate repeatable results from the statistical
sensor model. To change this initial seed, at the
MATLAB command prompt, enter: clear all.

Specify seed Specify your own random initial seed for
reproducible results by using the Specify seed
parameter.

Not repeatable The block generates a new random initial seed

after each simulation run. Select this parameter
to generate nonrepeatable results from the
statistical sensor model.

Initial seed — Random number generator seed
0 (default) | nonnegative integer less than 232

Random number generator seed, specified as a nonnegative integer less than 232.
Example: 2001

Dependencies

To enable this parameter, set the Random Number Generator Settings parameter to Specify
seed.

Actor Profiles

Select method to specify actor profiles — Method to specify actor profiles
Parameters (default) | MATLAB expression

Method to specify actor profiles, specified as Parameters or MATLAB expression. When you select
Parameters, set the actor profiles using the parameters in the Actor Profiles tab. When you select

2-189

2 Blocks

2-190

MATLAB expression, set the actor profiles using the MATLAB expression for actor profiles
parameter.

MATLAB expression for actor profiles — MATLAB expression for actor profiles
struct('ClassID',0, 'Length',4.7,'Width',1.8, 'Height',1.4,'0riginOffset’,
[-1.35,0,0]) (default) | MATLAB structure | MATLAB structure array | valid MATLAB expression

MATLAB expression for actor profiles, specified as a MATLAB structure, a MATLAB structure array,
or a valid MATLAB expression that produces such a structure or structure array.

If your Scenario Reader block reads data from a drivingScenario object, to obtain the actor
profiles directly from this object, set this expression to call the actorProfiles function on the
object. For example: actorProfiles(scenario).

Example: struct('ClassID',5, 'Length',5.0, 'Width',2, 'Height',2, '0Origin0Offset’,
[_1-55;010])

Dependencies

To enable this parameter, set the Select method to specify actor profiles parameter to MATLAB
expression.

Unique identifier for actors — Scenario-defined actor identifier
[1 (default) | positive integer | length-L vector of unique positive integers

Scenario-defined actor identifier, specified as a positive integer or length-L vector of unique positive
integers. L must equal the number of actors input into the Actors input port. The vector elements
must match ActorID values of the actors. You can specify Unique identifier for actors as []. In
this case, the same actor profile parameters apply to all actors.

Example: [1,2]

Dependencies

To enable this parameter, set the Select method to specify actor profiles parameter to
Parameters.

User-defined integer to classify actors — User-defined classification identifier
0 (default) | integer | length-L vector of integers

User-defined classification identifier, specified as an integer or length-L vector of integers. When
Unique identifier for actors is a vector, this parameter is a vector of the same length with elements
in one-to-one correspondence to the actors in Unique identifier for actors. When Unique
identifier for actors is empty, [], you must specify this parameter as a single integer whose value
applies to all actors.

Example: 2

Dependencies

To enable this parameter, set the Select method to specify actor profiles parameter to
Parameters.

Length of actors cuboids (m) — Length of cuboid
4.7 (default) | positive real scalar | length-L vector of positive values

Length of cuboid, specified as a positive real scalar or length-L vector of positive values. When
Unique identifier for actors is a vector, this parameter is a vector of the same length with elements

Vision Detection Generator

in one-to-one correspondence to the actors in Unique identifier for actors. When Unique
identifier for actors is empty, [], you must specify this parameter as a positive real scalar whose
value applies to all actors. Units are in meters.

Example: 6.3

Dependencies

To enable this parameter, set the Select method to specify actor profiles parameter to
Parameters.

Width of actors cuboids (m) — Width of cuboid
4.7 (default) | positive real scalar | length-L vector of positive values

Width of cuboid, specified as a positive real scalar or length-L vector of positive values. When Unique
identifier for actors is a vector, this parameter is a vector of the same length with elements in one-
to-one correspondence to the actors in Unique identifier for actors. When Unique identifier for
actors is empty, [1, you must specify this parameter as a positive real scalar whose value applies to
all actors. Units are in meters.

Example: 4.7

Dependencies

To enable this parameter, set the Select method to specify actor profiles parameter to
Parameters.

Height of actors cuboids (m) — Height of cuboid
4.7 (default) | positive real scalar | length-L vector of positive values

Height of cuboid, specified as a positive real scalar or length-L vector of positive values. When
Unique identifier for actors is a vector, this parameter is a vector of the same length with elements
in one-to-one correspondence to the actors in Unique identifier for actors. When Unique
identifier for actors is empty, [], you must specify this parameter as a positive real scalar whose
value applies to all actors. Units are in meters.

Example: 2.0

Dependencies

To enable this parameter, set the Select method to specify actor profiles parameter to
Parameters.

Rotational center of actors from bottom center (m) — Rotational center of the actor
{[-1.35,0,01]} (default) | length-L cell array of real-valued 1-by-3 vectors

Rotational center of the actor, specified as a length-L cell array of real-valued 1-by-3 vectors. Each
vector represents the offset of the rotational center of the actor from the bottom-center of the actor.
For vehicles, the offset corresponds to the point on the ground beneath the center of the rear axle.
When Unique identifier for actors is a vector, this parameter is a cell array of vectors with cells in
one-to-one correspondence to the actors in Unique identifier for actors. When Unique identifier
for actors is empty, [], you must specify this parameter as a cell array of one element containing the
offset vector whose values apply to all actors. Units are in meters.

Example: [-1.35, .2, .3]

2-191

2 Blocks

2-192

Dependencies

To enable this parameter, set the Select method to specify actor profiles parameter to
Parameters.

Camera Intrinsics

Focal length (pixels) — Camera focal length
[800,800] (default) | two-element real-valued vector

Camera focal length, in pixels, specified as a two-element real-valued vector. See also the
FocalLength property of cameraIntrinsics.
Example: [480,320]

Optical center of the camera (pixels) — Optical center of camera
[320,240] (default) | two-element real-valued vector

Optical center of the camera, in pixels, specified as a two-element real-valued vector. See also the
PrincipalPoint property of cameraIntrinsics.
Example: [480,320]

Image size produced by the camera (pixels) — Image size produced by camera
[480,640] (default) | two-element vector of positive integers

Image size produced by the camera, in pixels, specified as a two-element vector of positive integers.
See also the ImageSize property of cameraIntrinsics.
Example: [240,320]

Radial distortion coefficients — Radial distortion coefficients
[0,0] (default) | two-element real-valued vector | three-element real-valued vector

Radial distortion coefficients, specified as a two-element or three-element real-valued vector. For
details on setting these coefficients, see the RadialDistortion property of cameraIntrinsics.
Example: [1,1]

Tangential distortion coefficients — Tangential distortion coefficients
[0,0] (default) | two-element real-valued vector

Tangential distortion coefficients, specified as a two-element real-valued vector. For details on setting
these coefficients, see the TangentialDistortion property of cameralntrinsics.
Example: [1,1]

Skew of the camera axes — Skew angle of camera axes
0 (default) | real scalar

Skew angle of the camera axes, specified as a real scalar. See also the Skew property of
cameralntrinsics.

Example: 0.1

Vision Detection Generator

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also

Apps
Bird's-Eye Scope

Blocks
Detection Concatenation | Lidar Point Cloud Generator | Multi-Object Tracker | Radar Detection
Generator | Scenario Reader | Simulation 3D Vision Detection Generator

Objects
cameralntrinsics | visionDetectionGenerator

Topics
“Create Nonvirtual Buses” (Simulink)

Introduced in R2017b

2-193

2 Blocks

2-194

World To Vehicle

Convert actors from world coordinates to ego vehicle coordinates
Library: Automated Driving Toolbox / Driving Scenario and Sensor
Modeling

M Actors
WorldToVehicle Actors pr

A Ego Vehicle

Description

The World To Vehicle block converts actor poses from world coordinates to the vehicle coordinates of
the input ego vehicle.

Ports
Input

Actors — Actor poses in world coordinates
Simulink bus containing MATLAB structure

Actor poses in world coordinates, specified as a Simulink bus containing a MATLAB structure.

The structure must contain these fields.

Field Description Type

NumActors Number of actors Nonnegative integer

Time Current simulation time Real-valued scalar

Actors Actor poses NumActors-length array of
actor pose structures

Each actor pose structure in Actors must contain these fields.

Field Description

ActorID Scenario-defined actor identifier, specified as a
positive integer.

Position Position of actor, specified as a real-valued vector
of the form [x, y, z]. Units are in meters.

Velocity Velocity (v) of actor in the x-, y-, and z-direction,
specified as a real-valued vector of the form [v,,
vy, V,]. Units are in meters per second.

Roll Roll angle of actor, specified as a real-valued
scalar. Units are in degrees.

Pitch Pitch angle of actor, specified as a real-valued
scalar. Units are in degrees.

World To Vehicle

Field Description

Yaw Yaw angle of actor, specified as a real-valued
scalar. Units are in degrees.

AngularVelocity Angular velocity (w) of actor in the x-, y-, and 2-
direction, specified as a real-valued vector of the
form [w,, wy, w,]. Units are in degrees per second.

Ego Vehicle — Ego vehicle pose
Simulink bus containing MATLAB structure

Ego vehicle pose, specified as a Simulink bus containing a MATLAB structure.

The structure must contain these fields.

Field Description

ActorID Scenario-defined actor identifier, specified as a
positive integer.

Position Position of actor, specified as a real-valued vector
of the form [x, y, z]. Units are in meters.

Velocity Velocity (v) of actor in the x-, y-, and z-direction,
specified as a real-valued vector of the form [v,,
vy, V.]. Units are in meters per second.

Roll Roll angle of actor, specified as a real-valued
scalar. Units are in degrees.

Pitch Pitch angle of actor, specified as a real-valued
scalar. Units are in degrees.

Yaw Yaw angle of actor, specified as a real-valued
scalar. Units are in degrees.

AngularVelocity Angular velocity (w) of actor in the x-, y-, and 2-
direction, specified as a real-valued vector of the
form [w,, wy, w,]. Units are in degrees per second.

Output

Actors — Actor poses in vehicle coordinates
Simulink bus containing MATLAB structure

Actor poses in vehicle coordinates, returned as a Simulink bus containing a MATLAB structure.

The structure has these fields.

Field Description Type

NumActors Number of actors Nonnegative integer

Time Current simulation time Real-valued scalar

Actors Actor poses NumActors-length array of
actor pose structures

Each actor pose structure in Actors has these fields.

2-195

2 Blocks

2-196

Field Description

ActorID Scenario-defined actor identifier, specified as a
positive integer.

Position Position of actor, specified as a real-valued vector
of the form [x, y, z]. Units are in meters.

Velocity Velocity (v) of actor in the x-, y-, and z-direction,
specified as a real-valued vector of the form [v,,
Vy, V.]. Units are in meters per second.

Roll Roll angle of actor, specified as a real-valued
scalar. Units are in degrees.

Pitch Pitch angle of actor, specified as a real-valued
scalar. Units are in degrees.

Yaw Yaw angle of actor, specified as a real-valued
scalar. Units are in degrees.

AngularVelocity Angular velocity (w) of actor in the x-, y-, and 2-
direction, specified as a real-valued vector of the

form [w,, wy, w,]. Units are in degrees per second.

Parameters

Source of actors bus name — Source of name for actor poses bus
Auto (default) | Property

Source of the name for the actor poses bus returned in the Actors output port, specified as one of
these options:

* Auto — The block automatically creates an actor poses bus name.

* Property — Specify the actor poses bus name by using the Actors bus name parameter.

Actors bus name — Name of actor poses bus
valid bus name

Name of the actor poses bus returned in the Actors output port, specified as a valid bus name.

Dependencies
To enable this parameter, set Source of actors bus name to Property.

Simulate using — Type of simulation to run
Interpreted execution (default) | Code generation

* Interpreted execution — Simulate the model using the MATLAB interpreter. This option
shortens startup time. In Interpreted execution mode, you can debug the source code of the
block.

* Code generation — Simulate the model using generated C/C++ code. The first time you run a
simulation, Simulink generates C/C++ code for the block. The C code is reused for subsequent
simulations as long as the model does not change. This option requires additional startup time.

World To Vehicle

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Cuboid To 3D Simulation | Scenario Reader | Vehicle To World

Topics
“Coordinate Systems in Automated Driving Toolbox”
“Coordinate Systems for Unreal Engine Simulation in Automated Driving Toolbox”

Introduced in R2020a

2-197

Functions

3 Functions

3-2

addCustomBasemap

Add custom basemap

Syntax

addCustomBasemap (basemapName, URL)
addCustomBasemap(_ ,Name,Value)
Description

addCustomBasemap (basemapName, URL) adds the custom basemap specified by URL to the list of
basemaps available for use with mapping functions. basemapName is the name you choose to call the
custom basemap. Added basemaps remain available for use in future MATLAB sessions.

You can use the custom basemap with the geoplayer object and with MATLAB geographic axes and
charts.

addCustomBasemap(_ ,Name,Value) specifies name-value pairs that set additional parameters
of the basemanp.

Examples

Display Data on OpenStreetMap Basemap

This example shows how to display a driving route and vehicle positions on an OpenStreetMap®
basemanp.

Add the OpenStreetMap basemap to the list of basemaps available for use with the geoplayer
object. After you add the basemap, you do not need to add it again in future sessions.

name = 'openstreetmap’;

url = 'https://a.tile.openstreetmap.org/${z}/${x}/${y}.png";
copyright = char(uint8(169));

attribution = copyright + "OpenStreetMap contributors";
addCustomBasemap(name,url, 'Attribution',attribution)

Load a sequence of latitude and longitude coordinates.
data = load('geoRoute.mat');

Create a geographic player. Center the geographic player on the first position of the driving route and
set the zoom level to 12.

zoomLevel = 12;
player = geoplayer(data.latitude(l),data.longitude(1l),zoomLevel);

addCustomBasemap

Display the full route.

plotRoute(player,data.latitude,data.longitude);

3-3

3 Functions

L’Ir

By default, the geographic player uses the World Street Map basemap (' streets') provided by
Esri®. Update the geographic player to use the added OpenStreetMap basemap instead.

player.Basemap = 'openstreetmap';

3-4

addCustomBasemap

Display the route again.

plotRoute(player,data.latitude,data.longitude);

3-5

3 Functions

3-6

Display the positions of the vehicle in a sequence.

for i = 1l:length(data.latitude)
plotPosition(player,data.latitude(i),data.longitude(i))
end

addCustomBasemap

'_73-13.5;;-;:.5;5-...: Player L= || (=] || 2= |
! { \" I

= ': \\ & & 1
A ; | {1 Waltham

\ - - o~

: | - f
s bz A Weston <P ”

=5 Wayland A

freldd

Waban

|
£07 / S
/ 204
190 | ¥ 204
..I’ i
s 19C B4~
#
. 198
Pl A ——\Nelles|ey i .
: b J
1 km A ~ A |
- e ik I
1 mi — .
s VETiT] _ ; ©0penstreetMap contributors

Display Map Data on HERE Basemap

Display a driving route on a basemap provided by HERE Technologies. To use this example, you must
have a valid license from HERE Technologies.

Specify the basemap name and map URL.

name
url

"herestreets’;
['https://2.base.maps.cit.api.here.com/maptile/2.1/maptile/",
"newest/normal.day/${z}/${x}/${y}/256/png?app id=%s&app code=%s'];

Maps from HERE Technologies require a valid license. Create a dialog box. In the dialog box, enter
the App ID and App Code corresponding to your HERE license.

prompt = {'HERE App ID:', '"HERE App Code:'};

title = 'HERE Tokens';

dims = [1 40]; % Text edit field height and width
hereTokens = inputdlg(prompt,title,dims);

https://www.here.com

3 Functions

4| HERE Tokens — s
HERE App ID:
HERE App Code:

oK Cancel

If the license is valid, specify the HERE credentials and a custom attribution, load coordinate data,
and display the coordinates on the HERE basemap using a geoplayer object. If the license is not
valid, display an error message.

if ~isempty(hereTokens)

% Add HERE basemap with custom attribution.

url = sprintf(url,hereTokens{1},hereTokens{2});

copyrightSymbol = char(169); % Alt code

attribution = [copyrightSymbol,' ',datestr(now, 'yyyy'),' HERE'];
addCustomBasemap(name,url, 'Attribution',attribution);

% Load sample lat,lon coordinates.
data = load('geoSequence.mat');

% Create geoplayer with HERE basemap.
player = geoplayer(data.latitude(1l),data.longitude(1),
'Basemap', 'herestreets', 'HistoryDepth', Inf);

% Display the coordinates in a sequence.
for i = 1l:length(data.latitude)

plotPosition(player,data.latitude(i),data.longitude(i));
end

else

error('You must enter valid credentials to access maps from HERE Technologies');
end

3-8

addCustomBasemap

| Geog aye — O e
S w T
& &
Loucks Ave Co s &
Py ¢
o] S dr,;.ﬂf
Cay 5
Pasa Robles Ave
Del Monte Ave
Portola Ave
iE Pﬂr[u;d - (a)
= ba
(72
= = &
& 3 jordan Ave =)
> 3 &
o E { &
1]
T
: ¥ £ a
- Pine Ln & n & &
5 Arbuelo W = o =
& e £ SF Y
o 5 i Z
N g & & & 3
- ¥ @
3 & &
= n] =)
g] 3 un
@ 3 g 2 Jardin Dr =2
£ ;o * e 5
200 m - E @ _':_I-"';,‘:\I] &
500 ft > m o I -
S Z = © 2018 HERE

Input Arguments

basemapName — Name used to identify basemap programmatically
string scalar | character vector

Name used to identify basemap programmatically, specified as a string scalar or character vector.
Example: 'openstreetmap'’

Data Types: string | char

URL — Parameterized map URL
string scalar | character vector

Parameterized map URL, specified as a string scalar or character vector. A parameterized URL is an
index of the map tiles, formatted as ${z}/${x}/${y}.pngor {z}/{x}/{y}.png, where:

o ${z} or {z} is the tile zoom level.
o ${x} or {x} is the tile column index.
o ${y} or {y} is the tile row index.

Example: 'https://hostname/${z}/${x}/${y}.png’
Data Types: string | char

3-9

3 Functions

3-10

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Namel,Valuel, ..., NameN, ValueN.

Example: addCustomBasemap (basemapName,URL, 'Attribution',attribution)
Attribution — Attribution of custom basemap

'Tiles courtesy of DOMAIN NAME OF URL' (default) | string scalar | string array | character
vector | cell array of character vectors

Attribution of custom basemap, specified as the comma-separated pair consisting of 'Attribution’
and a string scalar, string array, character vector, or cell array of character vectors. If the host is
'localhost’, orif URL contains only IP numbers, specify an empty value (' '). To create a multiline
attribution, specify a string array or nonscalar cell array of character vectors.

If you do not specify an attribution, the default attribution is 'Tiles courtesy of
DOMAIN NAME OF URL', where the addCustomBasemap function obtains the domain name from the
URL input argument.

Example: 'Credit: U.S. Geological Survey'
Data Types: string | char | cell

DisplayName — Display name of custom basemap
string scalar | character vector

Display name of the custom basemap, specified as the comma-separated pair consisting of
'DisplayName' and a string scalar or character vector.

Example: 'OpenStreetMap'

Data Types: string | char

MaxZoomLevel — Maximum zoom level of basemap
18 (default) | integer in the range [0, 25]

Maximum zoom level of the basemap, specified as the comma-separated pair consisting of
'"MaxZoomLevel' and an integer in the range [0, 25].
Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uintl6 | uint32 | uint64

IsDeployable — Map is deployable using MATLAB Compiler™
false (default) | true

Map is deployable using MATLAB Compiler, specified as the comma-separated pair consisting of
'IsDeployable’ and false or true.

If you are deploying a map application and want users to have access to the added basemap, set
'IsDeployable’ to true. Maps in the geoplayer object are not deployable. If you are using a
geoplayer object, leave 'IsDeployable’ setto false.

Data Types: logical

addCustomBasemap

Tips

* You can find tiled web maps from various vendors, such as OpenStreetMap, the USGS National
Map, Mapbox, DigitalGlobe, Esri® ArcGIS Online, the Geospatial Information Authority of Japan
(GSI), and HERE Technologies. Abide by the map vendors terms-of-service agreement and include
accurate attribution with the maps you use.

* To access a list of available basemaps, press Tab before specifying the basemap in your plotting
function.

Streets
streets-dark
streets-light
topographic
usgshydrocached
usgsimagerytopo

usgsshadedreliefonly ,,

geobubble (lat, lon, "Basemap', '

See Also
geoaxes | geobasemap | geobubble | geoplayer | removeCustomBasemap

Introduced in R2019a

3-11

3 Functions

3-12

cameas

Measurement function for constant-acceleration motion

Syntax

measurement = cameas(state)

(
measurement = cameas(state, frame)
measurement = cameas(state, frame,sensorpos)
measurement = cameas(state, frame,sensorpos,sensorvel)
measurement = cameas(state, frame,sensorpos,sensorvel, laxes)
(

measurement = cameas(state,measurementParameters)

Description

measurement = cameas(state) returns the measurement, for the constant-acceleration Kalman
filter motion model in rectangular coordinates. The state argument specifies the current state of the
filter.

measurement = cameas(state, frame) also specifies the measurement coordinate system,
frame.

measurement = cameas(state, frame,sensorpos) also specifies the sensor position,
Sensorpos.
measurement = cameas(state, frame,sensorpos, sensorvel) also specifies the sensor

velocity, sensorvel.

measurement = cameas(state, frame,sensorpos,sensorvel, laxes) also specifies the local
sensor axes orientation, laxes.

measurement = cameas(state,measurementParameters) specifies the measurement

parameters, measurementParameters.

Examples

Create Measurement from Accelerating Object in Rectangular Frame

Define the state of an object in 2-D constant-acceleration motion. The state is the position, velocity,
and acceleration in both dimensions. The measurements are in rectangular coordinates.

state = [1,10,3,2,20,0.5]."';
measurement = cameas(state)

measurement = 3xI

N

cameas

The measurement is returned in three-dimensions with the z-component set to zero.

Create Measurement from Accelerating Object in Spherical Frame

Define the state of an object in 2-D constant-acceleration motion. The state is the position, velocity,
and acceleration in both dimensions. The measurements are in spherical coordinates.

state = [1,10,3,2,20,5].";
measurement = cameas(state, 'spherical’)

measurement = 4x]

63.4349
0
2.2361
22.3607

The elevation of the measurement is zero and the range rate is positive. These results indicate that
the object is moving away from the sensor.

Create Measurement from Accelerating Object in Translated Spherical Frame

Define the state of an object moving in 2-D constant-acceleration motion. The state consists of
position, velocity, and acceleration in each dimension. The measurements are in spherical coordinates
with respect to a frame located at (20;40,0) meters from the origin.

state = [1,10,3,2,20,5]."';
measurement = cameas(state, 'spherical',[20;40;0])

measurement = 4x1
-116.5651
0

42.4853
-22.3607

The elevation of the measurement is zero and the range rate is negative indicating that the object is
moving toward the sensor.

Create Measurement from Constant-Accelerating Object Using Measurement Parameters

Define the state of an object moving in 2-D constant-acceleration motion. The state consists of
position, velocity, and acceleration in each dimension. The measurements are in spherical coordinates
with respect to a frame located at (20;40,0) meters from the origin.

state2d = [1,10,3,2,20,5].";

3-13

3 Functions

3-14

The elevation of the measurement is zero and the range rate is negative indicating that the object is
moving toward the sensor.

frame = 'spherical';

sensorpos = [20;40;0];

sensorvel = [0;5;0];

laxes = eye(3);

measurement = cameas(state2d, 'spherical',sensorpos,sensorvel, laxes)

measurement = 4x1

-116.5651
0
42.4853
-17.8885

The elevation of the measurement is zero and the range rate is negative. These results indicate that
the object is moving toward the sensor.

Put the measurement parameters in a structure and use the alternative syntax.

measparm = struct('Frame',frame, 'OriginPosition',sensorpos, 'OriginVelocity',sensorvel,
'Orientation',laxes);
measurement = cameas(state2d,measparm)

measurement = 4x1

-116.5651
0

42.4853
-17.8885

Input Arguments

state — Kalman filter state vector
real-valued 3N-element vector

Kalman filter state vector for constant-acceleration motion, specified as a real-valued 3N-element
vector. N is the number of spatial degrees of freedom of motion. For each spatial degree of motion,
the state vector takes the form shown in this table.

Spatial Dimensions State Vector Structure

1-D [x;vx;ax]

2-D [x;vx;ax;y;vy;ay]

3-D [x;vXx;ax;y;vy;ay;z;vz;az]

For example, x represents the x-coordinate, vx represents the velocity in the x-direction, and ax
represents the acceleration in the x-direction. If the motion model is in one-dimensional space, the y-
and z-axes are assumed to be zero. If the motion model is in two-dimensional space, values along the
z-axis are assumed to be zero. Position coordinates are in meters. Velocity coordinates are in meters/
second. Acceleration coordinates are in meters/second?.

cameas

Example: [5;0.1;0.01;0;-0.2;-0.01;-3;0.05;0]
Data Types: double

frame — Measurement output frame
'rectangular’' (default) | 'spherical’

Measurement output frame, specified as ' rectangular' or 'spherical’'. When the frame is
'rectangular’', a measurement consists of x, y, and z Cartesian coordinates. When specified as
'spherical’, a measurement consists of azimuth, elevation, range, and range rate.

Data Types: char

sensorpos — Sensor position
[0;0;0] (default) | real-valued 3-by-1 column vector

Sensor position with respect to the navigation frame, specified as a real-valued 3-by-1 column vector.
Units are in meters.
Data Types: double

sensorvel — Sensor velocity
[0;0;0] (default) | real-valued 3-by-1 column vector

Sensor velocity with respect to the navigation frame, specified as a real-valued 3-by-1 column vector.
Units are in m/s.
Data Types: double

laxes — Local sensor coordinate axes
[1,0,0;0,1,0;0,0,1] (default) | 3-by-3 orthogonal matrix

Local sensor coordinate axes, specified as a 3-by-3 orthogonal matrix. Each column specifies the
direction of the local x-, y-, and z-axes, respectively, with respect to the navigation frame. That is, the
matrix is the rotation matrix from the global frame to the sensor frame.

Data Types: double

measurementParameters — Measurement parameters
structure | array of structure

Measurement parameters, specified as a structure or an array of structures. The fields of the
structure are:

Field Description Example

Frame Frame used to report 'spherical'
measurements, specified as one
of these values:

* 'rectangular' —
Detections are reported in
rectangular coordinates.

e 'spherical' — Detections
are reported in spherical
coordinates.

3-15

3 Functions

Field

Description

Example

OriginPosition

Position offset of the origin of
the frame relative to the parent
frame, specified asan [x y z]
real-valued vector.

[0 0 0]

OriginVelocity

Velocity offset of the origin of
the frame relative to the parent
frame, specified as a [vx vy
vz] real-valued vector.

[0 0 0]

Orientation

Frame rotation matrix, specified
as a 3-by-3 real-valued
orthonormal matrix.

[1006; 010; 060 1]

HasAzimuth

Logical scalar indicating if
azimuth is included in the
measurement.

HasElevation

Logical scalar indicating if
elevation is included in the
measurement. For
measurements reported in a
rectangular frame, and if
HasElevation is false, the
reported measurements assume
0 degrees of elevation.

HasRange

Logical scalar indicating if
range is included in the
measurement.

HasVelocity

Logical scalar indicating if the
reported detections include
velocity measurements. For
measurements reported in the
rectangular frame, if
HasVelocity is false, the
measurements are reported as
[x y z].IfHasVelocity is
true, measurements are
reported as [X y z vx vy
vz].

1

IsParentToChild

Logical scalar indicating if
Orientation performs a frame
rotation from the parent
coordinate frame to the child
coordinate frame. When
IsParentToChild is false,
then Orientation performs a
frame rotation from the child
coordinate frame to the parent
coordinate frame.

Data Types: struct

3-16

cameas

Output Arguments

measurement — Measurement vector
N-by-1 column vector

Measurement vector, returned as an N-by-1 column vector. The form of the measurement depends
upon which syntax you use.

* When the syntax does not use the measurementParameters argument, the measurement vector
is [x,y,z] when the frame input argument is set to ' rectangular' and [az;el;r;rr] when
the frame is set to 'spherical’.

* When the syntax uses the measurementParameters argument, the size of the measurement
vector depends on the values of the frame, HasVelocity, and HasElevation fields in the
measurementParameters structure.

frame measurement

'spherical’ Specifies the azimuth angle, az, elevation
angle, el, range, r, and range rate, rr, of the
object with respect to the local ego vehicle
coordinate system. Positive values for range
rate indicate that an object is moving away
from the sensor.

Spherical measurements

HasElevation
false true
HasVeloc |false [az;r] [az;el;r
ity]
true [az;r;rr|[az;el;r
] yrrl

Angle units are in degrees, range units are in
meters, and range rate units are in m/s.

'rectangular Specifies the Cartesian position and velocity
coordinates of the tracked object with respect
to the ego vehicle coordinate system.

Rectangular measurements

HasVelocity |false [x;y;y]
true [X;y;z;vx;v
y;vz]

Position units are in meters and velocity units
are in m/s.

Data Types: double

3-17

3 Functions

More About
Azimuth and Elevation Angle Definitions
Define the azimuth and elevation angles used in Automated Driving Toolbox.

The azimuth angle of a vector is the angle between the x-axis and its orthogonal projection onto the
xy plane. The angle is positive in going from the x axis toward the y axis. Azimuth angles lie between
-180 and 180 degrees. The elevation angle is the angle between the vector and its orthogonal
projection onto the xy-plane. The angle is positive when going toward the positive z-axis from the xy
plane.

3-18

cameas

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

Functions

cameasjac | constacc | constaccjac | constturn | constturnjac | constvel | constveljac |
ctmeas | ctmeasjac | cvmeas | cvmeasjac

Objects
trackingEKF | trackingKF | trackingUKF

Introduced in R2017a

3-19

3 Functions

cameasjac

Jacobian of measurement function for constant-acceleration motion

Syntax

measurementjac = cameasjac(state)

measurementjac = cameasjac(state, frame)

measurementjac = cameasjac(state, frame,sensorpos)

measurementjac = cameasjac(state, frame,sensorpos,sensorvel)

measurementjac = cameasjac(state, frame,sensorpos,sensorvel, laxes)
(

measurementjac = cameasjac(state,measurementParameters)

Description

measurementjac cameasjac(state) returns the measurement Jacobian, for constant-
acceleration Kalman filter motion model in rectangular coordinates. The state argument specifies
the current state of the filter.

measurementjac = cameasjac(state, frame) also specifies the measurement coordinate
system, frame.

cameasjac(state, frame, sensorpos) also specifies the sensor position,

measurementjac
Sensorpos.

measurementjac = cameasjac(state, frame,sensorpos,sensorvel) also specifies the
sensor velocity, sensorvel

measurementjac = cameasjac(state, frame,sensorpos,sensorvel, laxes) also specifies
the local sensor axes orientation, laxes.

measurementjac = cameasjac(state,measurementParameters) specifies the measurement
parameters, measurementParameters.

Examples

Measurement Jacobian of Accelerating Object in Rectangular Frame

Define the state of an object in 2-D constant-acceleration motion. The state is the position, velocity,
and acceleration in both dimensions. Construct the measurement Jacobian in rectangular
coordinates.

state = [1,10,3,2,20,5].";
jacobian = cameasjac(state)

jacobian = 3x6

1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0

3-20

cameasjac

Measurement Jacobian of Accelerating Object in Spherical Frame

Define the state of an object in 2-D constant-acceleration motion. The state is the position, velocity,
and acceleration in both dimensions. Compute the measurement Jacobian in spherical coordinates.

state = [1;10;3;2;20;5];
measurementjac = cameasjac(state, 'spherical')

measurementjac = 4x6

-22.9183 0 0 11.4592 0 0
0 0 0 0 0 0

0.4472 0 0 0.8944 0 0
0.0000 0.4472 0 0.0000 0.8944 0

Measurement Jacobian of Accelerating Object in Translated Spherical Frame

Define the state of an object in 2-D constant-acceleration motion. The state is the position, velocity,
and acceleration in both dimensions. Compute the measurement Jacobian in spherical coordinates
with respect to an origin at (5;-20,0) meters.

state = [1,10,3,2,20,5]."';
sensorpos = [5,-20,0].";
measurementjac = cameasjac(state, 'spherical',sensorpos)

measurementjac = 4x6
-2.5210 0 0 -0.4584 0 0
0 0 0 0 0 0
-0.1789 0 0 0.9839 0 0
0.5903 -0.1789 0 0.1073 0.9839 0

Create Measurement Jacobian of Accelerating Object Using Measurement Parameters

Define the state of an object in 2-D constant-acceleration motion. The state is the position, velocity,
and acceleration in both dimensions. Compute the measurement Jacobian in spherical coordinates
with respect to an origin at (5;-20,;0) meters.

state2d = [1,10,3,2,20,5].";

sensorpos = [5,-20,0].";

frame = 'spherical';

sensorvel = [0;8;0];

laxes = eye(3);

measurementjac = cameasjac(state2d, frame,sensorpos,sensorvel, laxes)

measurementjac = 4x6

-2.5210 0 0 -0.4584 0 0

3-21

3 Functions

3-22

0 0 0 0 0 0
-0.1789 0 0 0.9839 0 0
0.5274 -0.1789 0 0.0959 0.9839 0

Put the measurement parameters in a structure and use the alternative syntax.

measparm = struct('Frame',frame, 'OriginPosition',sensorpos, 'OriginVelocity',sensorvel,
'Orientation', laxes);

measurementjac = cameasjac(state2d,measparm)

measurementjac = 4x6

-2.5210 0 0 -0.4584 0 0

0 0 0 0 0 0
-0.1789 0 0 0.9839 0 0
0.5274 -0.1789 0 0.0959 0.9839 0

Input Arguments

state — Kalman filter state vector
real-valued 3N-element vector

Kalman filter state vector for constant-acceleration motion, specified as a real-valued 3N-element
vector. N is the number of spatial degrees of freedom of motion. For each spatial degree of motion,
the state vector takes the form shown in this table.

Spatial Dimensions State Vector Structure

1-D [x;vx;ax]

2-D [x;vx;ax;y;vy;ayl

3-D [x;vx;ax;y;vy;ay;z;vz;az]

For example, x represents the x-coordinate, vx represents the velocity in the x-direction, and ax
represents the acceleration in the x-direction. If the motion model is in one-dimensional space, the y-
and z-axes are assumed to be zero. If the motion model is in two-dimensional space, values along the
z-axis are assumed to be zero. Position coordinates are in meters. Velocity coordinates are in meters/
second. Acceleration coordinates are in meters/second?.

Example: [5;0.1;0.01;0;-0.2;-0.01;-3;0.05;0]
Data Types: double

frame — Measurement output frame
'rectangular’' (default) | 'spherical'’

Measurement output frame, specified as ' rectangular' or 'spherical'. When the frame is
'rectangular', a measurement consists of x, y, and z Cartesian coordinates. When specified as
'spherical’', a measurement consists of azimuth, elevation, range, and range rate.

Data Types: char

sensorpos — Sensor position
[0;0;0] (default) | real-valued 3-by-1 column vector

cameasjac

Sensor position with respect to the navigation frame, specified as a real-valued 3-by-1 column vector.
Units are in meters.

Data Types: double

sensorvel — Sensor velocity
[0;0;0] (default) | real-valued 3-by-1 column vector

Sensor velocity with respect to the navigation frame, specified as a real-valued 3-by-1 column vector.
Units are in m/s.

Data Types: double

laxes — Local sensor coordinate axes
[1,0,0;0,1,0;0,0,1] (default) | 3-by-3 orthogonal matrix

Local sensor coordinate axes, specified as a 3-by-3 orthogonal matrix. Each column specifies the
direction of the local x-, y-, and z-axes, respectively, with respect to the navigation frame. That is, the
matrix is the rotation matrix from the global frame to the sensor frame.

Data Types: double

measurementParameters — Measurement parameters
structure | array of structure

Measurement parameters, specified as a structure or an array of structures. The fields of the
structure are:

Field Description Example

Frame Frame used to report 'spherical’
measurements, specified as one
of these values:

* ‘'rectangular' —
Detections are reported in
rectangular coordinates.

e ‘'spherical' — Detections
are reported in spherical
coordinates.

OriginPosition Position offset of the origin of [0 0 0]
the frame relative to the parent
frame, specified asan [x y z]
real-valued vector.

OriginVelocity Velocity offset of the origin of [0 0 0]
the frame relative to the parent
frame, specified as a [vx vy
vz] real-valued vector.

Orientation Frame rotation matrix, specified |[[1 6 0; 0 1 0; 0 0 1]
as a 3-by-3 real-valued
orthonormal matrix.

3-23

3 Functions

Field Description Example
HasAzimuth Logical scalar indicating if 1
azimuth is included in the
measurement.
HasElevation Logical scalar indicating if 1

elevation is included in the
measurement. For
measurements reported in a
rectangular frame, and if
HasElevation is false, the
reported measurements assume
0 degrees of elevation.

HasRange Logical scalar indicating if 1
range is included in the
measurement.

HasVelocity Logical scalar indicating if the |1

reported detections include
velocity measurements. For
measurements reported in the
rectangular frame, if
HasVelocity is false, the
measurements are reported as
[x y z].IfHasVelocity is
true, measurements are
reported as [X Yy z vX vy
vz].

IsParentToChild Logical scalar indicating if 0
Orientation performs a frame
rotation from the parent
coordinate frame to the child
coordinate frame. When
IsParentToChild is false,
then Orientation performs a
frame rotation from the child
coordinate frame to the parent
coordinate frame.

Data Types: struct

Output Arguments

measurementjac — Measurement Jacobian
real-valued 3-by-N matrix | real-valued 4-by-N matrix

Measurement Jacobian, specified as a real-valued 3-by-N or 4-by-N matrix. N is the dimension of the
state vector. The interpretation of the rows and columns depends on the frame argument, as
described in this table.

3-24

cameasjac

Frame

Measurement Jacobian

'rectangular’

Jacobian of the measurements [x;y; z] with
respect to the state vector. The measurement
vector is with respect to the local coordinate
system. Coordinates are in meters.

'spherical’

Jacobian of the measurement vector

[az;el; r;rr] with respect to the state vector.
Measurement vector components specify the
azimuth angle, elevation angle, range, and range
rate of the object with respect to the local sensor
coordinate system. Angle units are in degrees.
Range units are in meters and range rate units
are in meters/second.

More About

Azimuth and Elevation Angle Definitions

Define the azimuth and elevation angles used in Automated Driving Toolbox.

The azimuth angle of a vector is the angle between the x-axis and its orthogonal projection onto the
xy plane. The angle is positive in going from the x axis toward the y axis. Azimuth angles lie between
-180 and 180 degrees. The elevation angle is the angle between the vector and its orthogonal
projection onto the xy-plane. The angle is positive when going toward the positive z-axis from the xy

plane.

3-25

3 Functions

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
See Also

Functions
cameas | constacc | constaccjac | constturn | constturnjac | constvel | constveljac |
ctmeas | ctmeasjac | cvmeas | cvmeasjac

Objects
trackingEKF | trackingKF | trackingUKF

3-26

cameasjac

Introduced in R2017a

3-27

3 Functions

checkPathValidity

Check validity of planned vehicle path

Syntax

isValid = checkPathValidity(refPath,costmap)
isValid = checkPathValidity(refPoses,costmap)
Description

isValid = checkPathValidity(refPath, costmap) checks the validity of a planned vehicle
path, refPath, against the vehicle costmap. Use this function to test if a path is valid within a
changing environment.

A path is valid if the following conditions are true:

* The path has at least one pose.
* The path is collision-free and within the limits of costmap.

isValid = checkPathValidity(refPoses, costmap) checks the validity of a sequence of
vehicle poses, refPoses, against the vehicle costmap.

Examples

Plan Path and Check Its Validity

Plan a vehicle path through a parking lot by using the optimal rapidly exploring random tree (RRT*)
algorithm. Check that the path is valid, and then plot the transition poses along the path.

Load a costmap of a parking lot. Plot the costmap to see the parking lot and inflated areas for the
vehicle to avoid.

data = load('parkingLotCostmap.mat');

costmap = data.parkingLotCostmap;
plot(costmap)

3-28

checkPathValidity

[inflated Areas

10

Define start and goal poses for the vehicle as [x, y, ©] vectors. World units for the (x,y) locations are
in meters. World units for the © orientation angles are in degrees.

startPose = [4, 4, 90]; % [meters, meters, degrees]
goalPose = [30, 13, 0];

Use a pathPlannerRRT object to plan a path from the start pose to the goal pose.

planner
refPath

pathPlannerRRT(costmap) ;
plan(planner,startPose,goalPose);

Check that the path is valid.

isPathValid = checkPathValidity(refPath,costmap)
isPathValid = logical
1

Interpolate the transition poses along the path.
transitionPoses = interpolate(refPath);

Plot the planned path and the transition poses on the costmap.
hold on

plot(refPath, 'DisplayName', 'Planned Path')
scatter(transitionPoses(:,1),transitionPoses(:,2),[], 'filled’,

3-29

3 Functions

3-30

'DisplayName', 'Transition Poses')
hold off

[inflated Areas
® Planned Path
& Transition Poses

Input Arguments

refPath — Planned vehicle path
driving.Path object

Planned vehicle path, specified as a driving.Path object.

costmap — Costmap used for collision checking
vehicleCostmap object

Costmap used for collision checking, specified as a vehicleCostmap object.

refPoses — Sequence of vehicle poses
m-by-3 matrix of [x, y, @] vectors

Sequence of vehicle poses, specified as an m-by-3 matrix of [x, y, @] vectors. m is the number of
specified poses.

x and y specify the location of the vehicle. These values must be in the same world units used by
costmap.

O specifies the orientation angle of the vehicle in degrees.

checkPathValidity

Output Arguments

isValid — Indicates validity of path or poses
110

Indicates validity of the planned vehicle path, refPath, or the sequence of vehicle poses, refPoses,
returned as a logical value of 1 or 0.

A path or sequence of poses is valid (1) if the following conditions are true:

* The path or pose sequence has at least one pose.

* The path or pose sequence is collision-free and within the limits of costmap.
Algorithms

To check if a vehicle path is valid, the checkPathValidity function discretizes the path. Then, the
function checks that the poses at the discretized points are collision-free. The threshold for a
collision-free pose depends on the resolution at which checkPathValidity discretizes.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

Functions
plan|plot

Objects
driving.Path | pathPlannerRRT | vehicleCostmap

Topics
“Automated Parking Valet”

Introduced in R2018a

3-31

3 Functions

configureDetectorMonoCamera

Configure object detector for using calibrated monocular camera

Syntax

configuredDetector = configureDetectorMonoCamera(detector,sensor,objectSize)

Description

configuredDetector = configureDetectorMonoCamera(detector,sensor,objectSize)
configures any of these object detectors

* ACF (aggregate channel features)

» Faster R-CNN (regions with convolutional neural networks)

* Fast R-CNN

* YOLO v2 (you only look once v2)

* SSD (single shot detector),

to detect objects of a known size on a ground plane. Specify your trained object detector, detector,

a camera configuration for transforming image coordinates to world coordinates, sensor, and the
range of the object widths and lengths, objectSize.

Examples

Detect Vehicles Using Monocular Camera and ACF

Configure an ACF object detector for use with a monocular camera mounted on an ego vehicle. Use
this detector to detect vehicles within video frames captured by the camera.

Load an acfObjectDetector object pretrained to detect vehicles.

detector = vehicleDetectorACF;

Model a monocular camera sensor by creating a monoCamera object. This object contains the camera
intrinsics and the location of the camera on the ego vehicle.

focalLength = [309.4362 344.2161];
principalPoint = [318.9034 257.5352];
imageSize = [480 640];

height = 2.1798; height of camera above ground, in meters
pitch = 14; pitch of camera, in degrees

intrinsics = cameralntrinsics(focalLength,principalPoint,imageSize);

[fx fyl
[cx cyl
[mrows ncols]

0° o° o° o o°

monCam = monoCamera(intrinsics,height, 'Pitch',pitch);

Configure the detector for use with the camera. Limit the width of detected objects to a typical range
for vehicle widths: 1.5-2.5 meters. The configured detector is an acfObjectDetectorMonoCamera
object.

3-32

configureDetectorMonoCamera

vehicleWidth = [1.5 2.5];
detectorMonoCam = configureDetectorMonoCamera(detector,monCam,vehicleWidth);

Load a video captured from the camera, and create a video reader and player.

videoFile = fullfile(toolboxdir('driving'), 'drivingdata’', 'caltech washingtonl.avi');
reader = VideoReader(videoFile);
videoPlayer = vision.VideoPlayer('Position',[29 597 643 386]);

Run the detector in a loop over the video. Annotate the video with the bounding boxes for the
detections and the detection confidence scores.

cont = hasFrame(reader);
while cont
I = readFrame(reader);

% Run the detector.
[bboxes,scores] = detect(detectorMonoCam,I);
if ~isempty(bboxes)

I = insertObjectAnnotation(I,
'rectangle’,bboxes,
scores,

'Color','g');
end
videoPlayer(I)
% Exit the loop if the video player figure is closed.
cont = hasFrame(reader) && isOpen(videoPlayer);
end

release(videoPlayer);

3-33

3 Functions

E'-.-‘l-'l-:—-:n Playe | = ” (=] ” =2 |
File Tools View Playback Help u
& q | oo% v

|

4 L3

Stopped RGE: 480x640 337

Input Arguments

detector — Object detector to configure
acfObjectDetector object | fastRCNNObjectDetector object | fasterRCNNObjectDetector
object | yolov20bjectDetector object | ssdObjectDetector object

Object detector to configure, specified as one of these object detector objects:

* acfObjectDetector

+ fastRCNNObjectDetector
 fasterRCNNObjectDetector
* yolov20bjectDetector

* ssdObjectDetector

Train the object detector before configuring them by using:

* trainACFObjectDetector
* trainFastRCNNObjectDetector
* trainFasterRCNNObjectDetector

3-34

configureDetectorMonoCamera

* trainYOLOv20bjectDetector
* trainSSDObjectDetector

sensor — Camera configuration
monoCamera object

Camera configuration, specified as a monoCamera object. The object contains the camera intrinsics,
the location, the pitch, yaw, and roll placement, and the world units for the parameters. Use the
intrinsics to transform the object points in the image to world coordinates, which you can then
compare to the WorldObjectSize property for detector.

objectSize — Range of object widths and lengths
[minWidth maxWidth] vector | [minWidth maxWidth; minLength maxLength] vector

Range of object widths and lengths in world units, specified as a [minWidth maxWidth] vector or
[minWidth maxWidth; minLength maxLength] vector. Specifying the range of object lengths is
optional.

Output Arguments

configuredDetector — Configured object detector

acfObjectDetectorMonoCamera object | fastRCNNObjectDetectorMonoCamera object |
fasterRCNNObjectDetectorMonoCamera object | yolov20bjectDetectorMonoCamera |
ssdObjectDetectorMonoCamera

Configured object detector, returned as one of these object detector objects:

* acfObjectDetectorMonoCamera

+ fastRCNNObjectDetectorMonoCamera

+ fasterRCNNObjectDetectorMonoCamera
* yolov20bjectDetectorMonoCamera

* ssdObjectDetectorMonoCamera

See Also

acfObjectDetector | acfObjectDetectorMonoCamera | fastRCNNObjectDetector |
fastRCNNObjectDetectorMonoCamera | fasterRCNNObjectDetector |
fasterRCNNObjectDetectorMonoCamera | monoCamera | ssdObjectDetectorMonoCamera |
yolov20bjectDetectorMonoCamera

Introduced in R2017a

3-35

3 Functions

constacc

Constant-acceleration motion model

Syntax

updatedstate = constacc(state)

updatedstate = constacc(state,dt)
updatedstate = constacc(state,w,dt)
Description

updatedstate = constacc(state) returns the updated state, state, of a constant acceleration
Kalman filter motion model for a step time of one second.

updatedstate = constacc(state,dt) specifies the time step, dt.
updatedstate = constacc(state,w,dt) also specifies the state noise, w.
Examples

Predict State for Constant-Acceleration Motion

Define an initial state for 2-D constant-acceleration motion.
state = [1;1;1;2;1;0];

Predict the state 1 second later.

state

constacc(state)

state = 6x1

.5000
.0000
.0000
.0000
.0000

0

R WENN

Predict State for Constant-Acceleration Motion With Specified Time Step
Define an initial state for 2-D constant-acceleration motion.

state = [1;1;1;2;1;0];

Predict the state 0.5 s later.

state = constacc(state,0.5)

3-36

constacc

state = 6x1

.6250
.5000
.0000
.5000
. 0000

RN

Input Arguments

state — Kalman filter state vector
real-valued 3N-element vector

Kalman filter state vector for constant-acceleration motion, specified as a real-valued 3N-element
vector. N is the number of spatial degrees of freedom of motion. For each spatial degree of motion,
the state vector takes the form shown in this table.

Spatial Dimensions State Vector Structure

1-D [x;vx;ax]

2-D [x;vx;ax;y;vy;ayl

3-D [x;vx;ax;y;vy;ay;z;vz;az]

For example, x represents the x-coordinate, vx represents the velocity in the x-direction, and ax
represents the acceleration in the x-direction. If the motion model is in one-dimensional space, the y-
and z-axes are assumed to be zero. If the motion model is in two-dimensional space, values along the
z-axis are assumed to be zero. Position coordinates are in meters. Velocity coordinates are in meters/
second. Acceleration coordinates are in meters/second?.

Example: [5;0.1;0.01;0;-0.2;-0.01;-3;0.05;0]
Data Types: double

dt — Time step interval of filter
1.0 (default) | positive scalar

Time step interval of filter, specified as a positive scalar. Time units are in seconds.
Example: 0.5
Data Types: single | double

w — State noise
scalar | real-valued D-by-N matrix

State noise, specified as a scalar or real-valued D-by-N matrix. D is the number of motion dimensions
and N is the number of state vectors. If specified as a scalar, the scalar value is expanded to a D-by-N
matrix.

Data Types: single | double

3-37

3 Functions

Output Arguments

updatedstate — Updated state vector
real-valued column or row vector | real-valued matrix

Updated state vector, returned as a real-valued vector or real-valued matrix with same number of
elements and dimensions as the input state vector.

Algorithms
For a two-dimensional constant-acceleration process, the state transition matrix after a time step, T,
is block diagonal:
1.2
Xk +1 1T 7T 00 O Xk

VXk +1 01 T 00 0 ||V
Xk + 1 00 1 00 O [ax
Yk +1 00 1T %TZ Yk
VVk +1 VVk

0
p 00 0 01 T a
Yk +1 00 0 00 1 Yk

The block for each spatial dimension has this form:

1.2
1T7T

01 T
00 1

For each additional spatial dimension, add an identical block.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

Functions

cameas | cameasjac | constaccjac | constturn | constturnjac | constvel | constveljac |
ctmeas | ctmeasjac | cvmeas | cvmeasjac

Objects
trackingEKF | trackingKF | trackingUKF

Introduced in R2017a

3-38

constaccjac

constaccjac

Jacobian for constant-acceleration motion

Syntax

jacobian = constaccjac(state)
jacobian = constaccjac(state,dt)
[jacobian,noisejacobian] = constaccjac(state,w,dt)

Description

jacobian = constaccjac(state) returns the updated Jacobian, jacobian, for a constant-
acceleration Kalman filter motion model. The step time is one second. The state argument specifies
the current state of the filter.

jacobian = constaccjac(state,dt) also specifies the time step, dt.

[jacobian,noisejacobian] = constaccjac(state,w,dt) specifies the state noise, w, and
returns the Jacobian, noisejacobian, of the state with respect to the noise.

Examples

Compute State Jacobian for Constant-Acceleration Motion
Compute the state Jacobian for two-dimensional constant-acceleration motion.

Define an initial state and compute the state Jacobian for a one second update time.

state = [1,1,1,2,1,0];
jacobian = constaccjac(state)

jacobian = 6x6

1.0000 1.0000 0.5000 0 0 0
0 1.0000 1.0000 0 0 0
0 0 1.0000 0 0 0
0 0 0 1.0000 1.0000 0.5000
0 0 0 0 1.0000 1.0000
0 0 0 0 0 1.0000

Compute State Jacobian for Constant-Acceleration Motion with Specified Time Step

Compute the state Jacobian for two-dimensional constant-acceleration motion. Set the step time to
0.5 seconds.

state = [1,1,1,2,1,0].";
jacobian = constaccjac(state,0.5)

3-39

3 Functions

3-40

jacobian = 6x6

1.0000 0.5000 0.1250 0 0 0
0 1.0000 0.5000 0 0 0
0 0 1.0000 0 0 0
0 0 0 1.0000 0.5000 0.1250
0 0 0 0 1.0000 0.5000
0 0 0 0 0 1.0000

Input Arguments

state — Kalman filter state vector
real-valued 3N-element vector

Kalman filter state vector for constant-acceleration motion, specified as a real-valued 3N-element
vector. N is the number of spatial degrees of freedom of motion. For each spatial degree of motion,
the state vector takes the form shown in this table.

Spatial Dimensions State Vector Structure

1-D [x;vx;ax]

2-D [x;vx;ax;y;vy;ayl

3-D [x;vx;ax;y;vy;ay;z;vz;az]

For example, x represents the x-coordinate, vx represents the velocity in the x-direction, and ax
represents the acceleration in the x-direction. If the motion model is in one-dimensional space, the y-
and z-axes are assumed to be zero. If the motion model is in two-dimensional space, values along the
z-axis are assumed to be zero. Position coordinates are in meters. Velocity coordinates are in meters/
second. Acceleration coordinates are in meters/second?.

Example: [5;0.1;0.01;0;-0.2;-0.01;-3;0.05;0]
Data Types: double

dt — Time step interval of filter
1.0 (default) | positive scalar

Time step interval of filter, specified as a positive scalar. Time units are in seconds.
Example: 0.5
Data Types: single | double

w — State noise
scalar | real-valued N-by-1 vector

State noise, specified as a scalar or real-valued real valued N-by-1 vector. N is the number of motion
dimensions. For example, N = 2 for the 2-D motion. If specified as a scalar, the scalar value is
expanded to a N-by-1 vector.

Data Types: single | double

constaccjac

Output Arguments

jacobian — Constant-acceleration motion Jacobian
real-valued 3N-by-3N matrix

Constant-acceleration motion Jacobian, returned as a real-valued 3N-by-3N matrix.

noisejacobian — Constant acceleration motion noise Jacobian
real-valued 3N-by-N matrix

Constant acceleration motion noise Jacobian, returned as a real-valued 3N-by-N matrix. N is the
number of spatial degrees of motion. For example, N = 2 for the 2-D motion. The Jacobian is
constructed from the partial derivatives of the state at the updated time step with respect to the noise
components.

Algorithms

For a two-dimensional constant-acceleration process, the Jacobian matrix after a time step, T, is block
diagonal:

1T%T200 0
01 T 00 0
00 1 00 0
00 0 IT%TZ
00 0 01 T
00 0 00 1

The block for each spatial dimension has this form:

1.2
1T7T
01 T

00 1

For each additional spatial dimension, add an identical block.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

Functions
cameas | cameasjac | constacc | constturn | constturnjac | constvel | constveljac |
ctmeas | ctmeasjac | cvmeas | cvmeasjac

Objects
trackingEKF | trackingKF | trackingUKF

3-41

3 Functions

Introduced in R2017a

3-42

constturn

constturn

Constant turn-rate motion model

Syntax

updatedstate = constturn(state)
updatedstate = constturn(state,dt)
updatedstate = constturn(state,w,dt)
Description

updatedstate = constturn(state) returns the updated state, updatedstate, obtained from
the previous state, state, after a one-second step time for motion modelled as constant turn rate.
Constant turn rate means that motion in the x-y plane follows a constant angular velocity and motion
in the vertical z directions follows a constant velocity model.

updatedstate = constturn(state,dt) also specifies the time step, dt.
updatedstate = constturn(state,w,dt) also specifies noise, w.
Examples

Update State for Constant Turn-Rate Motion

Define an initial state for 2-D constant turn-rate motion. The turn rate is 12 degrees per second.
Update the state to one second later.

state
state

[500,0,0,100,12]1."';
constturn(state)

5x1

state

489.5662
-20.7912
99.2705
97.8148
12.0000

Update State for Constant Turn-Rate Motion with Specified Time Step

Define an initial state for 2-D constant turn-rate motion. The turn rate is 12 degrees per second.
Update the state to 0.1 seconds later.

state = [500,0,0,100,12]."';
state = constturn(state,0.1)
state = 5x1

3-43

3 Functions

3-44

499.8953
-2.0942
9.9993
99.9781
12.0000

Input Arguments

state — State vector
real-valued 5-element vector | real-valued 7-element vector | 5-by-N real-valued matrix | 7-by-N real-
valued matrix

State vector for a constant turn-rate motion model in two or three spatial dimensions, specified as a
real-valued vector or matrix.

When specified as a 5-element vector, the state vector describes 2-D motion in the x-y plane. You
can specify the state vector as a row or column vector. The components of the state vector are
[x;vX;y;vy;omega] where x represents the x-coordinate and vx represents the velocity in the
x-direction. y represents the y-coordinate and vy represents the velocity in the y-direction. omega
represents the turn rate.

When specified as a 5-by-N matrix, each column represents a different state vector N represents
the number of states.

When specified as a 7-element vector, the state vector describes 3-D motion. You can specify the
state vector as a row or column vector. The components of the state vector are
[X;VvXx;y;vy;omega;z;vz] where X represents the x-coordinate and vx represents the velocity
in the x-direction. y represents the y-coordinate and vy represents the velocity in the y-direction.
omega represents the turn rate. z represents the z-coordinate and vz represents the velocity in
the z-direction.

When specified as a 7-by-N matrix, each column represents a different state vector. N represents
the number of states.

Position coordinates are in meters. Velocity coordinates are in meters/second. Turn rate is in degrees/
second.

Example: [5;0.1;4;-0.2;0.01]
Data Types: double

dt — Time step interval of filter
1.0 (default) | positive scalar

Time step interval of filter, specified as a positive scalar. Time units are in seconds.

Example: 0.5

Data Types: single | double

w — State noise
scalar | real-valued (D+1)-by-N matrix

State noise, specified as a scalar or real-valued (D+1)-length -by-N matrix. D is the number of motion
dimensions and N is the number of state vectors. The components are each columns are

constturn

[ax;ay;alpha] for 2-D motion or [ax;ay;alpha;az] for 3-D motion. ax, ay, and az are the linear
acceleration noise values in the x-, y-, and z-axes, respectively, and alpha is the angular acceleration
noise value. If specified as a scalar, the value expands to a (D+1)-by-N matrix.

Data Types: single | double

Output Arguments

updatedstate — Updated state vector
real-valued column or row vector | real-valued matrix

Updated state vector, returned as a real-valued vector or real-valued matrix with same number of
elements and dimensions as the input state vector.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

Functions
cameas | cameasjac | constacc | constaccjac | constturnjac | constvel | constveljac |
ctmeas | ctmeasjac | cvmeas | cvmeasjac | initctekf | initctukf

Objects
trackingEKF | trackingUKF

Introduced in R2017a

3-45

3 Functions

3-46

constturnjac

Jacobian for constant turn-rate motion

Syntax

jacobian constturnjac(state)
jacobian = constturnjac(state,dt)
[jacobian,noisejacobian] = constturnjac(state,w,dt)

Description

jacobian = constturnjac(state) returns the updated Jacobian, jacobian, for constant turn-
rate Kalman filter motion model for a one-second step time. The state argument specifies the
current state of the filter. Constant turn rate means that motion in the x-y plane follows a constant
angular velocity and motion in the vertical z directions follows a constant velocity model.

jacobian = constturnjac(state,dt) specifies the time step, dt.

[jacobian,noisejacobian] = constturnjac(state,w,dt) also specifies noise, w, and
returns the Jacobian, noisejacobian, of the state with respect to the noise.

Examples

Compute State Jacobian for Constant Turn-Rate Motion

Compute the Jacobian for a constant turn-rate motion state. Assume the turn rate is 12 degrees/
second. The time step is one second.

state = [500,0,0,100,12];
jacobian = constturnjac(state)

jacobian = 5x5

1.0000 0.9927 0 -0.1043 -0.8631
0 0.9781 0 -0.2079 -1.7072
0 0.1043 1.0000 0.9927 -0.1213
0 0.2079 0 0.9781 -0.3629
0 0 0 0 1.0000

Compute State Jacobian for Constant Turn-Rate Motion with Specified Time Step

Compute the Jacobian for a constant turn-rate motion state. Assume the turn rate is 12 degrees/
second. The time step is 0.1 second.

state = [500,0,0,100,12];
jacobian = constturnjac(state,0.1)

constturnjac

jacobian = 5x5

1.0000 0.1000 0
0 0.9998 0
0 0.0010 1.0000
0 0.0209 0
0 0 0

Input Arguments

state — State vector

real-valued 5-element vector | real-valued 7-element vector

-0.0010
-0.0209
0.1000
0.9998

-0.0087
-0.1745
-0.0001
-0.0037

1.0000

State vector for a constant turn-rate motion model in two or three spatial dimensions, specified as a

real-valued vector.

* When specified as a 5-element vector, the state vector describes 2-D motion in the x-y plane. You
can specify the state vector as a row or column vector. The components of the state vector are
[x;vXx;y;vy;omegal] where x represents the x-coordinate and vx represents the velocity in the
x-direction. y represents the y-coordinate and vy represents the velocity in the y-direction. omega

represents the turn rate.

* When specified as a 7-element vector, the state vector describes 3-D motion. You can specify the

state vector as a row or column vector. The components of the state vector are

[X;VvX;y;vy;omega;z;vz] where X represents the x-coordinate and vx represents the velocity
in the x-direction. y represents the y-coordinate and vy represents the velocity in the y-direction.
omega represents the turn rate. z represents the z-coordinate and vz represents the velocity in

the z-direction.

Position coordinates are in meters. Velocity coordinates are in meters/second. Turn rate is in degrees/

second.
Example: [5;0.1;4;-0.2;0.01]
Data Types: double

dt — Time step interval of filter
1.0 (default) | positive scalar

Time step interval of filter, specified as a positive scalar. Time units are in seconds.

Example: 0.5
Data Types: single | double

w — State noise
scalar | real-valued (D+1) vector

State noise, specified as a scalar or real-valued M-by-(D+1)-length vector. D is the number of motion
dimensions. D is two for 2-D motion and D is three for 3-D motion. The vector components are
[ax;ay;alpha] for 2-D motion or [ax;ay;alpha;az] for 3-D motion. ax, ay, and az are the linear
acceleration noise values in the x-, y-, and z-axes, respectively, and alpha is the angular acceleration

noise value. If specified as a scalar, the value expands to a (D+1) vector.

Data Types: single | double

3-47

3 Functions

3-48

Output Arguments

jacobian — Constant turn-rate motion Jacobian
real-valued 5-by-5 matrix | real-valued 7-by-7 matrix

Constant turn-rate motion Jacobian, returned as a real-valued 5-by-5 matrix or 7-by-7 matrix
depending on the size of the state vector. The Jacobian is constructed from the partial derivatives of
the state at the updated time step with respect to the state at the previous time step.

noisejacobian — Constant turn-rate motion noise Jacobian
real-valued 5-by-5 matrix | real-valued 7-by-7 matrix

Constant turn-rate motion noise Jacobian, returned as a real-valued 5-by-(D+1) matrix where D is two
for 2-D motion or a real-valued 7-by-(D+1) matrix where D is three for 3-D motion. The Jacobian is
constructed from the partial derivatives of the state at the updated time step with respect to the noise
components.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

Functions
cameas | cameasjac | constacc | constaccjac | constturn | constvel | constveljac |
ctmeas | ctmeasjac | cvmeas | cvmeasjac | initctekf

Objects
trackingEKF

Introduced in R2017a

constvel

constvel

Constant velocity state update

Syntax
updatedstate = constvel(state)
updatedstate = constvel(state,dt)

updatedstate = constvel(state,w,dt)

Description

updatedstate = constvel(state) returns the updated state, state, of a constant-velocity
Kalman filter motion model after a one-second time step.

updatedstate = constvel(state,dt) specifies the time step, dt.

updatedstate = constvel(state,w,dt) also specifies state noise, w.

Examples

Update State for Constant-Velocity Motion

Update the state of two-dimensional constant-velocity motion for a time interval of one second.

state = [1;1;2;1];
state = constvel(state)
state = 4x1I

2

1

3

1

Update State for Constant-Velocity Motion with Specified Time Step

Update the state of two-dimensional constant-velocity motion for a time interval of 1.5 seconds.

state
state

[1;1;2;1];
constvel(state,1.5)

state 4x1

.5000
.0000
.5000
.0000

=W N

3-49

3 Functions

3-50

Input Arguments

state — Kalman filter state vector
real-valued 2N-element vector

Kalman filter state vector for constant-velocity motion, specified as a real-valued 2N-element column
vector where N is the number of spatial degrees of freedom of motion. The state is expected to be
Cartesian state. For each spatial degree of motion, the state vector takes the form shown in this table.

Spatial Dimensions State Vector Structure
1-D [x;vx]

2-D [x;vx;y;vyl

3-D [Xx;vX;y;vy;z;vz]

For example, x represents the x-coordinate and vx represents the velocity in the x-direction. If the
motion model is 1-D, values along the y and z axes are assumed to be zero. If the motion model is 2-D,
values along the 2 axis are assumed to be zero. Position coordinates are in meters and velocity
coordinates are in meters/sec.

Example: [5;.1;0;-.2;-3;.05]
Data Types: single | double

dt — Time step interval of filter
1.0 (default) | positive scalar

Time step interval of filter, specified as a positive scalar. Time units are in seconds.
Example: 0.5
Data Types: single | double

w — State noise
scalar | real-valued D-by-N matrix

State noise, specified as a scalar or real-valued D-by-N matrix. D is the number of motion dimensions
and N is the number of state vectors. For example, D = 2 for the 2-D motion. If specified as a scalar,
the scalar value is expanded to a D-by-N matrix.

Data Types: single | double

Output Arguments

updatedstate — Updated state vector
real-valued column or row vector | real-valued matrix

Updated state vector, returned as a real-valued vector or real-valued matrix with same number of
elements and dimensions as the input state vector.

Algorithms

For a two-dimensional constant-velocity process, the state transition matrix after a time step, T, is
block diagonal as shown here.

constvel

Xk + 1 1 T0 0] Xk
Vx.k+1[{010 0] VXk
Yk+1 | |00 1T| wk
Vy,k+1 000 1jvyg

The block for each spatial dimension is:

1T
01

For each additional spatial dimension, add an identical block.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

Functions
cameas | cameasjac | constacc | constaccjac | constturn | constturnjac| constveljac |
ctmeas | ctmeasjac | cvmeas | cvmeasjac

Objects
trackingEKF | trackingKF | trackingUKF

Introduced in R2017a

3-51

3 Functions

constveljac

Jacobian for constant-velocity motion

Syntax

jacobian = constveljac(state)
jacobian = constveljac(state,dt)
[jacobian,noisejacobian] = constveljac(state,w,dt)

Description

jacobian = constveljac(state) returns the updated Jacobian, jacobian, for a constant-
velocity Kalman filter motion model for a step time of one second. The state argument specifies the
current state of the filter.

jacobian = constveljac(state,dt) specifies the time step, dt.

[jacobian,noisejacobian] = constveljac(state,w,dt) specifies the state noise, w, and
returns the Jacobian, noisejacobian, of the state with respect to the noise.

Examples

Compute State Jacobian for Constant-Velocity Motion

Compute the state Jacobian for a two-dimensional constant-velocity motion model for a one second
update time.

state = [1,1,2,1].";
jacobian = constveljac(state)

jacobian = 4x4

coor
[CRcREge
o oo
[y N o)

Compute State Jacobian for Constant-Velocity Motion with Specified Time Step

Compute the state Jacobian for a two-dimensional constant-velocity motion model for a half-second
update time.

state = [1;1;2;1];
Compute the state update Jacobian for 0.5 second.

jacobian = constveljac(state,0.5)

3-52

constveljac

jacobian = 4x4

1.0000 0.5000 0 0
0 1.0000 0 0
0 0 1.0000 0.5000
0 0 0 1.0000

Input Arguments

state — Kalman filter state vector
real-valued 2N-element vector

Kalman filter state vector for constant-velocity motion, specified as a real-valued 2ZN-element column
vector where N is the number of spatial degrees of freedom of motion. The state is expected to be
Cartesian state. For each spatial degree of motion, the state vector takes the form shown in this table.

Spatial Dimensions State Vector Structure
1-D [x;vx]

2-D [x;vx;y;vyl

3-D [X;vX;y;vy;z;vz]

For example, x represents the x-coordinate and vx represents the velocity in the x-direction. If the
motion model is 1-D, values along the y and z axes are assumed to be zero. If the motion model is 2-D,
values along the 2 axis are assumed to be zero. Position coordinates are in meters and velocity
coordinates are in meters/sec.

Example: [5;.1;0;-.2;-3;.05]
Data Types: single | double

dt — Time step interval of filter
1.0 (default) | positive scalar

Time step interval of filter, specified as a positive scalar. Time units are in seconds.
Example: 0.5
Data Types: single | double

w — State noise
scalar | real-valued N-by-1 vector

State noise, specified as a scalar or real-valued real valued N-by-1 vector. N is the number of motion

dimensions. For example, N = 2 for the 2-D motion. If specified as a scalar, the scalar value is
expanded to an N-by-1 vector.

Data Types: single | double

Output Arguments

jacobian — Constant-velocity motion Jacobian
real-valued 2N-by-2N matrix

3-53

3 Functions

3-54

Constant-velocity motion Jacobian, returned as a real-valued 2N-by-2N matrix. N is the number of
spatial degrees of motion.

noisejacobian — Constant velocity motion noise Jacobian
real-valued 2N-by-N matrix

Constant velocity motion noise Jacobian, returned as a real-valued 2N-by-N matrix. N is the number
of spatial degrees of motion. The Jacobian is constructed from the partial derivatives of the state at
the updated time step with respect to the noise components.

Algorithms

For a two-dimensional constant-velocity motion, the Jacobian matrix for a time step, T, is block
diagonal:

1T0O

0100

001T

0001

The block for each spatial dimension has this form:

1T
01

For each additional spatial dimension, add an identical block.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

Functions
cameas | cameasjac | constacc | constaccjac | constturn | constturnjac| constvel |
ctmeas | ctmeasjac | cvmeas | cvmeasjac

Objects
trackingEKF | trackingKF | trackingUKF

Introduced in R2017a

ctmeas

ctmeas

Measurement function for constant turn-rate motion

Syntax

measurement = ctmeas

measurement = ctmeas(state)

measurement = ctmeas(state, frame)

measurement = ctmeas(state, frame,sensorpos)

measurement = ctmeas(state, frame,sensorpos,sensorvel)

measurement = ctmeas(state, frame,sensorpos,sensorvel, laxes)
(

state,measurementParameters)

Description

measurement = ctmeas(state) returns the measurement for a constant turn-rate Kalman filter
motion model in rectangular coordinates. The state argument specifies the current state of the
filter.

measurement = ctmeas(state, frame) also specifies the measurement coordinate system,
frame.

measurement = ctmeas(state, frame,sensorpos) also specifies the sensor position,
Sensorpos.

measurement = ctmeas(state, frame,sensorpos, sensorvel) also specifies the sensor

velocity, sensorvel.

measurement = ctmeas(state, frame,sensorpos,sensorvel, laxes) also specifies the local
sensor axes orientation, laxes.

measurement = ctmeas(state,measurementParameters) specifies the measurement
parameters, measurementParameters.

Examples

Create Measurement from Constant Turn-Rate Motion in Rectangular Frame

Create a measurement from an object undergoing constant turn-rate motion. The state is the position
and velocity in each dimension and the turn-rate. The measurements are in rectangular coordinates.

state = [1;10;2;20;5];
measurement = ctmeas(state)

measurement = 3xI
1

2
0

3-55

3 Functions

3-56

The z-component of the measurement is zero.

Create Measurement from Constant Turn-Rate Motion in Spherical Frame

Define the state of an object in 2-D constant turn-rate motion. The state is the position and velocity in
each dimension, and the turn rate. The measurements are in spherical coordinates.

state = [1;10;2;20;5];
measurement = ctmeas(state, 'spherical')

measurement = 4x]

63.4349
0
2.2361
22.3607

The elevation of the measurement is zero and the range rate is positive indicating that the object is
moving away from the sensor.

Create Measurement from Constant Turn-Rate Motion in Translated Spherical Frame

Define the state of an object moving in 2-D constant turn-rate motion. The state consists of position
and velocity, and the turn rate. The measurements are in spherical coordinates with respect to a
frame located at [20;40;0].

state = [1;10;2;20;5];
measurement = ctmeas(state, 'spherical',[20;40;0])

measurement = 4x1

-116.5651
0

42.4853
-22.3607

The elevation of the measurement is zero and the range rate is negative indicating that the object is
moving toward the sensor.

Create Measurement from Constant Turn-Rate Motion using Measurement Parameters

Define the state of an object moving in 2-D constant turn-rate motion. The state consists of position
and velocity, and the turn rate. The measurements are in spherical coordinates with respect to a
frame located at [20;40;0].

state2d = [1;10;2;20;5];
frame = 'spherical';

ctmeas

sensorpos = [20;40;0];

sensorvel = [0;5;0];

laxes = eye(3);

measurement = ctmeas(state2d, frame,sensorpos,sensorvel, laxes)

measurement = 4x1

-116.5651
0
42.4853
-17.8885

The elevation of the measurement is zero and the range rate is negative indicating that the object is
moving toward the sensor.

Put the measurement parameters in a structure and use the alternative syntax.

measparm = struct('Frame',frame, 'OriginPosition',sensorpos,
'OriginVelocity',sensorvel, 'Orientation',laxes);
measurement = ctmeas(state2d,measparm)

measurement = 4x1

-116.5651
0
42.4853
-17.8885

Input Arguments

state — State vector
real-valued 5-element vector | real-valued 7-element vector | 5-by-N real-valued matrix | 7-by-N real-
valued matrix

State vector for a constant turn-rate motion model in two or three spatial dimensions, specified as a
real-valued vector or matrix.

* When specified as a 5-element vector, the state vector describes 2-D motion in the x-y plane. You
can specify the state vector as a row or column vector. The components of the state vector are
[x;vXx;y;vy;omega] where x represents the x-coordinate and vx represents the velocity in the
x-direction. y represents the y-coordinate and vy represents the velocity in the y-direction. omega
represents the turn rate.

When specified as a 5-by-N matrix, each column represents a different state vector N represents
the number of states.

* When specified as a 7-element vector, the state vector describes 3-D motion. You can specify the
state vector as a row or column vector. The components of the state vector are
[X;vXx;y;vy;omega;z;vz] where x represents the x-coordinate and vx represents the velocity
in the x-direction. y represents the y-coordinate and vy represents the velocity in the y-direction.
omega represents the turn rate. z represents the z-coordinate and vz represents the velocity in
the z-direction.

3-57

3 Functions

3-58

When specified as a 7-by-N matrix, each column represents a different state vector. N represents
the number of states.

Position coordinates are in meters. Velocity coordinates are in meters/second. Turn rate is in degrees/
second.

Example: [5;0.1;4;-0.2;0.01]
Data Types: double

frame — Measurement output frame
'rectangular’' (default) | 'spherical'’

Measurement output frame, specified as ' rectangular' or 'spherical'. When the frame is
'rectangular', a measurement consists of x, y, and z Cartesian coordinates. When specified as
'spherical’', a measurement consists of azimuth, elevation, range, and range rate.

Data Types: char

sensorpos — Sensor position
[0;0;0] (default) | real-valued 3-by-1 column vector

Sensor position with respect to the navigation frame, specified as a real-valued 3-by-1 column vector.
Units are in meters.

Data Types: double

sensorvel — Sensor velocity
[0;0;0] (default) | real-valued 3-by-1 column vector

Sensor velocity with respect to the navigation frame, specified as a real-valued 3-by-1 column vector.
Units are in m/s.

Data Types: double

laxes — Local sensor coordinate axes
[1,0,0;0,1,0;0,0,1] (default) | 3-by-3 orthogonal matrix

Local sensor coordinate axes, specified as a 3-by-3 orthogonal matrix. Each column specifies the
direction of the local x-, y-, and z-axes, respectively, with respect to the navigation frame. That is, the
matrix is the rotation matrix from the global frame to the sensor frame.

Data Types: double

measurementParameters — Measurement parameters
structure | array of structure

Measurement parameters, specified as a structure or an array of structures. The fields of the
structure are:

ctmeas

Field

Description

Example

Frame

Frame used to report
measurements, specified as one
of these values:

* 'rectangular' —
Detections are reported in
rectangular coordinates.

e ‘'spherical' — Detections
are reported in spherical
coordinates.

'spherical'

OriginPosition

Position offset of the origin of
the frame relative to the parent
frame, specified asan [x y z]
real-valued vector.

[0 0 0]

OriginVelocity

Velocity offset of the origin of
the frame relative to the parent
frame, specified as a [vx vy
vz] real-valued vector.

[0 0 0]

Orientation

Frame rotation matrix, specified
as a 3-by-3 real-valued
orthonormal matrix.

[100; 0106; 060 1]

HasAzimuth

Logical scalar indicating if
azimuth is included in the
measurement.

HasElevation

Logical scalar indicating if
elevation is included in the
measurement. For
measurements reported in a
rectangular frame, and if
HasElevation is false, the
reported measurements assume
0 degrees of elevation.

HasRange

Logical scalar indicating if
range is included in the
measurement.

HasVelocity

Logical scalar indicating if the
reported detections include
velocity measurements. For
measurements reported in the
rectangular frame, if
HasVelocity is false, the
measurements are reported as
[x y z].IfHasVelocityis
true, measurements are
reported as [X Yy z vX vy
vz].

3-59

3 Functions

Field

Description

Example

IsParentToChild

Logical scalar indicating if
Orientation performs a frame
rotation from the parent
coordinate frame to the child
coordinate frame. When
IsParentToChild is false,
then Orientation performs a
frame rotation from the child
coordinate frame to the parent
coordinate frame.

0

Data Types: struct

Output Arguments

measurement — Measurement vector

N-by-1 column vector

Measurement vector, returned as an N-by-1 column vector. The form of the measurement depends

upon which syntax you use.

* When the syntax does not use the measurementParameters argument, the measurement vector
is [x,y,z] when the frame input argument is set to 'rectangular' and [az;el;r;rr] when
the frame is set to 'spherical’.

* When the syntax uses the measurementParameters argument, the size of the measurement
vector depends on the values of the frame, HasVelocity, and HasElevation fields in the
measurementParameters structure.

frame

measurement

'spherical’

Specifies the azimuth angle, az, elevation
angle, el, range, r, and range rate, 7, of the
object with respect to the local ego vehicle
coordinate system. Positive values for range
rate indicate that an object is moving away
from the sensor.

Spherical measurements

HasElevation
false true
HasVeloc |false [az;r] [az;el;r
ity |
true [az;r;rr|[az;el;r
] yrrl

Angle units are in degrees, range units are in
meters, and range rate units are in m/s.

3-60

ctmeas

frame measurement

'rectangular Specifies the Cartesian position and velocity
coordinates of the tracked object with respect
to the ego vehicle coordinate system.

Rectangular measurements

HasVelocity |false [x;y;y]
true [X;y;z;vx;v
y;vz]

Position units are in meters and velocity units
are in m/s.

Data Types: double

More About

Azimuth and Elevation Angle Definitions
Define the azimuth and elevation angles used in Automated Driving Toolbox.

The azimuth angle of a vector is the angle between the x-axis and its orthogonal projection onto the
xy plane. The angle is positive in going from the x axis toward the y axis. Azimuth angles lie between
-180 and 180 degrees. The elevation angle is the angle between the vector and its orthogonal
projection onto the xy-plane. The angle is positive when going toward the positive z-axis from the xy
plane.

3-61

3 Functions

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
See Also

Functions
cameas | cameasjac | constacc | constaccjac | constturn | constturnjac | constvel |
constveljac | ctmeasjac | cvmeas | cvmeasjac

Objects
trackingEKF | trackingKF | trackingUKF

3-62

ctmeas

Introduced in R2017a

3-63

3 Functions

ctmeasjac

Jacobian of measurement function for constant turn-rate motion

Syntax

measurementjac = ctmeasjac(state)

measurementjac = ctmeasjac(state, frame)

measurementjac = ctmeasjac(state, frame,sensorpos)

measurementjac = ctmeasjac(state, frame,sensorpos,sensorvel)

measurementjac = ctmeasjac(state, frame,sensorpos,sensorvel, laxes)
(

measurementjac = ctmeasjac(state,measurementParameters)

Description

measurementjac = ctmeasjac(state) returns the measurement Jacobian, measurementjac,
for a constant turn-rate Kalman filter motion model in rectangular coordinates. state specifies the
current state of the track.

measurementjac
system, frame.

ctmeasjac(state, frame) also specifies the measurement coordinate

measurementjac
Sensorpos.

ctmeasjac(state, frame, sensorpos) also specifies the sensor position,

measurementjac = ctmeasjac(state, frame,sensorpos,sensorvel) also specifies the
sensor velocity, sensorvel

measurementjac = ctmeasjac(state, frame,sensorpos,sensorvel, laxes) also specifies
the local sensor axes orientation, laxes.

measurementjac = ctmeasjac(state,measurementParameters) specifies the measurement
parameters, measurementParameters.

Examples

Measurement Jacobian of Constant Turn-Rate Motion in Rectangular Frame

Define the state of an object in 2-D constant turn-rate motion. The state is the position and velocity in
each dimension, and the turn rate. Construct the measurement Jacobian in rectangular coordinates.

state = [1;10;2;20;5];
jacobian = ctmeasjac(state)

jacobian = 3x5

1 0 0 0 0
0 0 1 0 0
0 0 0 0 0

3-64

ctmeasjac

Measurement Jacobian of Constant Turn-Rate Motion in Spherical Frame

Define the state of an object in 2-D constant turn-rate motion. The state is the position and velocity in
each dimension, and the turn rate. Compute the measurement Jacobian with respect to spherical
coordinates.

state = [1;10;2;20;5];
measurementjac = ctmeasjac(state, 'spherical')

measurementjac = 4x5
-22.9183 0 11.4592 0 0
0 0 0 0 0
0.4472 0 0.8944 0 0
0.0000 0.4472 0.0000 0.8944 0

Measurement Jacobian of Constant Turn-Rate Object in Translated Spherical Frame

Define the state of an object in 2-D constant turn-rate motion. The state is the position and velocity in
each dimension, and the turn rate. Compute the measurement Jacobian with respect to spherical
coordinates centered at [5;-20;0].

state = [1;10;2;20;5];
sensorpos = [5;-20;0];
measurementjac = ctmeasjac(state, 'spherical’',sensorpos)

measurementjac = 4x5
-2.5210 0 -0.4584 0 0
0 0 0 0 0
-0.1789 0 0.9839 0 0
0.5903 -0.1789 0.1073 0.9839 0

Measurement Jacobian of Constant Turn-Rate Object Using Measurement Parameters

Define the state of an object in 2-D constant turn-rate motion. The state is the position and velocity in
each dimension, and the turn rate. Compute the measurement Jacobian with respect to spherical
coordinates centered at [25;-40;0].

state2d = [1;10;2;20;5];

sensorpos = [25,-40,0]."';

frame = 'spherical’;

sensorvel = [0;5;0];

laxes = eye(3);

measurementjac = ctmeasjac(state2d, frame,sensorpos,sensorvel, laxes)

measurementjac = 4x5

3-65

3 Functions

3-66

-1.0284 0 -0.5876 0 0

0 0 0 0 0
-0.4961 0 0.8682 0 0
0.2894 -0.4961 0.1654 0.8682 0

Put the measurement parameters in a structure and use the alternative syntax.

measparm = struct('Frame',frame, 'OriginPosition',sensorpos, 'OriginVelocity',sensorvel,

'Orientation',laxes);

measurementjac = ctmeasjac(state2d,measparm)

measurementjac = 4x5
-1.0284 0 -0.5876 0 0
0 0 0 0 0
-0.4961 0 0.8682 0 0
0.2894 -0.4961 0.1654 0.8682 0

Input Arguments

state — State vector
real-valued 5-element vector | real-valued 7-element vector | 5-by-N real-valued matrix | 7-by-N real-
valued matrix

State vector for a constant turn-rate motion model in two or three spatial dimensions, specified as a
real-valued vector or matrix.

When specified as a 5-element vector, the state vector describes 2-D motion in the x-y plane. You
can specify the state vector as a row or column vector. The components of the state vector are
[x;vx;y;vy;omega] where x represents the x-coordinate and vx represents the velocity in the
x-direction. y represents the y-coordinate and vy represents the velocity in the y-direction. omega
represents the turn rate.

When specified as a 5-by-N matrix, each column represents a different state vector N represents
the number of states.

When specified as a 7-element vector, the state vector describes 3-D motion. You can specify the
state vector as a row or column vector. The components of the state vector are
[X;vXx;y;vy;omega;z;vz] where x represents the x-coordinate and vx represents the velocity
in the x-direction. y represents the y-coordinate and vy represents the velocity in the y-direction.
omega represents the turn rate. z represents the z-coordinate and vz represents the velocity in
the z-direction.

When specified as a 7-by-N matrix, each column represents a different state vector. N represents
the number of states.

Position coordinates are in meters. Velocity coordinates are in meters/second. Turn rate is in degrees/
second.

Example: [5;0.1;4;-0.2;0.01]
Data Types: double

ctmeasjac

frame — Measurement output frame
'rectangular' (default) | 'spherical’

Measurement output frame, specified as ' rectangular' or 'spherical’'. When the frame is
'rectangular’', a measurement consists of x, y, and z Cartesian coordinates. When specified as
'spherical’, a measurement consists of azimuth, elevation, range, and range rate.

Data Types: char

sensorpos — Sensor position
[0;0;0] (default) | real-valued 3-by-1 column vector

Sensor position with respect to the navigation frame, specified as a real-valued 3-by-1 column vector.
Units are in meters.

Data Types: double

sensorvel — Sensor velocity
[0;0;0] (default) | real-valued 3-by-1 column vector

Sensor velocity with respect to the navigation frame, specified as a real-valued 3-by-1 column vector.
Units are in m/s.

Data Types: double

laxes — Local sensor coordinate axes
[1,0,0;0,1,0;0,0,1] (default) | 3-by-3 orthogonal matrix

Local sensor coordinate axes, specified as a 3-by-3 orthogonal matrix. Each column specifies the
direction of the local x-, y-, and z-axes, respectively, with respect to the navigation frame. That is, the
matrix is the rotation matrix from the global frame to the sensor frame.

Data Types: double

measurementParameters — Measurement parameters
structure | array of structure

Measurement parameters, specified as a structure or an array of structures. The fields of the
structure are:

Field Description Example

Frame Frame used to report 'spherical’
measurements, specified as one
of these values:

* ‘'rectangular' —
Detections are reported in
rectangular coordinates.

e ‘'spherical' — Detections
are reported in spherical
coordinates.

3-67

3 Functions

Field

Description

Example

OriginPosition

Position offset of the origin of
the frame relative to the parent
frame, specified asan [x y z]
real-valued vector.

[0 0 0]

OriginVelocity

Velocity offset of the origin of
the frame relative to the parent
frame, specified as a [vx vy
vz] real-valued vector.

[0 0 0]

Orientation

Frame rotation matrix, specified
as a 3-by-3 real-valued
orthonormal matrix.

[1006; 010; 060 1]

HasAzimuth

Logical scalar indicating if
azimuth is included in the
measurement.

HasElevation

Logical scalar indicating if
elevation is included in the
measurement. For
measurements reported in a
rectangular frame, and if
HasElevation is false, the
reported measurements assume
0 degrees of elevation.

HasRange

Logical scalar indicating if
range is included in the
measurement.

HasVelocity

Logical scalar indicating if the
reported detections include
velocity measurements. For
measurements reported in the
rectangular frame, if
HasVelocity is false, the
measurements are reported as
[x y z].IfHasVelocity is
true, measurements are
reported as [X y z vx vy
vz].

1

IsParentToChild

Logical scalar indicating if
Orientation performs a frame
rotation from the parent
coordinate frame to the child
coordinate frame. When
IsParentToChild is false,
then Orientation performs a
frame rotation from the child
coordinate frame to the parent
coordinate frame.

Data Types: struct

3-68

ctmeasjac

Output Arguments

measurementjac — Measurement Jacobian
real-valued 3-by-5 matrix | real-valued 4-by-5 matrix

Measurement Jacobian, returned as a real-valued 3-by-5 or 4-by-5 matrix. The row dimension and
interpretation depend on value of the frame argument.

Frame Measurement Jacobian

'rectangular’ Jacobian of the measurements [x;y;z] with
respect to the state vector. The measurement
vector is with respect to the local coordinate
system. Coordinates are in meters.

'spherical' Jacobian of the measurement vector

[az;el; r; rr] with respect to the state vector.
Measurement vector components specify the
azimuth angle, elevation angle, range, and range
rate of the object with respect to the local sensor
coordinate system. Angle units are in degrees.
Range units are in meters and range rate units
are in meters/second.

More About

Azimuth and Elevation Angle Definitions
Define the azimuth and elevation angles used in Automated Driving Toolbox.

The azimuth angle of a vector is the angle between the x-axis and its orthogonal projection onto the
xy plane. The angle is positive in going from the x axis toward the y axis. Azimuth angles lie between
-180 and 180 degrees. The elevation angle is the angle between the vector and its orthogonal
projection onto the xy-plane. The angle is positive when going toward the positive z-axis from the xy
plane.

3-69

3 Functions

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
See Also

Functions
cameas | cameasjac | constacc | constaccjac | constturn | constturnjac | constvel |
constveljac | ctmeas | cvmeas | cvmeasjac

Objects
trackingEKF | trackingKF | trackingUKF

3-70

ctmeasjac

Introduced in R2017a

3-71

3 Functions

cvimeas

Measurement function for constant velocity motion

Syntax

measurement = cvmeas(state)

measurement = cvmeas(state, frame)

measurement = cvmeas(state, frame,sensorpos)

measurement = cvmeas(state, frame,sensorpos,sensorvel)

measurement = cvmeas(state, frame,sensorpos,sensorvel, laxes)
(

measurement = cvmeas(state,measurementParameters)

Description

measurement = cvmeas(state) returns the measurement for a constant-velocity Kalman filter
motion model in rectangular coordinates. The state argument specifies the current state of the

tracking filter.

measurement = cvmeas(state, frame) also specifies the measurement coordinate system,
frame.

measurement = cvmeas(state, frame,sensorpos) also specifies the sensor position,
Sensorpos.

measurement = cvmeas(state, frame,sensorpos,sensorvel) also specifies the sensor

velocity, sensorvel.

measurement = cvmeas(state, frame,sensorpos,sensorvel, laxes) specifies the local
sensor axes orientation, laxes.

measurement = cvmeas(state,measurementParameters) specifies the measurement
parameters, measurementParameters.

Examples

Create Measurement from Constant-Velocity Object in Rectangular Frame

Define the state of an object in 2-D constant-velocity motion. The state is the position and velocity in
both dimensions. The measurements are in rectangular coordinates.

state = [1;10;2;20];
measurement = cvmeas(state)

measurement = 3xI
1

2
0

3-72

cvmeas

The z-component of the measurement is zero.

Create Measurement from Constant Velocity Object in Spherical Frame

Define the state of an object in 2-D constant-velocity motion. The state is the position and velocity in
each spatial dimension. The measurements are in spherical coordinates.

state = [1;10;2;20];
measurement = cvmeas(state, 'spherical')

measurement = 4x1I

63.4349
0
2.2361
22.3607

The elevation of the measurement is zero and the range rate is positive. These results indicate that
the object is moving away from the sensor.

Create Measurement from Constant-Velocity Object in Translated Spherical Frame

Define the state of an object in 2-D constant-velocity motion. The state consists of position and
velocity in each spatial dimension. The measurements are in spherical coordinates with respect to a
frame located at (20;40;0) meters.

state = [1;10;2;20];
measurement = cvmeas(state, 'spherical',[20;40;0])

measurement = 4x1

-116.5651
0

42.4853
-22.3607

The elevation of the measurement is zero and the range rate is negative. These results indicate that
the object is moving toward the sensor.

Create Measurement from Constant-Velocity Object Using Measurement Parameters

Define the state of an object in 2-D constant-velocity motion. The state consists of position and
velocity in each spatial dimension. The measurements are in spherical coordinates with respect to a
frame located at (20;40;0) meters.

state2d = [1,;10;2;20];
frame = 'spherical';

3-73

3 Functions

3-74

sensorpos = [20;40;0];

sensorvel = [0;5;0];

laxes = eye(3);

measurement = cvmeas(state2d, frame,sensorpos,sensorvel, laxes)

measurement = 4x1

-116.5651
0
42.4853
-17.8885

The elevation of the measurement is zero and the range rate is negative. These results indicate that
the object is moving toward the sensor.

Put the measurement parameters in a structure and use the alternative syntax.

measparm = struct('Frame',frame, 'OriginPosition',sensorpos, 'OriginVelocity',sensorvel,
'Orientation', laxes);
measurement = cvmeas(state2d,measparm)

measurement = 4x1

-116.5651
0
42.4853
-17.8885

Input Arguments

state — Kalman filter state vector
real-valued 2N-element vector

Kalman filter state vector for constant-velocity motion, specified as a real-valued 2ZN-element column
vector where N is the number of spatial degrees of freedom of motion. The state is expected to be
Cartesian state. For each spatial degree of motion, the state vector takes the form shown in this table.

Spatial Dimensions State Vector Structure
1-D [x;vx]

2-D [x;vx;y;vyl

3-D [X;vx;y;vy;z;vz]

For example, x represents the x-coordinate and vx represents the velocity in the x-direction. If the
motion model is 1-D, values along the y and z axes are assumed to be zero. If the motion model is 2-D,
values along the z axis are assumed to be zero. Position coordinates are in meters and velocity
coordinates are in meters/sec.

Example: [5;.1;0;-.2;-3;.05]
Data Types: single | double

frame — Measurement output frame
'rectangular' (default) | 'spherical!’

cvmeas

Measurement output frame, specified as ' rectangular' or 'spherical'. When the frame is
'rectangular’', a measurement consists of x, y, and z Cartesian coordinates. When specified as
'spherical’', a measurement consists of azimuth, elevation, range, and range rate.

Data Types: char

sensorpos — Sensor position
[0;0;0] (default) | real-valued 3-by-1 column vector

Sensor position with respect to the navigation frame, specified as a real-valued 3-by-1 column vector.
Units are in meters.
Data Types: double

sensorvel — Sensor velocity
[0;0;0] (default) | real-valued 3-by-1 column vector

Sensor velocity with respect to the navigation frame, specified as a real-valued 3-by-1 column vector.
Units are in m/s.
Data Types: double

laxes — Local sensor coordinate axes
[1,0,0;0,1,0;0,0,1] (default) | 3-by-3 orthogonal matrix

Local sensor coordinate axes, specified as a 3-by-3 orthogonal matrix. Each column specifies the
direction of the local x-, y-, and z-axes, respectively, with respect to the navigation frame. That is, the
matrix is the rotation matrix from the global frame to the sensor frame.

Data Types: double

measurementParameters — Measurement parameters
structure | array of structure

Measurement parameters, specified as a structure or an array of structures. The fields of the
structure are:

Field Description Example

Frame Frame used to report 'spherical’
measurements, specified as one
of these values:

* 'rectangular' —
Detections are reported in
rectangular coordinates.

e 'spherical' — Detections
are reported in spherical
coordinates.

OriginPosition Position offset of the origin of [0 0 0]
the frame relative to the parent
frame, specified asan [x y z]
real-valued vector.

3-75

3 Functions

Field

Description

Example

OriginVelocity

Velocity offset of the origin of
the frame relative to the parent
frame, specified as a [vx vy
vz] real-valued vector.

[0 0 0]

Orientation

Frame rotation matrix, specified
as a 3-by-3 real-valued
orthonormal matrix.

[1006; 010; 60 1]

HasAzimuth

Logical scalar indicating if
azimuth is included in the
measurement.

HasElevation

Logical scalar indicating if
elevation is included in the
measurement. For
measurements reported in a
rectangular frame, and if
HasElevation is false, the
reported measurements assume
0 degrees of elevation.

HasRange

Logical scalar indicating if
range is included in the
measurement.

HasVelocity

Logical scalar indicating if the
reported detections include
velocity measurements. For
measurements reported in the
rectangular frame, if
HasVelocity is false, the
measurements are reported as
[x y z].IfHasVelocity is
true, measurements are
reported as [X y z vX vy
vz].

1

IsParentToChild

Logical scalar indicating if
Orientation performs a frame
rotation from the parent
coordinate frame to the child
coordinate frame. When
IsParentToChild is false,
then Orientation performs a
frame rotation from the child
coordinate frame to the parent
coordinate frame.

Data Types: struct

3-76

cvmeas

Output Arguments

measurement — Measurement vector
N-by-1 column vector

Measurement vector, returned as an N-by-1 column vector. The form of the measurement depends
upon which syntax you use.

* When the syntax does not use the measurementParameters argument, the measurement vector
is [x,y,z] when the frame input argument is set to ' rectangular' and [az;el;r;rr] when
the frame is set to 'spherical’.

* When the syntax uses the measurementParameters argument, the size of the measurement
vector depends on the values of the frame, HasVelocity, and HasElevation fields in the
measurementParameters structure.

frame measurement

'spherical’ Specifies the azimuth angle, az, elevation
angle, el, range, r, and range rate, rr, of the
object with respect to the local ego vehicle
coordinate system. Positive values for range
rate indicate that an object is moving away
from the sensor.

Spherical measurements

HasElevation
false true
HasVeloc |false [az;r] [az;el;r
ity]
true [az;r;rr|[az;el;r
] yrrl

Angle units are in degrees, range units are in
meters, and range rate units are in m/s.

'rectangular Specifies the Cartesian position and velocity
coordinates of the tracked object with respect
to the ego vehicle coordinate system.

Rectangular measurements

HasVelocity |false [x;y;y]
true [X;y;z;vx;v
y;vz]

Position units are in meters and velocity units
are in m/s.

Data Types: double

3-77

3 Functions

More About
Azimuth and Elevation Angle Definitions
Define the azimuth and elevation angles used in Automated Driving Toolbox.

The azimuth angle of a vector is the angle between the x-axis and its orthogonal projection onto the
xy plane. The angle is positive in going from the x axis toward the y axis. Azimuth angles lie between
-180 and 180 degrees. The elevation angle is the angle between the vector and its orthogonal
projection onto the xy-plane. The angle is positive when going toward the positive z-axis from the xy
plane.

3-78

cvmeas

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

Functions

cameas | cameasjac | constacc | constaccjac | constturn | constturnjac | constvel |
constveljac | ctmeas | ctmeasjac | cvmeasjac

Objects
trackingEKF | trackingKF | trackingUKF

Introduced in R2017a

3-79

3 Functions

3-80

cvmeasjac

Jacobian of measurement function for constant velocity motion

Syntax

measurementjac = cvmeasjac(state)

measurementjac = cvmeasjac(state, frame)

measurementjac = cvmeasjac(state, frame,sensorpos)

measurementjac = cvmeasjac(state, frame,sensorpos,sensorvel)

measurementjac = cvmeasjac(state, frame,sensorpos,sensorvel, laxes)
(

measurementjac = cvmeasjac(state,measurementParameters)

Description

measurementjac = cvmeasjac(state) returns the measurement Jacobian for constant-velocity
Kalman filter motion model in rectangular coordinates. state specifies the current state of the
tracking filter.

measurementjac
system, frame.

cvmeasjac(state, frame) also specifies the measurement coordinate

measurementjac
Sensorpos.

cvmeasjac(state, frame, sensorpos) also specifies the sensor position,

measurementjac = cvmeasjac(state, frame,sensorpos,sensorvel) also specifies the
sensor velocity, sensorvel

measurementjac = cvmeasjac(state, frame,sensorpos,sensorvel, laxes) also specifies
the local sensor axes orientation, laxes.

measurementjac = cvmeasjac(state,measurementParameters) specifies the measurement
parameters, measurementParameters.

Examples

Measurement Jacobian of Constant-Velocity Object in Rectangular Frame

Define the state of an object in 2-D constant-velocity motion. The state is the position and velocity in
each spatial dimension. Construct the measurement Jacobian in rectangular coordinates.

state = [1;10;2;20];
jacobian = cvmeasjac(state)

jacobian = 3x4

1 0 0 0
0 0 1 0
0 0 0 0

cvmeasjac

Measurement Jacobian of Constant-Velocity Motion in Spherical Frame

Define the state of an object in 2-D constant-velocity motion. The state is the position and velocity in
each dimension. Compute the measurement Jacobian with respect to spherical coordinates.

state = [1;10;2;20];
measurementjac = cvmeasjac(state, 'spherical')

measurementjac = 4x4

-22.9183 0 11.4592 0
0 0 0 0

0.4472 0 0.8944 0
0.0000 0.4472 0.0000 0.8944

Measurement Jacobian of Constant-Velocity Object in Translated Spherical Frame

Define the state of an object in 2-D constant-velocity motion. The state is the position and velocity in
each spatial dimension. Compute the measurement Jacobian with respect to spherical coordinates
centered at (5;-20;0) meters.

state = [1;10;2;20];
sensorpos = [5;-20;0];
measurementjac = cvmeasjac(state, 'spherical',sensorpos)

measurementjac = 4x4

-2.5210 0 -0.4584 0

0 0 0 0
-0.1789 0 0.9839 0
0.5903 -0.1789 0.1073 0.9839

Create Measurement Jacobian for Constant-Velocity Object Using Measurement Parameters

Define the state of an object in 2-D constant-velocity motion. The state consists of position and
velocity in each spatial dimension. The measurements are in spherical coordinates with respect to a
frame located at (20;40;0) meters.

state2d = [1;10;2;20];

frame = 'spherical';

sensorpos = [20;40;0];

sensorvel = [0;5;0];

laxes = eye(3);

measurementjac = cvmeasjac(state2d, frame,sensorpos,sensorvel, laxes)

measurementjac = 4x4

1.2062 0 -0.6031
0 0 0

[oNo]

3-81

3 Functions

3-82

-0.4472 0 -0.8944 0
0.0471 -0.4472 -0.0235 -0.8944

Put the measurement parameters in a structure and use the alternative syntax.

measparm = struct('Frame',frame, 'OriginPosition',sensorpos, '0OriginVelocity',sensorvel,
'Orientation',laxes);
measurementjac = cvmeasjac(state2d,measparm)

measurementjac = 4x4

1.2062 0 -0.6031 0

0 0 0 0
-0.4472 0 -0.8944 0
0.0471 -0.4472 -0.0235 -0.8944

Input Arguments

state — Kalman filter state vector
real-valued 2N-element vector

Kalman filter state vector for constant-velocity motion, specified as a real-valued 2N-element column
vector where N is the number of spatial degrees of freedom of motion. The state is expected to be
Cartesian state. For each spatial degree of motion, the state vector takes the form shown in this table.

Spatial Dimensions State Vector Structure
1-D [x;vx]

2-D [x;vx;y;vyl

3-D [X;VX;y;vy;z;vz]

For example, x represents the x-coordinate and vx represents the velocity in the x-direction. If the
motion model is 1-D, values along the y and z axes are assumed to be zero. If the motion model is 2-D,
values along the 2 axis are assumed to be zero. Position coordinates are in meters and velocity
coordinates are in meters/sec.

Example: [5;.1;0;-.2;-3;.05]
Data Types: single | double

frame — Measurement output frame
'rectangular’' (default) | 'spherical'’

Measurement output frame, specified as ' rectangular' or 'spherical'. When the frame is
'rectangular’', a measurement consists of x, y, and z Cartesian coordinates. When specified as
'spherical’, a measurement consists of azimuth, elevation, range, and range rate.

Data Types: char

sensorpos — Sensor position
[0;0;0] (default) | real-valued 3-by-1 column vector

Sensor position with respect to the navigation frame, specified as a real-valued 3-by-1 column vector.
Units are in meters.

cvmeasjac

Data Types: double

sensorvel — Sensor velocity
[0;0;0] (default) | real-valued 3-by-1 column vector

Sensor velocity with respect to the navigation frame, specified as a real-valued 3-by-1 column vector.
Units are in m/s.
Data Types: double

laxes — Local sensor coordinate axes
[1,0,0;0,1,0;0,0,1] (default) | 3-by-3 orthogonal matrix

Local sensor coordinate axes, specified as a 3-by-3 orthogonal matrix. Each column specifies the
direction of the local x-, y-, and z-axes, respectively, with respect to the navigation frame. That is, the
matrix is the rotation matrix from the global frame to the sensor frame.

Data Types: double

measurementParameters — Measurement parameters
structure | array of structure

Measurement parameters, specified as a structure or an array of structures. The fields of the
structure are:

Field Description Example

Frame Frame used to report 'spherical’
measurements, specified as one
of these values:

* 'rectangular' —
Detections are reported in
rectangular coordinat